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Abstract 

Genome-wide association studies (GWAS) have been predominantly conducted in populations of European 

ancestry, limiting opportunities for biological discovery in diverse populations. We report GWAS findings from 

153,950 individuals across 36 quantitative traits in the Korean Cancer Prevention Study-II (KCPS2) Biobank. We 

discovered 616 novel genetic loci in KCPS2, including an association between thyroid-stimulating hormone and 

CD36. Meta-analysis with the Korean Genome and Epidemiology Study, Biobank Japan, Taiwan Biobank, and 

UK Biobank identified 3,524 loci that were not significant in any contributing GWAS. We describe differences 

in genetic architectures across these East Asian and European samples. We also highlight East Asian specific 

associations, including a known pleiotropic missense variant in ALDH2, which fine-mapping identified as a 

likely causal variant for a diverse set of traits. Our findings provide insights into the genetic architecture of 

complex traits in East Asian populations and highlight how broadening the population diversity of GWAS 

samples can aid discovery. 
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Introduction 

Large-scale biobanks integrating genomic and electronic health record data enable genome-wide association 

studies (GWAS) to identify numerous genetic associations and provide insights into the biological mechanisms 

of human complex traits and diseases.1,2 In turn, the combined effects of these genetic markers can be 

summarized as polygenic risk score (PRS) to estimate individuals’ genetic predispositions for complex diseases, 

which have successfully identified individuals with a high risk of disease.3,4 However, current genetic discovery 

efforts heavily underrepresent non-European populations globally and thus limit further discoveries of 

variants that are rare or absent in European (EUR) populations but common in other ancestry groups.5 

Furthermore, this genomic research imbalance could lead to health disparities if the genomic discoveries 

benefit only European ancestry individuals in clinical practice.6  

Early efforts toward diversifying GWAS in East Asian (EAS) populations, including Biobank Japan (BBJ),7–9 

Korean Genome and Epidemiology Study (KoGES),10–13 and China Kadoorie Biobank,14 Taiwan Biobank (TWB)15 

have made significant contributions and facilitated various genetic studies in these populations. Despite these 

efforts, the representation of EAS groups in genetic research remains low, compared to European groups (e.g., 

UK Biobank [UKB]16, FinnGen17, HUNT18, and deCODE19). For example, one of the most extensively used 

resources is UKB, which includes approximately 500,000 British individuals with deep phenotyping and 

genomic data.20 According to the GWAS Diversity Monitor,21 over 90% of total GWAS participants are from 

European-ancestry samples, while only 4% of participants are of Asian origin despite making up 59% of the 

global population. The inclusion of additional EAS biobanks is warranted to empower genetic discovery and 

elucidate the genetic architecture of complex traits and diseases within East Asia.  

Here we conducted GWAS for 36 quantitative traits from 153,950 individuals in the Korean Cancer Prevention 

Study-II (KCPS-II) Biobank22, a prospective cohort study of the Korean population with genomic data and a 

wide range of measured phenotypes. Following the GWAS in KCPS2, we meta-analyzed 21 traits across KCPS2, 
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KoGES, BBJ, TWB, and UKB to identify significant loci across East Asian and European ancestry populatio

compared the genetic architectures of these traits across populations leveraging GWAS summary statis

from KCPS2, BBJ, TWB, and UKB. Lastly, we pinpointed putatively causal variants through fine-mapping 

conducted colocalization to understand the biological mechanisms underlying these traits.  

 

Results 

A total of 153,950 participants were genotyped, including 64,812 participants on the GSA-chip array and

89,138 participants on the Korean-chip array in this study. We subsequently conducted genotype qualit

control (QC) and imputation. Figure 1 provides an overview of the KCPS2 samples, the traits examined, 

abbreviations, and the analyses conducted in this study (Table S1). We analyzed 36 quantitative traits 

including 4 anthropometric traits, 7 metabolic biomarkers, 5 liver function enzymes, 1 thyroid hormone

tumor marker, 3 kidney function traits, 10 hematological traits, 2 cardiovascular traits, and 3 lifestyle fa

Figure 1 | Overview of the Korean Cancer Prevention Study-II Biobank and analysis. Detailed descripti

the 36 quantitative traits examined in this study are shown in Table S1. After QC, the data were phased

SHAPEIT423 and imputed using IMPUTE524 with 1000 Genomes Project Phase 3 data.  

ons. We 

tics 

and 

d 

ty 

their 

e, 1 

actors. 

 

ions of 

 using 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2024. ; https://doi.org/10.1101/2024.05.17.24307550doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307550
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

GWAS of KCPS2 and pleiotropy analysis  

We conducted GWAS of 36 human quantitative traits in the KCPS2 Biobank (n=153,950). We used a linear 

mixed model implemented in SAIGE25 for association testing to maximize statistical power and included age, 

sex, 10 principal components (PCs), and SNP array as covariates. None of the GWAS exhibited striking 

systematic inflation in test statistics indicative of population stratification or other artifact (median λGC 1.25, 

median S-LDSC intercept 1.05) (Table S1). Using S-LDSC with the baseline-LD model, we estimated the SNP-

based heritability for each trait (Table S1), which ranged from 0.033 (alcohol intake) to 0.345 (height).  

 

Our analysis discovered 2,962 independent genome-wide significant loci (median 68, range 1-428 loci; 2,631 

unique loci) across 36 traits using the 1000 Genome phase 3 EAS samples as the LD reference (Table S2). 

