--------------------------------------------------------------------------------------------------- name: log: /Users/annaziff/Desktop/Duke/projects/CoV/Results/CoronavirusLog.log log type: text opened on: 16 Feb 2020, 12:52:53 . . * Set seed . set seed 1024 . . * Environment . global projects : env projects . global repo = "${projects}/CoV" . global scripts = "${repo}/Scripts" . global results = "${repo}/Results" . global data = "${repo}/Data" . . * Import data . cd $data /Users/annaziff/Desktop/Duke/projects/CoV/Data . import excel using "coronavirus", cellrange(G3:P30) firstrow (10 vars, 27 obs) . cd $results /Users/annaziff/Desktop/Duke/projects/CoV/Results . . * Clean data . rename K sumconf . rename M chinadeaths . rename O totaldeaths . rename P newdeaths . . gen report2 = report^2 . gen report3 = report^3 . . gen chinarate = chinadeaths/chinaconf (7 missing values generated) . gen totalrate = totaldeaths/totalconf (1 missing value generated) . . gen logtotalconf = log(totalconf) (1 missing value generated) . gen logreport = log(report) . gen logtotaldeaths = log(totaldeaths) . . lab var date "Date" . lab var report "Time" . lab var chinaconf "Confirmed Cases: China" . lab var nonchinaconf "Confirmed Cases: Non-China" . lab var sumconf "Summed Confirmed Cases (calculated)" . lab var totalconf "Total Confirmed Cases" . lab var chinadeaths "Deaths: China" . lab var nonchinadeaths "Deaths: Non-China" . lab var totaldeaths "Total Deaths" . lab var newdeaths "New Deaths (calculated)" . . lab var report2 "Time^2" . . lab var chinarate "Death Rate: China" . lab var totalrate "Total Death Rate" . . lab var logtotalconf "log(Total Confirmed Cases)" . lab var logreport "log(t)" . lab var logtotaldeaths "log(Total Deaths)" . . format date %tdnn/dd/YY . . ************** . * Regression * . ************** . . * Quadratic Fit . reg totaldeaths report report2 if report != 24, robust Linear regression Number of obs = 26 F(2, 23) = 6550.48 Prob > F = 0.0000 R-squared = 0.9990 Root MSE = 16.206 ------------------------------------------------------------------------------ | Robust totaldeaths | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- report | -16.6385 2.059618 -8.08 0.000 -20.89914 -12.37785 report2 | 2.799432 .0765179 36.59 0.000 2.641142 2.957721 _cons | 44.47846 12.31604 3.61 0.001 19.0008 69.95612 ------------------------------------------------------------------------------ . eststo quad . . esttab quad using DeathsQuadratic.tex, replace booktabs label nomtitles b se r2 (output written to DeathsQuadratic.tex) . . * Test power-law fit omitting more t . forvalues t = 1/27 { 2. . if `t' <= 21 { 3. reg logtotaldeaths logreport if report >= `t' & report != 24, robust 4. . // Save results . matrix tmpb = e(b) 5. matrix tmpv = e(V) 6. local b`t' = tmpb[1,1] 7. local v`t' = sqrt(tmpv[1,1]) 8. . if `t' == 1 { 9. matrix b = `b`t'' 10. matrix v = `v`t'' 11. } 12. . else { 13. matrix b = (b \ `b`t'') 14. matrix v = (v \ `v`t'') 15. } 16. } 17. . if `t' >= 11 { 18. reg logtotaldeaths logreport if report <= `t' & report >= 8 & report != 24, robust 19. . // Save results . matrix tmpb = e(b) 20. matrix tmpv = e(V) 21. local b`t' = tmpb[1,1] 22. local v`t' = sqrt(tmpv[1,1]) 23. . if `t' == 11 { 24. matrix b_back = `b`t'' 25. matrix v_back = `v`t'' 26. } 27. . else { 28. matrix b_back = (b_back \ `b`t'') 29. matrix v_back = (v_back \ `v`t'') 30. } 31. } 32. . } Linear regression Number of obs = 26 F(1, 24) = 654.70 Prob > F = 0.0000 R-squared = 0.9925 Root MSE = .15241 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.035167 .0795386 25.59 0.000 1.871008 2.199327 _cons | .5549868 .2107508 2.63 0.015 .1200185 .9899551 ------------------------------------------------------------------------------ Linear regression Number of obs = 25 F(1, 23) = 5569.41 Prob > F = 0.0000 R-squared = 0.9982 Root MSE = .06633 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.146755 .0287659 74.63 0.000 2.087248 2.206262 _cons | .2592743 .0790922 3.28 0.003 .0956597 .4228889 ------------------------------------------------------------------------------ Linear regression Number of obs = 24 F(1, 22) = 2642.19 Prob > F = 0.0000 R-squared = 0.9976 Root MSE = .06687 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.156107 .0419458 51.40 0.000 2.069117 2.243098 _cons | .2337725 .1157154 2.02 0.056 -.0062067 .4737516 ------------------------------------------------------------------------------ Linear regression Number of obs = 23 F(1, 21) = 12321.81 Prob > F = 0.0000 R-squared = 0.9992 Root MSE = .03441 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.208323 .0198941 111.00 0.000 2.166951 2.249695 _cons | .0884628 .0550257 1.61 0.123 -.0259695 .2028951 ------------------------------------------------------------------------------ Linear regression Number of obs = 22 F(1, 20) = 10132.80 Prob > F = 0.0000 R-squared = 0.9993 Root MSE = .03033 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.225446 .0221081 100.66 0.000 2.179329 2.271562 _cons | .0400272 .0620169 0.65 0.526 -.0893378 .1693921 ------------------------------------------------------------------------------ Linear regression Number of obs = 21 F(1, 19) = 29773.22 Prob > F = 0.0000 R-squared = 0.9996 Root MSE = .01926 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.250667 .0130436 172.55 0.000 2.223367 2.277968 _cons | -.0323149 .036057 -0.90 0.381 -.1077831 .0431533 ------------------------------------------------------------------------------ Linear regression Number of obs = 20 F(1, 18) = 20518.24 Prob > F = 0.0000 R-squared = 0.9996 Root MSE = .01857 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.258329 .0157658 143.24 0.000 2.225207 2.291452 _cons | -.0545595 .0444676 -1.23 0.236 -.1479825 .0388635 ------------------------------------------------------------------------------ Linear regression Number of obs = 19 F(1, 17) = 26351.73 Prob > F = 0.0000 R-squared = 0.9997 Root MSE = .01502 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.272795 .0140009 162.33 0.000 2.243255 2.302334 _cons | -.0970137 .0394607 -2.46 0.025 -.1802685 -.0137589 ------------------------------------------------------------------------------ Linear regression Number of obs = 18 F(1, 16) = 53915.98 Prob > F = 0.0000 R-squared = 0.9998 Root MSE = .01187 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.286106 .0098455 232.20 0.000 2.265234 2.306977 _cons | -.1364676 .0267738 -5.10 0.000 -.1932254 -.0797097 ------------------------------------------------------------------------------ Linear regression Number of obs = 17 F(1, 15) = 36927.22 Prob > F = 0.0000 R-squared = 0.9997 Root MSE = .0122 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.284424 .0118879 192.16 0.000 2.259086 2.309762 _cons | -.131438 .0329283 -3.99 0.001 -.201623 -.061253 ------------------------------------------------------------------------------ Linear regression Number of obs = 16 F(1, 14) = 24797.57 Prob > F = 0.0000 R-squared = 0.9996 Root MSE = .01243 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.288024 .0145297 157.47 0.000 2.256861 2.319187 _cons | -.1422966 .0413465 -3.44 0.004 -.230976 -.0536171 ------------------------------------------------------------------------------ Linear regression Number of obs = 4 F(1, 2) = 659.88 Prob > F = 0.0015 