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Abstract

The 2019 emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
its rapid spread created a public health emergency of international concern. However, the
impact of the pandemic in Sub-Saharan Africa, as documented in cases, hospitalizations
and deaths, appears far lower than in the Americas, Europe, and Asia. Characterization of
the transmission dynamics is critical for understanding how SARS-CoV-2 spread and the
true scale of the pandemic. Here, to better understand SARS-CoV-2 transmission dynamics
in two southern African countries, Mozambique and Zimbabwe, we developed a dynamic
model-Bayesian inference system to estimate key epidemiologic parameters, namely the
transmission and ascertainment rates. Total infection burdens (reported and unreported)
during the first three years of the pandemic were reconstructed using a model-inference
approach. Transmission rates rose with each successive wave, which aligns with observations
in other continents. Ascertainment rates were found to be low matching prior assumption
and consistent with other African countries. Overall, the estimated disease burden was
higher than the documented cases, indicating need for improved reporting and surveillance.
These findings aid understanding of COVID-19 disease and respiratory virus transmission
dynamics in two African countries little investigated to date, and can help guide future
public health planning and control strategies.
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1 Introduction

Following its emergence in China in late December 2019, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19)
spread globally and produced an unprecedented public health crisis [44, 49]. The World Health
Organization (WHO) declared the COVID-19 outbreak a pandemic on March 11th, 2020 [8]. In
less than three years, in various parts of the world, including two southern African countries,
i.e. Mozambique and Zimbabwe, SARS-CoV-2 triggered multiple waves of new infections, often
driven by new variants of concern (VOC) [30].

The COVID-19 pandemic put enormous pressure on public health security; to mitigate
COVID-19 spread, most African countries imposed travel restrictions or banned international
travel and implemented curfews, lockdowns and other social distancing interventions beginning
in March and April 2020 [31]. The initial cases of COVID-19 in Mozambique and Zimbabwe
were reported on March 22nd and March 20th 2020 [20, 35], respectively, and the pandemic
subsequently spread to all provinces in both countries. By December 2022, three waves of
infection, i.e., Alpha, Delta, and Omicron (BA.1), had occurred.
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Characterization of transmission dynamics is critical for understanding how SARS-CoV-2
spread and the full extent of its impact on local populations. Statistical and modeling studies
have provided important insights into disease transmission dynamics by estimating critical
epidemiological parameters (such as the reproductive number, ascertainment rates, and total
infections) in various studies. For example, the time-varying reproductive number characterizes
virus transmissibility at a particular point in time; this quantity has been estimated using
stochastic models coupled with Bayesian inference for France and Ireland [6], Switzerland [32],
and Scandinavian countries [19]. Odurro et al. [28] used a time varying reproduction estimation
approach for sub-Saharan Africa and estimated the time-varying reproductive number while
also accounting for depletion of the susceptible population. In addition, a model-inference
approach was used to estimate the background population characteristics such as population
susceptibility for South Africa [46], the United States at county resolution [34], and India [45].

Many SARS-CoV-2 infections are unreported; hence, confirmed case counts do not fully
reflect epidemic dynamics. Understanding the level of ascertainment and the impact of
undocumented cases on transmission is crucial to plan and implement control strategies.
Models coupled with Bayesian inference methods have been used to investigate the role of
undocumented infections in China [22], as well as for various regions (countries and US states)
[7], 54 African countries [18], and 3 North African countries: Algeria, Egypt, and Morocco [11].
Russel et al. [36] fitted a Bayesian Gaussian process model to estimate under-ascertainment in
210 countries and territories.

In spite of this vast body of literature, characterization of SARS-CoV-2 transmission
dynamics (or any respiratory virus) in the Southern African region remains mostly lacking,
except for South Africa [46, 40, 48, 25]. An autoregressive integrated moving average (ARIMA)
model was utilized to forecast the trend of the disease in four African countries which reported
the most cases: South-Africa, Egypt, Nigeria and Ghana [23] and in Southern Africa [38].
Shoko et al. [39] used a support vector regression for short-term forecasting of the disease
in Zimbabwe. However, the reported COVID-19 impact (cases, hospitalizations, and deaths)
in Africa has likely underestimated the actual extent of infection and thus the transmission
dynamics. As a consequence, investigation of key epidemiological characteristics over time and
by VOC wave is needed.

Here we utilize a model-inference framework to study COVID-19 disease dynamics in
Mozambique and Zimbabwe during the first three years of the pandemic, for the three VOCs
Alpha, Delta and Omicron (BA.1). The dynamic model was coupled with a Bayesian inference
method and province-specific case data. We accounted for undocumented cases to estimate
key epidemiologic parameters, namely the transmission rate and the ascertainment rate at the
end of each variant outbreak. The findings help advance understanding of the dynamics of
SARS-CoV-2 and give information on the transmission dynamics of respiratory viruses in two
African nations that have received little attention to date.

