Supplementary Information for:

Title: Intervention strategies against COVID-19 and their estimated impact on Swedish healthcare capacity

Authors:
Jasmine M GARDNER (0000-0002-6399-8504), Lander WILLEM (0000-0002-9210-1196), Wouter VAN DER WIJNGAART (0000-0001-8248-6670), Shina Caroline Lynn KAMERLIN (0000-0002-3190-1173), Nele BRUSSELAERS (0000-0003-0137-447X), Peter KASSON (0000-0002-3111-8103)

Address for each author
JMG: Science for Life Laboratory, Department of Chemistry – BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden, j.gardner@kemi.uu.se
LW: Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium, lander.willem@uantwerpen.be
WVDW: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Malvinas väg 10, SE-100 44 Stockholm, Sweden, wouter@kth.se
SCLK: Science for Life Laboratory, Department of Chemistry – BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden, lynn.kamerlin@kemi.uu.se
NB: Centre for Translational Microbiome Research (CTMR), Dept. of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Sweden; Ghent University, Belgium, nele.brusselaers@ki.se
PK: Science for Life Laboratory, Dept. of Cell and Molecular Biology, Uppsala University, Uppsala 75124 Sweden and Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, USA, kassonlab@gmail.com
Supplementary methods

Household transmission (Th) is calculated as

\[
\sum_{k(h_k = i)} \frac{I_k \beta_h \kappa(t - \tau_k)[1 + C_k(\omega - 1)]}{n_i^\alpha}
\]

(1)

where \(h_i \) is the household of individual \(i \), \(I_i \) is 1 if individual \(i \) is infectious and 0 otherwise, \(\beta_h \) is 1.1 to reflect approximately 1/3 of overall transmission propagating from the household, \(\kappa(t-\tau) \) is the time-dependent strength of infection described by a log-normal distribution with a mean of -0.72 and a standard deviation of 1.8, \(C_k \) is 1 if individual \(k \) has a severe infection and 0 otherwise, \(\omega \) is 2 (to account for severe infections being twice as infectious), \(n_i \) is the population of household \(i \), and \(\alpha \) is 0.8 and represents a determining factor for household transmission.

Community transmission (Tc) is calculated as:

\[
\sum_k I_k \zeta(a_i) \beta_c \kappa(t - \tau_k) f(d_i,k)[1 + C_k(\omega - 1)]
\sum_k f(d_i,k)
\]

(2)

where \(\zeta(a) \) is a factor to account for different travel rates of individuals \(i \) with age \(a \). In this study, the parameter is 0.1 when age is less than 5, 0.25 for ages 5-10, 0.50 for ages 10-15, 1.0 for ages 20-65, 0.75 for ages 10-15, 0.75 for ages 65-70, 0.5 for ages 70-75, 0.25 for ages over 75. A gravity-based density kernel \(f(d_i,k) \) is used as described in Ferguson 2005 with data as parameterized for Great Britain, and \(\beta_c \) is set to 0.865 to account for 1/3 of transmission from the community.

Workplace and school transmission (Tw) is calculated as:

\[
\sum_{j,k(l_i = l_j)} \frac{I_k \beta_p^j \kappa(t - \tau_k)[1 + C_k(\omega \psi_p^j - 1)]}{m_i^j}
\]

(3)
where β_b is 1.254 for schools, 0.627 for workplaces, and 0.156 for hospitals to account for 75% decrease in infection spread from strict safety measures and 1/3 transmission occurring in schools and workplaces. The factor y_p accounts for workplace absence during severe infections and is 0.1 for preschools, 0.2 for elementary schools, 0.25 for high schools, and 0.5 for workplaces. M is the number of members of the workplace.

The parameterization procedure described in the Methods yielded an additional scaling factor of 1.8 for all β values to yield a 5-day doubling time, which matched the doubling time for reported COVID-19 deaths in Sweden over the parameterization window, and a scaling factor of 2.2 to yield a 3-day doubling time, which is most consistent with epidemiological data for the rest of Europe.

Infectiousness is an additive property where $\lambda = T_h + T_w + T_c$. Infection is determined through a Monte Carlo determination with probability $1 - \exp(\lambda dt)$. If a person is infectious, they are assigned as asymptomatic with a 33% probability and severe with 50% probability. Individuals are infectious from 4.6 days after initial infection and symptoms appear after 5.1 days.

Five days after appearance of symptoms, individuals enter the hospital randomly at a rate dependent on age. These percentages are 0.1 for ages 0-9, 0.3 for ages 10-19, 1.2 for ages 20-29, 3.2 for ages 30-39, 4.9 for ages 40-49, 10.2 for ages 50-59, 16.6 for ages 60-69, 24.3 for ages 70-79, and 0.273 for ages 80 and over. ICU entry is similarly based on age and determined randomly from patients admitted to the hospital. The probability of ICU commitment after hospital entry is 5 for ages less than 40, 6.3 for ages 40-50, 12.2 for ages 50-60, 27.4 for ages 60-70, 43.2 for ages 70-80, and 70.9 for ages over 80.

Ten days after onset of symptoms, symptomatic individuals die with a percentage determined by age. These percentages are 0.00161% for ages 0-10, 0.00695% for ages 10-20, 0.0309% for ages 20-30, 0.0844% for ages 30-40, 0.161% for ages 40-50, 0.595% for ages 50-60,
1.93% for ages 60-70, 4.28% for ages 70-80, and 7.8% for ages above 80. These numbers were intentionally set conservatively. ICU patients die with 50% probability regardless of age.\(^3\)

Individuals in the community recover 11 days after onset of symptoms, and those in the hospital are discharged and recover after 8 days of hospitalisation. Individuals in the ICU are transferred to the general hospital after 10 days and discharged from the hospital 5 days after that.

References