R-squared = 0.9964 Root MSE = .02234 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.206521 .0858966 25.69 0.002 1.836938 2.576104 _cons | .0587677 .1982247 0.30 0.795 -.7941243 .9116597 ------------------------------------------------------------------------------ Linear regression Number of obs = 15 F(1, 13) = 22632.02 Prob > F = 0.0000 R-squared = 0.9996 Root MSE = .01164 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.297944 .0152749 150.44 0.000 2.264944 2.330943 _cons | -.1724569 .0439777 -3.92 0.002 -.2674648 -.0774489 ------------------------------------------------------------------------------ Linear regression Number of obs = 5 F(1, 3) = 1296.58 Prob > F = 0.0000 R-squared = 0.9979 Root MSE = .01913 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.234752 .0620626 36.01 0.000 2.037241 2.432263 _cons | -.0029368 .1488981 -0.02 0.986 -.4767971 .4709235 ------------------------------------------------------------------------------ Linear regression Number of obs = 14 F(1, 12) = 32402.26 Prob > F = 0.0000 R-squared = 0.9997 Root MSE = .01022 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.310752 .0128371 180.01 0.000 2.282782 2.338721 _cons | -.2116901 .0364388 -5.81 0.000 -.2910834 -.1322968 ------------------------------------------------------------------------------ Linear regression Number of obs = 6 F(1, 4) = 2451.00 Prob > F = 0.0000 R-squared = 0.9986 Root MSE = .01687 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.222642 .044895 49.51 0.000 2.097993 2.34729 _cons | .0239115 .109985 0.22 0.839 -.2814558 .3292788 ------------------------------------------------------------------------------ Linear regression Number of obs = 13 F(1, 11) = 22904.57 Prob > F = 0.0000 R-squared = 0.9996 Root MSE = .01052 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.314699 .0152944 151.34 0.000 2.281036 2.348362 _cons | -.2238676 .0444879 -5.03 0.000 -.3217848 -.1259504 ------------------------------------------------------------------------------ Linear regression Number of obs = 7 F(1, 5) = 3973.73 Prob > F = 0.0000 R-squared = 0.9991 Root MSE = .0151 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.224829 .0352937 63.04 0.000 2.134104 2.315554 _cons | .0189976 .0887005 0.21 0.839 -.2090143 .2470094 ------------------------------------------------------------------------------ Linear regression Number of obs = 12 F(1, 10) = 15689.31 Prob > F = 0.0000 R-squared = 0.9995 Root MSE = .01072 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.321063 .0185304 125.26 0.000 2.279775 2.362352 _cons | -.2436332 .0551776 -4.42 0.001 -.3665765 -.1206899 ------------------------------------------------------------------------------ Linear regression Number of obs = 8 F(1, 6) = 5238.41 Prob > F = 0.0000 R-squared = 0.9993 Root MSE = .0142 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.233769 .030863 72.38 0.000 2.15825 2.309288 _cons | -.0013406 .0787066 -0.02 0.987 -.1939287 .1912475 ------------------------------------------------------------------------------ Linear regression Number of obs = 11 F(1, 9) = 14033.51 Prob > F = 0.0000 R-squared = 0.9994 Root MSE = .01012 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.334865 .0197096 118.46 0.000 2.290279 2.379451 _cons | -.2867789 .0595396 -4.82 0.001 -.4214668 -.1520909 ------------------------------------------------------------------------------ Linear regression Number of obs = 9 F(1, 7) = 7235.32 Prob > F = 0.0000 R-squared = 0.9994 Root MSE = .0133 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.238317 .0263144 85.06 0.000 2.176094 2.300541 _cons | -.011812 .0683992 -0.17 0.868 -.1735505 .1499265 ------------------------------------------------------------------------------ Linear regression Number of obs = 10 F(1, 8) = 12230.10 Prob > F = 0.0000 R-squared = 0.9994 Root MSE = .00948 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.350388 .0212532 110.59 0.000 2.301378 2.399398 _cons | -.3356094 .0651498 -5.15 0.001 -.4858452 -.1853735 ------------------------------------------------------------------------------ Linear regression Number of obs = 10 F(1, 8) = 9523.36 Prob > F = 0.0000 R-squared = 0.9996 Root MSE = .01261 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.242436 .0229787 97.59 0.000 2.189447 2.295425 _cons | -.0213999 .0607467 -0.35 0.734 -.161482 .1186823 ------------------------------------------------------------------------------ Linear regression Number of obs = 9 F(1, 7) = 21419.16 Prob > F = 0.0000 R-squared = 0.9995 Root MSE = .00798 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.37219 .0162087 146.35 0.000 2.333862 2.410517 _cons | -.4046093 .0496178 -8.15 0.000 -.5219366 -.287282 ------------------------------------------------------------------------------ Linear regression Number of obs = 11 F(1, 9) = 12717.49 Prob > F = 0.0000 R-squared = 0.9996 Root MSE = .0119 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.241564 .019877 112.77 0.000 2.196599 2.286529 _cons | -.0193486 .0534427 -0.36 0.726 -.1402443 .1015471 ------------------------------------------------------------------------------ Linear regression Number of obs = 8 F(1, 6) = 16851.74 Prob > F = 0.0000 R-squared = 0.9994 Root MSE = .00795 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.385474 .0183761 129.81 0.000 2.340509 2.430439 _cons | -.4469015 .0575193 -7.77 0.000 -.5876462 -.3061567 ------------------------------------------------------------------------------ Linear regression Number of obs = 12 F(1, 10) = 16072.08 Prob > F = 0.0000 R-squared = 0.9997 Root MSE = .01134 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.243302 .017695 126.78 0.000 2.203875 2.282729 _cons | -.0234773 .0483058 -0.49 0.637 -.1311092 .0841547 ------------------------------------------------------------------------------ Linear regression Number of obs = 7 F(1, 5) = 20507.92 Prob > F = 0.0000 R-squared = 0.9994 Root MSE = .00743 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.406365 .0168035 143.21 0.000 2.36317 2.44956 _cons | -.5137922 .0537629 -9.56 0.000 -.6519942 -.3755902 ------------------------------------------------------------------------------ Linear regression Number of obs = 13 F(1, 11) = 19867.07 Prob > F = 0.0000 R-squared = 0.9998 Root MSE = .01086 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.244783 .015926 140.95 0.000 2.20973 2.279836 _cons | -.0270311 .0440968 -0.61 0.552 -.1240875 .0700253 ------------------------------------------------------------------------------ Linear regression Number of obs = 6 F(1, 4) = 11676.38 Prob > F = 0.0000 R-squared = 0.9992 Root MSE = .00737 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.427069 .0224609 108.06 0.000 2.364707 2.48943 _cons | -.5804555 .0734684 -7.90 0.001 -.7844366 -.3764744 ------------------------------------------------------------------------------ Linear regression Number of obs = 14 F(1, 12) = 23720.65 Prob > F = 0.0000 R-squared = 0.9998 Root MSE = .01052 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.246877 .0145887 154.02 0.000 2.215091 2.278663 _cons | -.0321023 .0408852 -0.79 0.448 -.1211835 .0569789 ------------------------------------------------------------------------------ Linear regression Number of obs = 15 F(1, 13) = 26337.30 Prob > F = 0.0000 R-squared = 0.9998 