2 Methodology

2.1 Epidemic transmission model

To describe the prevalent characteristics of COVID-19 in each province, i, for Mozambique
and Zimbabwe, we used a Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental
model, similar to ones used in recent studies on COVID-19 [42, 41, 22, 16]. The infected
compartment was split into two compartments; infected reported (Iri ), individuals who have
tested positive, and infected unreported (Iui ), individuals who are infected with the virus
but have not been tested and thus not reported. The susceptible population, Si, is not yet
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infected, the exposed population, Ei, has been infected with the virus but do not yegt transmit
the virus. There is no reinfection of the recovered population, Ri, and Ni is the total population.

The model (see Figure 1) was coupled with data assimilation and case data in order to
estimate the transmission rate, βi and the ascertainment rate, αi, at the end of each variant
wave outbreak. The other parameters, i.e., average latency period, Z, average duration of
infection, D and reduction of infection rate for unreported infected individuals, µ were kept
constant (see Table S5). We also maintained a constant human population for the study period
with no births or deaths.

2.1.1 Model assumptions

The model is based on the following assumptions:

(i) there is no human movement between the provinces

(ii) individuals who are infected (reported and unreported) can transmit the virus to those
susceptible,

(iii) there is no re-infection during each variant wave period.

2.1.2 Disease dynamics

The system of ordinary differential equations was adapted from Li et al. [22]. Figure 1 presents
a schematic of model transmission dynamics, and a description of the model variables and
parameters is shown in Table S3.

Figure 1: Schematic presentation of simulated disease dynamics. The solid arrows demonstrate the
movement from one disease state to another.

Model disease dynamics are described by a system of ordinary differential equations,
Equation (S1)–Equation (S4) which are subject to the non-negative initial conditions and
satisfy the conservation of the population, i.e., Ni = Si +Ei + Iri + Iui +Ri for each province i.
The reproductive number at a particular time, Rti = αiβiD+(1−αi)µβiD was obtained through
the next generation approach (see Section S1.3 and Section S1.4 for detailed explanation).

In our analysis, the SEIR model was integrated stochastically forward in time. A Latin
hypercube sampling (LHS) technique was used to select a random set of initial variables and
parameter combinations from prior ranges, which are assumed to be uniformly distributed. The
initial priors for the variables and parameters are given in Table S5. A 4th-order Runge Kutta
(RK4) scheme was used for stochastic integration; in particular, to introduce stochasticity to
the right hand side of the system, a random sample from a Poisson distribution, was used for
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each step of the RK4 scheme to determine each term as shown in Equation (S6)–Equation (S9).

For both countries all provinces were run simultaneously as a metapopulation model without
representation of human movement between provinces, due to the absence of robust mobility
data. Attempted simulations using a gravity model to estimate inter-provincial movement did
not yield credible results (described in Section S1.9). As a consequence, we assumed disease
transmission dynamics to be principally determined by local within-province processes.

2.1.3 Piecewise Simulation and Inference

The metapopulation model form was coupled with the ensemble adjustment Kalman filter
(EAKF), a Bayesian sequential ensemble filtering method, and province-specific COVID-19
case data. We assume no re-infection during each wave; piecewise simulation and parameter
estimation were performed separately for each variant wave: Alpha, Delta and Omicron (BA.1).
The data periods for this piecewise inference are shown in Table S4. Thus, for each province
i, we produced parameter estimates for the transmission rate, βi and ascertainment rate, αi,
for each variant wave period. The procedure for parameter estimation using the EAKF is
summarized in Algorithm S1.

The model is reinitialized for each wave and does not explicitly represent re-infections. In
Mozambique, for the Delta and Omicron waves, the final Si estimated range of the prior wave
(Alpha and Delta, respectively) was used as the susceptible initial prior, e.g. the final Si range
of Alpha wave = initial prior Si range of Delta wave (see Table S5). In Zimbabwe, because
data were only available for the Omicron (BA.1) wave, initial prior Si was set to that of
Mozambique for the same outbreak, as both countries are in the same region and experienced
similar epidemic patterns.

The depletion of susceptibles, Si at the end of an outbreak, reflected an approximation
of the total new infections (both reported and unreported), given ongoing filter adjustment.
Consequently, to estimate the cumulative disease burden from the beginning of the pandemic
across subsequent waves, computation was carried out as follows:

proportion of total new infections ≈ cumulative new(Iri + Iui )

Ni

≈cumulative loss in Si

≈1− Si

Ni
(at end of outbreak) (1)

2.2 The SEIR-EAKF framework

The EAKF assimilation algorithm has been used in previous studies of infectious disease
dynamics to assimilate observations and conduct inference [10, 33, 37]. When coupled with the
dynamic model, Equation (S1)–Equation (S4), the combined SEIR-EAKF system iteratively
optimizes the distribution of model state variables and parameters whenever new observations
become available [3].

