Supplementary Methods

Evolving Epidemiology and Impact of Non-pharmaceutical Interventions on the Outbreak of Coronavirus Disease 2019 in Wuhan, China

Chaolong Wang, Ph.D., Li Liu, Ph.D., Xingjie Hao, Ph.D., Huan Guo, Ph.D., Qi Wang, Ph.D., Jiao Huang, Ph.D., Na He, Ph.D., Hongjie Yu, Ph.D., Xihong Lin, Ph.D., An Pan, Ph.D., Sheng Wei, Ph.D., Tangchun Wu, Ph.D.
Modeling the epidemic of Covid-19 in Wuhan, China

We extended the classic susceptible-exposed-infectious-recovered (SEIR) model to account for population movement, unascertained cases, and quarantine by hospitalization (Figure A1). We chose to analyze from January 1, 2020, when the Huanan Seafood market was closed, and thus did not model the zoonotic force of infection. We assumed a constant population size $N = 10,000,000$ with equal daily inbound and outbound travelers n, where $n = 500,000$ for January 1-10, 800,000 for January 11-22 due to Chunyun, and 0 after city quarantine from January 23.\(^1\) We divided the population into S susceptible, E latent, I ascertained infectious, A unascertained infectious, H hospitalized, and R removed individuals.

![Figure A1. Illustration of the extended SEIR model.](image)

We divided the population into six compartments: S (susceptible), E (latent), I (reported infectious), A (unreported infectious), H (hospitalized), and R (removed). Two key parameters in the model are r (ascertainment rate) and b (transmission rate), which are assumed to be varying across time periods.
Dynamics of these six compartments across time t were described by the following set of ordinary differential equations:

$$
\begin{align*}
\frac{dS}{dt} &= -\frac{bS(I + \alpha A)}{N} + n - \frac{nS}{N - I - H} \\
\frac{dE}{dt} &= \frac{bS(I + \alpha A)}{N} - \frac{E}{D_e} - \frac{nE}{N - I - H} \\
\frac{dI}{dt} &= \frac{rE}{D_e} - \frac{I}{D_i} - \frac{I}{D_i} \\
\frac{dA}{dt} &= \frac{(1 - r)E}{D_e} - \frac{A}{D_i} - \frac{nA}{N - I - H} \\
\frac{dH}{dt} &= \frac{I}{D_q} - \frac{H}{D_h} \\
\frac{dR}{dt} &= \frac{I + A}{D_i} + \frac{H}{D_h} - \frac{nR}{N - I - H}
\end{align*}
$$

where b was the transmission rate, defined as the number of individuals that an ascertained case can infect per day; α was the ratio of the transmission rate of unascertained over ascertained cases; r was ascertainment rate; D_e and D_i were the latent and infectious periods; D_q was the duration from illness onset to hospitalization; and D_h was the hospitalization period. The effective reproductive number R_t could be computed as

$$
R_t = \frac{D_i b}{A + I} \left(\alpha A + \frac{D_q I}{D_i + D_q} \right)
$$

Here, R_t depended on time t because A and I depended on t. We took the mean across time points within a given period as the estimate of R_t.

Initial states of the model and parameter settings of the main analysis were summarized in Tables A1 and A2. We assumed the initial number of unascertained cases to be the same as the ascertained cases on December 31, 2019, and the initial number of latent cases as twice of those with onset from January 1 to 5, 2020. For
parameters, we set $\alpha = 1$, assuming same transmissibility between unascertained and ascertained cases. We set the latent period $D_e = 5.2$ days and the infectious period $D_i = 2.3$ days, assuming the latent period equal to the incubation period and the infectious period equal to the serial interval minus the incubation period. We set a long hospitalization period of $D_h = 30$ days considering most ascertained cases were still hospitalized. The duration from onset to hospitalization were estimated to be $D_q = 10$ days, 7 days, 5 days, and 2 days as half of the median difference between the onset and confirmed dates for each period, respectively. Our $D_q = 10$ days for the first period matched well to the reported mean D_q of 9.1 days for 189 cases with onset during January 1-11.

Finally, considering the time-varying strength of countermeasures, we assumed $b = b_{12}$ and $r = r_{12}$ for periods 1 and 2, $b = b_3$ and $r = r_3$ for period 3, and $b = b_4$ and $r = r_4$ for period 4.