Root MSE = .01058 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.250665 .0138684 162.29 0.000 2.220704 2.280625 _cons | -.0413558 .0391106 -1.06 0.310 -.125849 .0431375 ------------------------------------------------------------------------------ Linear regression Number of obs = 16 F(1, 14) = 31789.03 Prob > F = 0.0000 R-squared = 0.9998 Root MSE = .0102 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.250943 .0126248 178.29 0.000 2.223865 2.278021 _cons | -.0420414 .0360866 -1.17 0.263 -.1194395 .0353566 ------------------------------------------------------------------------------ Linear regression Number of obs = 16 F(1, 14) = 31789.03 Prob > F = 0.0000 R-squared = 0.9998 Root MSE = .0102 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.250943 .0126248 178.29 0.000 2.223865 2.278021 _cons | -.0420414 .0360866 -1.17 0.263 -.1194395 .0353566 ------------------------------------------------------------------------------ Linear regression Number of obs = 17 F(1, 15) = 27702.71 Prob > F = 0.0000 R-squared = 0.9998 Root MSE = .01188 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.258452 .0135691 166.44 0.000 2.229531 2.287374 _cons | -.0608144 .0381848 -1.59 0.132 -.1422035 .0205747 ------------------------------------------------------------------------------ Linear regression Number of obs = 18 F(1, 16) = 25718.23 Prob > F = 0.0000 R-squared = 0.9997 Root MSE = .01372 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.266183 .0141311 160.37 0.000 2.236226 2.296139 _cons | -.080267 .0395884 -2.03 0.060 -.1641906 .0036566 ------------------------------------------------------------------------------ Linear regression Number of obs = 19 F(1, 17) = 26351.73 Prob > F = 0.0000 R-squared = 0.9997 Root MSE = .01502 ------------------------------------------------------------------------------ | Robust logtotalde~s | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- logreport | 2.272795 .0140009 162.33 0.000 2.243255 2.302334 _cons | -.0970137 .0394607 -2.46 0.025 -.1802685 -.0137589 ------------------------------------------------------------------------------ . matrix powercoef = (b , v) // Matrix of power-law coefficients and s.e. . matrix powercoef_back = (b_back, v_back) . . * Nonparametric: Test power law coefficient omitting the first time period . . // Get point estimate . qui reg logtotaldeaths logreport if report >= 2 & report != 24 . matrix tmpb = e(b) . matrix b2 = tmpb[1,1] . . qui reg logtotaldeaths logreport if report >= 8 & report != 24 . matrix tmpb = e(b) . matrix b6 = tmpb[1,1] . . qui reg totaldeaths report report2 if report != 24 . matrix tmpb = e(b) . matrix quad1 = tmpb[1,1] . matrix quad2 = tmpb[1,2] . matrix quad3 = tmpb[1,3] . . // Bootstrap (set bootstrap number here) . forvalues b = 1/5000 { 2. . preserve 3. bsample // Randomly sample with replacement 4. . . // Power-law: Regress for periods 2-25 . qui reg logtotaldeaths logreport if report >= 2 & report != 24 5. matrix tmpb = e(b) 6. matrix b2 = (b2 \ tmpb[1,1]) 7. . // Power-law: Regress for periods 8-25 . qui reg logtotaldeaths logreport if report >= 8 & report != 24 8. matrix tmpb = e(b) 9. matrix b6 = (b6 \ tmpb[1,1]) 10. . // Quadratic . qui reg totaldeaths report report2 if report != 24 11. matrix quadb = e(b) 12. matrix quad1 = (quad1 \ quadb[1,1]) 13. matrix quad2 = (quad2 \ quadb[1,2]) 14. matrix quad3 = (quad3 \ quadb[1,3]) 15. . // Print update every 100 bootstraps - useful for long runs . if mod(`b',100) == 0 di "Bootstrap: `b'" 16. . restore 17. . } Bootstrap: 100 Bootstrap: 200 Bootstrap: 300 Bootstrap: 400 Bootstrap: 500 Bootstrap: 600 Bootstrap: 700 Bootstrap: 800 Bootstrap: 