In general, sequential ensemble filtering is the problem of estimating the probability of the
system state at a given time xt conditional on observations Ot taken up until and inclusive of
time t. After model initialization, the system integrates an ensemble of simulations forward
in time to compute the prior distribution for the model state variables, parameters, and the
model-simulated case data. At the time of observation, the system is halted and the EAKF
is used to update the state variables and parameters based on those model-generated prior
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estimates and case data. The EAKF algorithm is applied with prescribed observational
error variance (OEV), see Section 2.2.3. In this fashion, the ensemble simulations of the
observed state variables (incidence) are updated to align with observations (see Anderson [3]
for algorithmic details). The updates (posteriors) are determined by computing the Kalman
gain using the latest observation and the distribution of current model states (the prior). The
unobserved state variables and model parameters are then adjusted by the EAKF using cross
ensemble co-variability. The process is then repeated, with the posterior integrated to the next
observation. Through this iterative optimization process, the ensemble of model simulations is
better aligned to simulate current outbreak dynamics and estimate key parameters.

Here, a 300-member ensemble of simulations using the SEIR model
Equation (S1)–Equation (S4) was coupled with the EAKF and case data. The state
vector at time t is: xt = (st, θt), where st = [Si, Ei, I

r
i , I

u
i ] is the vector of the local state

variables at time t and θt = [µ,Z,D, βi, αi] is the vector of model parameters. Using
observation Oi

t at time t, the posterior distribution of the system state is derived by applying
Bayes’ rule (posterior ∝ prior × likelihood) to incorporate the new information. The EAKF
deterministically adjusts the prior distribution to a posterior using Bayes rule while assuming
a Gaussian distribution for both the prior and likelihood, which allows estimation of the first
two moments (mean and covariance), leaving the higher-order moments unchanged. Bayes’ rule
provides a target for updating the system state given an observation:

p(xt|Oi
1:t) ∝ p(xt|Oi

1:t−1)p(O
i
1:t|xt).

We used the daily number of new reported cases in province i on a given day t, Oi
t, as

observations. Unobserved variables, such as the susceptible population S, and model parameters,
were adjusted in accordance with covariant relationships with the observed variable i.e. reported

new infections,

(
αi

Ei

Z

)
) that arise naturally as a result of the dynamics of the system (see

Anderson [3] for algorithmic details).

2.2.1 State variables and parameter updates

State variables and the inferred model parameters (βi and αi) were updated locally for
each province. Estimating the parameters locally was motivated by the discrepancies found
between population size and total incidence: Nampula, the most densely populated province
in Mozambique, reported the fewest COVID-19 cases, whereas Maputo Cidade, the least
populated province, reported the highest number of cases across all variant waves. This
discrepancy may be due to the limited healthcare accessibility in Nampula and lower population
density compared to Maputo Cidade, which has the highest level of healthcare access and
greatest population density among Mozambique provinces [12]. Similarly, for Zimbabwe, Harare
province is the most densely populated province with better healthcare facilities compared
to other provinces. Such differences underpinned an expectation of different contact and
ascertainment rates and motivated deriving local βi and αi estimates for both countries.

The EAKF prediction–update cycle is performed sequentially, and an update is triggered
by the arrival of new data (daily in this study) [3]. For the observable state variables, the ith

ensemble member is updated by Equation (S13), while, for the unobserved variables/parameters
xi, the ith ensemble member is updated by Equation (S14).

2.2.2 Initial priors

The initial 300-member ensemble of state variables and parameters were randomly drawn from
a uniform distribution using Latin hypercube sampling and the initial range of values presented
in Table S5; other parameters, D, Z, and µ were fixed. During filtering, ensemble members
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could move outside initial ranges; in such instances, the individual ensemble member would be
resampled from the prior range.

The initial prior range of αi = [0.004 − 0.1] (which is low, corresponding to a maximum of
one reported case for every ten infected) was motivated by the study of Han et al. [18], which
estimated an overall daily report rate (ascertainment rate) ranging from α = [0.0002 − 0.3],
among all African countries. Furthermore, the study by Evans et al. [17] highlighted that the
lower-than-expected case burdens in Madagascar were explained solely by detection rates of
0.1–1% (or α = [0.001 − 0.01]). On the other hand, due to the the heterogeneity of reported
cases across provinces in Mozambique, the initial prior lower bound for αi was varied by province
for both countries (see Table S5). For province i, we applied the formula: lower bound αi =
(total reported cases)/0.5Ni, assuming 50% of the population was infected at the end of the
three variant waves (Alpha, Delta, Omicron (BA.1)). An exception was Maputo Cidade which
had a different initial prior range αi = [0.14, 0.2], because, despite being the less populous
province it reported the highest number of cases. This may be attributed to Maputo Cidade
being the capital city with greater access to healthcare and testing facilities compared to the
rest of the country. Generally, the remaining Mozambique provinces had lower bounds ranging
αi = [0.004− 0.03], whereas for Zimbabwe, lower bounds were αi = [0.01− 0.04]. The Si initial
priors varied for each wave because the model was run piecewise for the periods as described
above and in Table S5. Due to missing Zimbabwe COVID-19 provincial case data for earlier
waves, the initial S prior for the Omicron (BA.1) variant wave was based on that of Mozambique.