Table A1. Initial state of the SEIR model for the main analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(0)$</td>
<td>Number of susceptible individuals</td>
<td>9,999,467</td>
<td>$S = N - E - I - A - H - R$</td>
</tr>
<tr>
<td>$E(0)$</td>
<td>Number of latent cases</td>
<td>346</td>
<td>Twice of the number of cases with onset from Jan. 1 to 5, 2020</td>
</tr>
<tr>
<td>$I(0)$</td>
<td>Number of ascertained infectious cases</td>
<td>80</td>
<td>Number of cases with onset before Jan. 1, 2020 minus $H(0)$</td>
</tr>
<tr>
<td>$A(0)$</td>
<td>Number of unascertained infectious cases</td>
<td>80</td>
<td>Assuming $E(0) = I(0)$</td>
</tr>
<tr>
<td>$H(0)$</td>
<td>Number of hospitalized cases</td>
<td>27</td>
<td>Number of cases reported by Dec. 31, 2019</td>
</tr>
<tr>
<td>$R(0)$</td>
<td>Number of removed individuals</td>
<td>0</td>
<td>Number of recovered patients by Dec. 31, 2019</td>
</tr>
</tbody>
</table>
Table A2. Parameter values of the SEIR model for the main analysis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Jan. 1-10</th>
<th>Jan. 11-22</th>
<th>Jan. 23-Feb. 1</th>
<th>Feb. 2-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>Transmission rate of ascertained cases</td>
<td>(b_{12})</td>
<td>(b_{12})</td>
<td>(b_3)</td>
<td>(b_4)</td>
</tr>
<tr>
<td>(r)</td>
<td>Ascertainment rate</td>
<td>(r_{12})</td>
<td>(r_{12})</td>
<td>(r_3)</td>
<td>(r_4)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Ratio of transmission rate between unascertained and ascertained cases</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(D_e)</td>
<td>Latent period</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>(D_i)</td>
<td>Infectious period</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>(D_q)</td>
<td>Duration from illness onset to hospitalization</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>(D_h)</td>
<td>Hospitalization period</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>(N)</td>
<td>Population size</td>
<td>10,000,000</td>
<td>10,000,000</td>
<td>10,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>(n)</td>
<td>Daily inbound and outbound size</td>
<td>500,000</td>
<td>800,000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Estimation of parameters in the SEIR model

To estimate unknown parameters \(b_{12}, b_3, b_4, r_{12}, r_3, \) and \(r_4 \), we assumed the number of ascertained cases with illness onset on day \(d \), denoted as \(x_d \), followed a Poisson distribution with rate \(\lambda_d = \frac{rE_{d-1}}{D_e} \), where \(E_{d-1} \) was the expected number of latent individuals on day \((d-1)\) conditional on a set of parameters. We fit the observed data from January 1 to February 10, and used the model to predict the trend from February 11 to 18. Thus, the likelihood function was

\[
L(b_{12}, b_3, b_4, r_{12}, r_3, r_4) = \prod_{d=(\text{Jan.1})}^{(\text{Feb.10})} \frac{e^{-\lambda_d} \lambda_d^{x_d}}{x_d!}
\]

We estimated \(b_{12}, b_3, b_4, r_{12}, r_3, \) and \(r_4 \) by Markov Chain Monte Carlo (MCMC) methods with Metropolis-Hastings algorithm and non-informative flat priors. Estimates of parameters were presented as posterior means and 95% credible intervals (CrIs) from 100,000 MCMC iterations. For prediction, we obtained CrIs by stochastic simulations.
under the SEIR model with the sampled parameter values from MCMC.

Sensitivity analyses of the SEIR model

We designed nine sensitivity analyses to test the robustness of our results. Unless mentioned, the parameter values and initial states for each of the sensitivity analyses were the same as in the main analysis.

(S1) Adjust the numbers of case from January 29 to February 1 to their average. We suspected the spike of incidences on February 1 might be caused by approximate-date records on the illness onset dates among the large number of patients admitted after the new quarantine policy on February 2, who were likely to have onset between January 29 and February 1.

(S2) Decrease the latent period to $D_e = 4.0$ days, and therefore $E(0) = 260$ as twice the number of cases from January 1 to 4.

(S3) Increase the latent period to $D_e = 6.4$ days, and therefore $E(0) = 424$ as twice the number of cases from January 1 to 6.

(S4) Double the infectious period to $D_i = 4.6$ days.

(S5) Assume the transmission rate of the unreported cases is half of the reported cases by setting $\alpha = 0.5$.

(S6) Increase the ratio of unreported to reported cases in the initial state $\gamma = \frac{A(0)}{I(0)}$ to 2 by setting $A(0) = 160$ and $E(0) = 519$.

(S7) Decrease γ to 0.5 by setting $A(0) = 40$ and $E(0) = 260$.

(S8) Decrease γ to 0 by setting $A(0) = 0$ and $E(0) = 173$.
(S9) Assume no unreported cases anytime by fixing the ascertainment rates \(r_{12} = r_3 = r_4 = 1 \). We tested if the full model was significantly better than this simplified model using likelihood ratio test.

References for Supplementary Methods