900 Bootstrap: 1000 Bootstrap: 1100 Bootstrap: 1200 Bootstrap: 1300 Bootstrap: 1400 Bootstrap: 1500 Bootstrap: 1600 Bootstrap: 1700 Bootstrap: 1800 Bootstrap: 1900 Bootstrap: 2000 Bootstrap: 2100 Bootstrap: 2200 Bootstrap: 2300 Bootstrap: 2400 Bootstrap: 2500 Bootstrap: 2600 Bootstrap: 2700 Bootstrap: 2800 Bootstrap: 2900 Bootstrap: 3000 Bootstrap: 3100 Bootstrap: 3200 Bootstrap: 3300 Bootstrap: 3400 Bootstrap: 3500 Bootstrap: 3600 Bootstrap: 3700 Bootstrap: 3800 Bootstrap: 3900 Bootstrap: 4000 Bootstrap: 4100 Bootstrap: 4200 Bootstrap: 4300 Bootstrap: 4400 Bootstrap: 4500 Bootstrap: 4600 Bootstrap: 4700 Bootstrap: 4800 Bootstrap: 4900 Bootstrap: 5000 . . matrix all = (b2, b6, quad1, quad2, quad3) . . preserve . clear . svmat all number of observations will be reset to 5001 Press any key to continue, or Break to abort number of observations (_N) was 0, now 5,001 . gen n = _n . . // Summarize bootstraps omitting the point estimate (n = 1) . // Power-law exponent for periods 2-26 . sum all1 if n > 1, detail all1 ------------------------------------------------------------- Percentiles Smallest 1% 2.084702 2.051484 5% 2.104602 2.057951 10% 2.113579 2.0597 Obs 5,000 25% 2.12992 2.06621 Sum of Wgt. 5,000 50% 2.149064 Mean 2.152455 Largest Std. Dev. .0333997 75% 2.170702 2.276711 90% 2.197781 2.283628 Variance .0011155 95% 2.215209 2.285399 Skewness .6011005 99% 2.248446 2.287569 Kurtosis 3.593689 . // Power-law exponent for periods 8-26 . sum all2 if n > 1, detail all2 ------------------------------------------------------------- Percentiles Smallest 1% 2.241955 2.227695 5% 2.250664 2.228681 10% 2.255439 2.229031 Obs 5,000 25% 2.2638 2.229724 Sum of Wgt. 5,000 50% 2.273215 Mean 2.27333 Largest Std. Dev. .0139005 75% 2.28275 2.317731 90% 2.29137 2.318093 Variance .0001932 95% 2.296342 2.328813 Skewness .064886 99% 2.304175 2.371465 Kurtosis 3.316979 . // Quadratic coefficient for exopnential fit . sum all3 if n > 1, detail all3 ------------------------------------------------------------- Percentiles Smallest 1% -24.03124 -31.36778 5% -21.07748 -31.30209 10% -19.74475 -30.9575 Obs 5,000 25% -18.00547 -30.50165 Sum of Wgt. 5,000 50% -16.52826 Mean -16.60757 Largest Std. Dev. 2.6214 75% -15.11376 -8.668999 90% -13.60217 -8.447137 Variance 6.87174 95% -12.23131 -8.175082 Skewness -.3741215 99% -10.08617 -8.01459 Kurtosis 4.886676 . // Linear coefficient for exponential fit . sum all4 if n > 1, detail all4 ------------------------------------------------------------- Percentiles Smallest 1% 2.493727 2.363249 5% 2.604509 2.387262 10% 2.672239 2.389811 Obs 5,000 25% 2.743155 2.39577 Sum of Wgt. 5,000 50% 2.798509 Mean 2.790339 Largest Std. Dev. .0995558 75% 2.849568 3.182731 90% 2.900291 3.206769 Variance .0099114 95% 2.936275 3.211112 Skewness -.5602594 99% 3.018997 3.211438 Kurtosis 4.635734 . // Constant for exponential fit . sum all5 if n > 1, detail all5 ------------------------------------------------------------- Percentiles Smallest 1% 19.81521 14.59329 5% 26.4607 14.75067 10% 29.89554 14.82157 Obs 5,000 25% 35.72288 14.87245 Sum of Wgt. 5,000 50% 43.42784 Mean 46.0851 Largest Std. Dev. 15.64034 75% 53.1397 146.8465 90% 64.81396 160.1984 Variance 244.6203 95% 74.65896 160.2269 Skewness 1.55968 99% 97.57825 174.356 Kurtosis 8.125545 . restore . . . . ********* . * Graph * . ********* . . * Raw trend of confirmed cases . # delimit ; delimiter now ; . twoway (connected totalconf date, lcol(black) mcol(black)), > graphregion(color(white)) > ylabel(, glcolor(gs13) angle(0)); . # delimit cr delimiter now cr . graph export "ConfirmedTotal.eps", replace (file ConfirmedTotal.eps written in EPS format) . . * Raw