2.2.3 Observational error variance

Using the EAKF requires specification of error for both the simulated model output and
observations. The model error may be easily computed as the variance of the 300-member
ensemble. For each Oi

t, we specify the OEV at time t as:

OEV i
t =max

(
4,

(
Oi

t

)2
4

)
. (2)

An OEV of this form has been used successfully for inference and forecasting for infectious
diseases such as influenza [47, 33] and COVID-19 [22].

2.2.4 Filter divergence

As successive observations are assimilated, there is a tendency for the variance between the
ensemble members to decrease due to repeated filter adjustment. This may potentially lead
to filter divergence, in which the ensemble error variance is so minimal that the fitting process
essentially ignores the observations [3]. To prevent filter divergence, the prior ensemble was
inflated by a multiplicative factor λ = 0.015, before each daily assimilation and calculation of
the posterior (see Equation (S15)). The inflation was applied to all state variables and estimated
parameters, i.e. βi (transmission rate) and αi (ascertainment rate).

2.3 Synthetic Testing

To validate EAKF inference with the SEIR model, we generated a synthetic, model-simulated
COVID-19 outbreak (defined as the ’truth’), defined by model Equation (S1)–Equation (S4)
and we tested the ability of the model/filter framework to identify the true model state
variables and parameters . Specifically, we generated nine synthetic datasets using different
scenarios combinations of transmission rates, βi = (0.8, 1.3, 1.8) and ascertainment rates,
αi = (0.01, 0.04, 0.09), where the chosen parameter values were the same across all provinces
for each outbreak, as shown in Table S6. Synthetic observations of new daily reported cases
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(reported new infections,

(
αi

Ei

Z

)
) were then generated by adding normally distributed random

observational error calculated as described in Equation (2). The resulting time series of synthetic
error-laden observational records were smoothed using a 7-day moving average, and then used
for assimilation in the combined SEIR-EAKF framework to determine whether the system can
reliably identify known parameter values.

2.4 Parameter estimation using real data

In order to estimate the transmission rate, βi and ascertainment rate, αi, for each variant wave
(Alpha, Delta and Omicron (BA.1)), we fitted the model to province specific case data (i.e.,
number of new reported cases) as reported by Mozambique Ministry of Health-SIGILIA and
DISA [29] and Zimbabwe COVID-19 hub [1] for the period between March 2020 to December
2022. Due to missing Zimbabwe COVID-19 provincial data we only estimated parameters for
the Omicron (BA.1) variant wave in Zimbabwe.

The SEIR-EAKF framework was applied in isolation to the eleven Mozambique provinces
and, separately, the ten Zimbabwe provinces, as illustrated in Figure S1. The Mozambique
COVID-19 data was transformed from weekly cases to daily cases using a linear interpolation
method, and piecewise parameter estimation was carried out for the model’s local parameters,
βi and αi, for each variant wave as described in Table S4 and Section S1.7.

3 Results

3.1 Data description

COVID-19 data

The reported daily COVID-19 cases used for this study span three variant waves (Alpha, Delta,
and Omicron (BA.1)) during the first three years of the pandemic, i.e. from March 30th 2020
to December 26th 2022 for Mozambique and from November 18th 2021 to January 26th 2022 for
Zimbabwe. The available Zimbabwe provincial data began in the middle of the Delta variant
wave, therefore, we only utilized the data covering the Omicron (BA.1) wave. At the provincial
scale, COVID-19 daily cases were obtained from the Zimbabwe COVID-19 hub [1] and weekly
cases for Mozambique were obtained from the Mozambique Ministry of Health-SIGILIA and
DISA [29]. Heat maps of daily and weekly counts of COVID-19 cases, for each variant period, in
each province of both countries are presented in Figure 2 while plots of the disaggregated time
series of COVID-19 infections for the provinces are reported in Figure S1.
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(a) (b)

(c) (d)

Figure 2: Heat maps of daily and weekly provincial level COVID-19 infections in Mozambique and
Zimbabwe between March 2020 and December 2022, based on data released by the Mozambique Ministry
of Health-SIGILIA and DISA [29] and Zimbabwe COVID-19 hub [1].

Population data

Provincial population data were taken from the Zimbabwe National Statistics Agency [2] and
Instituto Nacional de Estatistica Moçambique [9] for Zimbabwe and Mozambique, respectively.