trend of deaths . # delimit ; delimiter now ; . twoway (connected totaldeaths date, lcol(black) mcol(black)), > graphregion(color(white)) > ylabel(, glcolor(gs13) angle(0)); . # delimit cr delimiter now cr . graph export "DeathsTotal.eps", replace (file DeathsTotal.eps written in EPS format) . . . * Deaths vs. time on log-log . qui reg logtotaldeaths logreport if report >= 8 & report != 24 . predict raw (option xb assumed; fitted values) . gen exp = exp(raw) . . # delimit ; delimiter now ; . twoway (line exp report if report >= 8, lcol(red) lwidth(1.1)) > (connected totaldeaths report if report != 24, lcol(black) mcol(black) msymb(Oh)) > , > yscale(log) xscale(log) > graphregion(color(white)) > ylabel(, glcolor(gs13) angle(0)) > xlabel(, grid glcolor(gs13)) > legend(order(2 1) label(1 "Power-law Fit") label(2 "Total Deaths")); . # delimit cr delimiter now cr . graph export "DeathsTotal_loglog.eps", replace (file DeathsTotal_loglog.eps written in EPS format) . . * Log deaths vs. time . # delimit ; delimiter now ; . twoway (connected logtotaldeaths date if report != 24, lcol(black) mcol(black)), > graphregion(color(white)) > ylabel(, glcolor(gs13) angle(0)); . # delimit cr delimiter now cr . graph export "DeathsTotal_log.eps", replace (file DeathsTotal_log.eps written in EPS format) . . . * Graph the power coefficient over N . clear . . svmat powercoef number of observations will be reset to 21 Press any key to continue, or Break to abort number of observations (_N) was 0, now 21 . gen t = _n . gen cilower = powercoef1 - invttail(26-t+1-2,0.05)*powercoef2 . gen ciupper = powercoef1 + invttail(26-t+1-2,0.05)*powercoef2 . . # delimit ; delimiter now ; . twoway (rcap cilower ciupper t, lcol(black)) > (scatter powercoef1 t, mcol(black) lcol(black)), > graphregion(color(white)) > ytitle("Power-law Exponent") > xtitle("Periods Analyzed") > xlabel(1 "1-27" 2 "2-27" 3 "3-27" 4 "4-27" 5 "5-27" > 6 "6-27" 7 "7-27" 8 "8-27" 9 "9-27" 10 "10-27" > 11 "11-27" 12 "12-27" 13 "13-27" 14 "14-27" 15 "15-27" > 16 "16-27" 17 "17-27" 18 "18-27" 19 "19-27" 20 "20-27" > 21 "21-27", > angle(30) labsize(*.8) grid glcolor(gs13)) > ylabel(, glcolor(gs13) angle(0)) > legend(label(1 "95% Confidence Interval") > label(2 "Exponent")); . # delimit cr delimiter now cr . graph export "PowerLawCoefficient.eps", replace (file PowerLawCoefficient.eps written in EPS format) . . . clear . . svmat powercoef_back number of observations will be reset to 17 Press any key to continue, or Break to abort number of observations (_N) was 0, now 17 . gen t = _n . gen cilower = powercoef_back1 - invttail(t,0.05)*powercoef_back2 . gen ciupper = powercoef_back1 + invttail(t,0.05)*powercoef_back2 . . # delimit ; delimiter now ; . twoway (rcap cilower ciupper t if t != 14, lcol(black)) > (scatter powercoef_back1 t if t != 14, mcol(black) lcol(black)), > graphregion(color(white)) > ytitle("Power-law Exponent") > xtitle("Periods Analyzed") > xlabel(1 "8-11" 2 "8-12" 3 "8-13" 4 "8-14" 5 "8-15" > 6 "8-16" 7 "8-17" 8 "8-18" 9 "8-19" 10 "8-20" > 11 "8-21" 12 "8-22" 13 "8-23" 15 "8-25" > 16 "8-26" 17 "8-27", > angle(30) labsize(*.8) grid glcolor(gs13)) > ylabel(, glcolor(gs13) angle(0)) > legend(label(1 "95% Confidence Interval") > label(2 "Exponent")); . # delimit cr delimiter now cr . graph export "PowerLawCoefficient_back.eps", replace (file PowerLawCoefficient_back.eps written in EPS format) . . . * Close log . log close name: log: /Users/annaziff/Desktop/Duke/projects/CoV/Results/CoronavirusLog.log log type: text closed on: 16 Feb 2020, 13:26:04 ---------------------------------------------------------------------------------------------------