3.2 Validation of the model-inference system using synthetic outbreaks

The synthetic observations of COVID-19 cases, along with their defined OEV, were used to
test whether the SEIR-EAKF system could estimate unobserved state variables and parameters
(βi and αi) accurately. Creffig:paramsSynth depicts the parameter estimates for the simulation
period; the posterior parameters estimates (βi and αi) converged near their target values and the
reproductive number at the end of the variant wave, Rti was correctly estimated. The ensemble
posterior distributions at the end of the outbreak were well constrained for all the generated
outbreaks as shown in Figure S3. The results indicate that an ensemble of size 300 was sufficient
to capture the target ’true’ parameters.

8

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2024. ; https://doi.org/10.1101/2024.05.20.24307570doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.20.24307570
http://creativecommons.org/licenses/by-nc/4.0/


3.3 Mozambique parameter estimates

The estimates for βi and αi at the end of each variant outbreak, along with their associated 95%
credible intervals (CrIs) are presented in Table 1. With the exception of Maputo Cidade, for all
provinces, the mean estimates across all three waves were in the range αi = [0.08−0.09]. On the
other hand, for Maputo Cidade, with its unique αi prior range of [0.14, 0.2] (see Section S1.7),
the estimate was around αi = 0.17 across all variant waves. The local βi mean estimates and by
extension Rti increased with each successive wave: the mean estimate ranges of βi were [0.6−0.7]
(Rti = [1.4− 1.8]), for the Alpha wave, slightly higher, βi = [0.6− 1.4] (Rti = [1.4− 4]), for the
Delta wave, and highest for the Omicron (BA.1) wave, βi = [1.1− 1.7] (Rti = [3− 5]).

Table 1: EAKF estimated parameters and credible intervals at the end of each Mozambique variant
period.

Province Parameter Prior
EAKF estimate (Alpha) EAKF estimate (Delta) EAKF estimate (Omicron (BA.1))

mean 95% CrI mean 95% CrI mean 95% CrI

transmission rates
Cabo Delgado

Gaza
Inhambane
Manica

Maputo Cidade
Maputo
Nampula
Niassa
Sofala
Tete

Zambezia
ascertainment rates

Cabo Delgado
Gaza

Inhambane
Manica

Maputo Cidade
Maputo
Nampula
Niassa
Sofala
Tete

Zambezia
reproductive number

Cabo Delgado
Gaza

Inhambane
Manica

Maputo Cidade
Maputo
Nampula
Niassa
Sofala
Tete

Zambezia

β1 [0.5, 2.0] 0.6038 (0.5032, 0.8037) 1.1571 (0.7873, 1.6191) 1.1528 (1.0684, 1.4876)
β2 0.5643 (0.5036, 0.7021) 1.4886 (0.6507, 1.9467) 1.5630 (0.6812, 1.9322)
β3 0.5830 (0.5040, 0.7898) 1.2970 (0.6593, 1.9414) 1.6998 (0.9363, 1.9593)
β4 0.5526 (0.5021, 0.6768) 0.6362 (0.5073, 1.3342) 1.4411 (0.6655, 1.9614)
β5 0.6681 (0.5157, 0.9132) 1.1154 (0.5938, 1.9074) 1.5664 (0.7519, 1.9561)
β6 0.6136 (0.5135, 0.8306) 1.3520 (0.6281, 1.9099) 1.5299 (0.8293, 1.9683)
β7 0.5645 (0.5035, 0.6679) 0.9902 (0.6117, 1.7501) 1.1174 (0.5324, 1.9316)
β8 0.6059 (0.5026, 0.7684) 0.7763 (0.5156, 1.5475) 1.5890 (0.7134, 1.9788)
β9 0.6060 (0.5046, 0.8032) 0.5680 (0.5035, 0.9613) 1.3762 (0.7603, 1.9652)
β10 0.6082 (0.5036, 0.8303) 0.6315 (0.5107, 1.1309) 1.1819 (0.5908, 1.9180)
β11 0.5796 (0.5055, 0.7656) 0.8914 (0.5229, 1.7148) 1.3361 (0.6657, 1.9511)

α1 [0.007, 0.1] 0.0923 (0.0744, 0.0993) 0.0833 (0.0158, 0.0990) 0.0798 (0.0301, 0.0983)
α2 [0.02, 0.1] 0.0883 (0.0606, 0.0998) 0.0622 (0.0264, 0.0978) 0.0718 (0.0316, 0.0991)
α3 [0.03, 0.1] 0.0904 (0.0554, 0.0998) 0.0627 (0.0330, 0.0965) 0.0881 (0.0570, 0.0991)
α4 [0.01, 0.1] 0.0922 (0.0739, 0.0996) 0.0881 (0.0426, 0.0987) 0.0836 (0.0203, 0.0994)
α5 [0.14, 0.2] 0.1739 (0.1419, 0.1988) 0.1760 (0.1477, 0.1990) 0.1729 (0.1411, 0.1977)
α6 [0.03, 0.1] 0.0836 (0.0558, 0.0985) 0.0640 (0.0334, 0.0986) 0.0677 (0.0379, 0.0970)
α7 [0.004, 0.1] 0.0911 (0.0658, 0.0995) 0.0318 (0.0174, 0.0754) 0.0867 (0.0163, 0.0987)
α8 [0.01, 0.1] 0.0930 (0.0684, 0.0998) 0.0812 (0.0371, 0.0992) 0.0888 (0.0403, 0.0979)
α9 [0.01, 0.1] 0.0872 (0.0519, 0.0997) 0.0849 (0.0455, 0.0995) 0.0827 (0.0176, 0.0998)
α10 [0.009, 0.1] 0.0902 (0.0684, 0.0995) 0.0862 (0.0468, 0.0996) 0.0787 (0.0468, 0.0996)
α11 [0.005, 0.1] 0.0902 (0.0543, 0.0996) 0.0884 (0.0320, 0.0990) 0.0879 (0.0513, 0.0996)

Rt1 1.5367 (1.2760, 2.0486) 2.9193 (1.9882, 4.0874) 2.9056 (1.3940, 4.8801)
Rt2 1.4317 (1.2738, 1.7767) 3.6994 (1.6392, 4.8517) 3.9199 (1.7308, 4.8177)
R3 1.4748 (1.2827, 2.0140) 3.2424 (1.6336, 4.8583) 4.3049 (2.3873, 4.9700)
Rt4 1.4100 (1.2765, 1.7275) 1.6184 (1.2840, 3.3278) 3.6355 (1.6712, 4.9141)
Rt5 1.7843 (1.3755, 2.4536) 2.9981 (1.5922, 5.1157) 4.1683 (1.9782, 5.2456)
Rt6 1.5550 (1.3017, 2.0922) 3.3779 (1.5619, 4.8312) 3.8328 (2.1190, 4.9489)
Rt7 1.4404 (1.2798 1.7002) 2.4349 (1.5105, 4.2809) 2.7798 (1.3296, 4.8345)
Rt8 1.5362 (1.2773, 1.9420) 1.9631 (1.3020, 3.8910) 4.0304 (1.8178, 4.9980)
Rt9 1.5218 (1.2829, 2.0447) 1.4373 (1.2688, 2.4461) 3.4886 (1.9383, 4.9815)
Rt10 1.5395 (1.2799, 2.1200) 1.5965 (1.2932, 2.8883) 2.9824 (1.5107, 4.8073)
Rt11 1.4710 (1.2825, 1.9245) 2.2548 (1.3290, 4.3444) 3.4098 (1.6867, 4.9622)

Figure S4–Figure S6 illustrate the time evolution of the parameter posteriors (means and
95% CrIs) for the Alpha, Delta and Omicron (BA.1) variant waves, respectively, plotted against
their prior range. The initial drift in the first month, is likely a reflection of the time needed for
the EAKF to learn the system [3]. The αi estimates at the end of the outbreaks were closer to
the upper bound of 0.2 for Maputo Cidade and 0.1 for the rest of the provinces. For the Alpha
and Delta waves βi converges to a solution during January 2021 and August 2021, respectively,
as cases rise, on the other hand, for the Omicron (BA.1) wave, βi convergence to a solution is
less clear, with a broader posterior and higher mean estimate.

The posterior fits of new reported cases to province-specific actual data [29] were
generally good for all provinces in Mozambique for all variant waves, as demonstrated in
Figure S7–Figure S9. The model-inference framework was able to reproduce even complicated
outbreak structures characterized by multiple peaks such as during the Alpha wave in Nampula,
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Tete and Zambezia.

In order to check the consistency of the parameter estimates for each variant wave, presented
in Table 1, SEIR-EAKF system simulations were repeated 20 times. The mean parameter
estimates (βi and αi), and the corresponding mean Rti for the runs are illustrated in Figure 3
and show consistency for most estimates. Figure S12 (a)-(c) shows the posterior mean estimates
of susceptibility % at the end of each variant wave. An estimated 75 − 95% of the population
remained susceptible at the end of the Alpha wave (in March 2021), furthermore, 15− 50% and
5− 30% remained susceptible after the Delta (in October 2021) and Omicron (BA.1) (in March
2022) waves, respectively.

Figure 3: Distribution of mean parameter estimates (αi and βi, and the corresponding Rti) for the 11
Mozambique provinces at the end of variant waves (Alpha, Delta and Omicron (BA.1)) for 20 runs.

To quantify the burden of COVID-19 infections at the end of each variant period, we
estimated the total cumulative infections, i.e., both reported and unreported infections by
applying Equation (1). Figure 4(a)–Figure 4(c) display the spatial distribution of the estimated
total new infections (reported and unreported) across all Mozambique provinces. We estimated
an increase in the proportion of the infected population across the three VOC (Alpha, Delta and
Omicron (BA.1)): the Alpha wave estimates were below 20% for the majority of the country; in
contrast, Maputo Cidade and Maputo, showed the highest burdens of 72% and 57%, respectively.
The cumulative infection estimates increased from 6 − 72% (Alpha wave), to 46 − 88% (Delta
wave), to 74− 95% (Omicron BA.1 wave).
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(a) Mozambique estimated infections at the
end of the Alpha wave (March 29 2021).

(b) Mozambique estimated infections at the
end of the Delta wave (10 October 2021).

(c) Mozambique estimated infections at the end
of the Omicron (BA.1) wave (28 March 2022).

(d) Zimbabwe estimated infections at the end of
the Omicron (BA.1) wave (January 26 2022).

Figure 4: Spatial distribution of estimated SARS-CoV-2 infections (both reported and unreported) per
VOC for Mozambique and Zimbabwe provinces between March 2020 and December 2022 [29, 1]. Colors
toward red indicate more infections.

3.4 Zimbabwe parameter estimates

Table 2 presents the parameters estimates (βi and αi) and associated 95% CrIs at the end of
the Omicron (BA.1) variant outbreak. The estimates for the ascertainment rate were in the
range αi = [0.08 − 0.09], which is in line with Mozambique estimates (shown in Table 1). On
the other hand, the mean estimates for the transmission rate ranged from βi = [1.1 − 1.7]
for all provinces with a reproductive number of Rti = [3 − 5]. The time evolution of αi and
βi parameter posteriors (means and 95% CrI) over the course of the Omicron (BA.1) wave,
plotted against their prior range is demonstrated in Figure S10. The αi estimates drifted higher
towards the upper bound (0.1) during December 2021, a level maintained until the end of the
outbreak. The convergence of βi to a solution is less clear, with a broader posterior and higher
mean estimate.

Figure S11 demonstrates a good model fit to provincial data [1] for the outbreak with the
posterior estimates capturing the outbreak peaks for all ten provinces. The consistency of the
parameter estimates Table 2 was evaluated by running the model 20 times, and the distribution
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of the mean parameter estimates (βi and αi) at the end of the outbreak, and the corresponding
mean Rti for the runs are shown in Figure 5. Figure S12 (d) shows the posterior mean estimates
of susceptibility % at the end of the Omicron (BA.1) wave (in January 2022), where 15− 40%
of the population remained susceptible at the end of that outbreak.

Table 2: EAKF estimated parameters and credible intervals for the Zimbabwe Omicron (BA.1) variant
period

Province Parameter Prior
EAKF estimate (Omicron (BA.1))

mean 95% CrI

transmission rates
Bulawayo
Harare

Manicaland
Mashonaland Central
Mashonaland East
Mashonaland West

Midlands
Masvingo

Matebeleland North
Matebeleland South

ascertainment rates
Bulawayo
Harare

Manicaland
Mashonaland Central
Mashonaland East
Mashonaland West

Midlands
Masvingo

Matebeleland North
Matebeleland South

reproductive number
Bulawayo
Harare

Manicaland
Mashonaland Central
Mashonaland East
Mashonaland West

Midlands
Masvingo

Matebeleland North
Matebeleland South

β1 [0.5, 2.0] 1.6529 (1.0081, 1.9813)
β2 1.6407 (1.0550, 1.9762)
β3 1.1327 (0.5971, 1.9040)
β4 1.2506 (0.7189, 1.9148)
β5 1.5438 (0.8128, 1.9457)
β6 1.4040 (0.8200, 1.9323)
β7 1.3669 (0.6988, 1.9702)
β8 1.5457 (0.8012, 1.9652)
β9 1.6567 (1.0512, 1.9716)
β10 1.6446 (0.9344, 1.9848)

α1 [0.04, 0.1] 0.0911 (0.0668, 0.0997)
α2 [0.03, 0.1] 0.0924 (0.0744, 0.0997)
α3 [0.02, 0.1] 0.0864 (0.0387, 0.0990)
α4 [0.01, 0.1] 0.0929 (0.0589, 0.0997)
α5 [0.03, 0.1] 0.0871 (0.0562, 0.0984)
α6 [0.02, 0.1] 0.0930 (0.0694, 0.0997)
α7 [0.01, 0.1] 0.0917 (0.0534, 0.0993)
α8 [0.02, 0.1] 0.0876 (0.0474, 0.0989)
α9 [0.04, 0.1] 0.0857 (0.0499, 0.0992)
α10 [0.03, 0.1] 0.0846 (0.0489, 0.0991)

Rt1 5.4010 (3.3035, 6.4817)
Rt2 5.3709 (3.4402, 6.4669)
Rt3 3.6866 (1.9242, 6.2350)
Rt4 4.0797 (2.3522, 6.2600)
Rt5 5.0435 (2.6502, 6.3627)
Rt6 4.6015 (2.6877, 6.3179)
Rt7 4.4749 (2.2919, 6.4159)
Rt8 5.0560 (2.0240, 3.0989)
Rt9 5.4064 (3.4283, 6.4578)
Rt10 5.3699 (3.0497, 6.4785)

Figure 5: Distribution of mean parameter estimates (αi, βi, and corresponding Rti) for th 10 Zimbabwe
provinces at the end of Omicron (BA.1) wave for 20 runs.

The spatial distribution of the estimated mean total new COVID-19 infections (both reported
and unreported) at the end of the Omicron (BA.1) wave is summarized in Figure 4(d). The
findings indicate that 71− 93% of the population had been infected.
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4 Discussion

Although the emergence of COVID-19 and its rapid spread created a public health emergency
of international concern, the impact of the pandemic in Sub-Saharan Africa, as documented in
cases, hospitalizations and deaths, appears far lower than in the Americas, Europe, and Asia
[43]. We utilized a model-inference framework to shed light on disease dynamics in two southern
African countries, i.e., Mozambique and Zimbabwe, during the first three years of the pandemic.
While accounting for undocumented cases, we estimated key epidemiologic parameters namely
the transmission rate, and the ascertainment rate at the end of each outbreak. Our study
provides several insights into the disease burden of infections (reported and unreported) for
three VOCs, i.e. Alpha, Delta and Omicron (BA.1). While we focus on the Mozambique
and Zimbabwe case, our framework can be applied to other African countries given the low
documented impact of the disease in this region.

The ascertainment rate, α, estimates were very low for Mozambique and Zimbabwe
provinces, matching our prior assumption. Our estimates in both countries is in line with the
studies by Han et al. [18] and Evans et al.[17]. This indicates that the majority of infections were
never documented as cases; by extension, many severe cases requiring hospitalization or resulting
in death may have been missed due to limited access to healthcare and testing facilities. The
estimated low ascertainment rate highlights the need for enhanced reporting and surveillance
mechanisms, with special emphasis on Sub-Saharan Africa. Mozambique experienced natural
disasters and conflict which hampered access to healthcare facilities: Prior to the pandemic, the
country was devastated by two consecutive deadly and destructive cyclones (Idai and Kenneth),
which caused massive destruction to infrastructure; consequently, accessibility in some places
became more difficult. Furthermore, conflict in northern Mozambique produced additional
challenges during the pandemic by displacing many people, hence making it difficult to control
the disease [26].

The transmission rate estimates, and by extension reproductive number, rose with each
successive wave. This matches observations in the Americas, Africa, Europe and Asia that
the Omicron variant, in particular, was more transmissible than the preceding Delta variant
[21, 24], which in turn had greater transmissibility than the preceding Alpha variant [15, 27].
Mozambique and Zimbabwe deployed public health and social measures to mitigate the
spread of COVID-19. These included travel restrictions, lockdown, social distancing measures,
compulsory mask wearing, contact tracing and testing, school closures and use of personal
protective equipment among health workers [4, 5, 13, 14].

Our model was fitted to provincial reported cases. We find that representing and accounting
for unreported cases across provinces is crucial for estimating the true disease burden, i.e. new
infections (reported and unreported), at the end of each variant wave. The low numbers of
confirmed cases in Africa were generally a poor indicator of true incidence of infection, which
may be attributed to limited testing capacity and health system access. Overall, the estimated
disease burden in Mozambique and Zimbabwe was much higher than the documented reported
cases for each VOC (see [29, 1], Table S1, and Table S2). The estimates highlight that by the
end of the Omicron (BA.1) wave, almost the entire population had been infected, which is in
agreement with the estimates of 93% cumulative total infection after the same wave in South
Africa [46]. Our results indicate that in African countries, efforts must be made to improve the
timely reporting and surveillance of public health threats.

There are limitations to our model: Even though human mobility plays a crucial role
in the transmission of SARS-CoV-2, the unavailability of inter-provincial human movement
data for both Mozambique and Zimbabwe was a drawback. We explored utilizing a gravity
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model to estimate human movement between the provinces. This approach, however, did not
yield credible results; hence, we implemented the metapopulation model without movement.
Additionally, there was limited provincial case data for Zimbabwe, which covered only the
Omicron (BA.1) variant. Furthermore, the model does not explicitly account for re-infections,
but the filter adjusts the susceptibles, Si, thereby implicitly accounting for increasing
susceptibility due to immune escape.

In conclusion, we developed an inference-based transmission model to aid in understanding
the evolving dynamics of SARS-CoV-2 in Mozambique and Zimbabwe. By taking unreported
cases into account, we estimated key epidemiologic characteristics, i.e. the transmission rate
and ascertainment rate. This approach and findings are relevant for countries with less
comprehensive surveillance systems. The findings of this study on the disease burden can
help guide future public health planning. In particular, they shed light on respiratory virus
transmission dynamics in two African countries little investigated to date.
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