Among these, 616 loci (median 10, range 0-55 loci) were not reported in previous GWAS26 related to the 

corresponding trait using Experimental Factor Ontology (EFO) term (Figure 2a, Table S3), with the greatest 

fraction of novel loci (novelty rate) for carcinoembryonic antigen [CEA, 10/16 (63%) novel loci], followed by 

thyroid-stimulating hormone [TSH, 55/100 (55%) novel loci]. The novel loci tend to be more common in KCPS2 

than in 1000 Genome phase 3 EUR samples (median KCPS2 minor allele frequencies [MAF]: 0.207 vs. median 

EUR MAF: 0.118) (Figure S1).  We also identified widespread pleiotropy: 4,960 gene regions contained variants 

associated with one or more traits (mean 2.3 traits, range 1-27). For example, out of 36 traits, variants near 

ALDH2 were associated with 26 traits, including blood pressure and liver enzyme values (Figure 2b, Table S4). 
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Figure 2 | GWAS results for 36 quantitative traits in the Korean Cancer Prevention Biobank-II (KCPS2)

Number of known and novel variants identified in KCPS2 compared to the Open Target Genetics27 using

terms (Table S2-S3). (b) A summary of genome-wide significant loci associated with the 36 traits in KCPS

Each locus was mapped to a gene using FUMA28 with a 1000 Genome Phase 3 East Asian reference pane
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then counted the number of associated traits (out of 36 traits) per gene (Table S4). (c) Comparisons of 

pairwise genetic correlations (rg) between phenotypic correlations (rp) for the 36 traits in KCPS2. rg was 

estimated using bivariate LDSC based on association test statistics from linear regression. Significant rg and rp 

after false discovery rate (FDR) correction is indicated by purple if both rg and rp were significant, red if only rg 

was significant, blue if only rp was significant, and gray if neither was significant. The black solid line was 

estimated by spline smoothing from a linear regression model. The complete set of rg and rp, is available in 

Table S5. 

 

Genetic and phenotypic correlations between the 36 traits in KCPS2 

By estimating pairwise genetic correlations (rg) between traits, we identified clusters of highly genetically 

correlated traits, including cardiometabolic risk factors (e.g.,  fasting blood sugar [FBS], systolic blood pressure 

[SBP], diastolic blood pressure [DBP], insulin, body mass index [BMI], weight, and waist circumference) and 

liver enzyme traits (e.g., albumin, glutamic oxaloacetic transaminase [GOT], glutamic pyruvic transaminase 

[GPT], and gamma-glutamyl transferase [GGT]) (Table S5, Figure 2c, Figure S2). The slope of the relationship 

between pairwise genetic correlations and phenotypic correlations (rp) for 36 traits was 0.634 (standard error 

[s.e.]=0.026). We identified significantly negative genetic and phenotypic correlations of high-density 

lipoprotein [HDL] cholesterol and adiponectin with the majority of cardiometabolic risk factors including FBS, 

insulin, and BMI (mean cardiometabolic traits rg=-0.24, rp=-0.25 for HDL; rg=-0.27, rp=-0.27 for adiponectin). 

These findings are consistent with a known cardioprotective role of HDL29 and beneficial effects of adiponectin 

on obesity-associated metabolic and vascular disorders.30,31 In contrast, the genetic correlations between 

bilirubin and a number of cardiometabolic risk factors (mean cardiometabolic traits [FBS, insulin, BMI, waist 

circumference] rg=-0.09), low-density lipoprotein cholesterol (rg=-0.13 [FDR=0.012]), and WBC (rg=-0.11 

[FDR=0.001]) were significantly negative, although the phenotypic correlations were significantly positive (e.g., 

mean correlation between bilirubin and cardiometabolic traits rp=0.04). Bilirubin levels have been shown to be 

inversely correlated with cardiovascular disease risk by inhibiting cholesterol synthesis and modulating the 

immune system,32,33, which is supported by our genetic correlations results. Liver enzyme values such as GGT 

were positively associated with alcohol consumption both genetically and phenotypically (rg=0.31 
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[FDR=0.0001], rp=0.33 [FDR<0.0001]), consistent with a previous Mendelian randomization (MR) study.34 

Similarly, smoking, alcohol consumption, and hemoglobin showed significantly positive genetic and 

phenotypic correlations with a number of cardiometabolic risk factors (mean cardiometabolic traits rg=0.18, 

rp=0.22 for smoking; rg=0.14, rp=0.16 for alcohol consumption; rg=0.14, rp=0.28 for hemoglobin). For 

hemoglobin, previous MR showed evidence for lower hemoglobin levels being associated with lower BMI, 

better glucose tolerance and other metabolic profiles, lower inflammatory load, and blood pressure.35  

 

Meta-analysis of 21 traits across KCPS2, KoGES, BBJ, and UKB 

We meta-analyzed 21 traits across KCPS2 (153K), KoGES (72K), BBJ (179K), TWB (102K), and UKB (420K) and 

discovered a total of 11,861 loci associated with the 21 traits, among which 3,524 were not significant in any 

of the other four contributing GWAS (Figure 3a, Figure S3, Table S6-S7). The median MAF in KCPS2 for the lead 

variants at the loci which were only significant in the meta-analysis but not significant in the other individual 

GWAS, was lower than the MAF in KCPS2 for the lead variants at the loci that were only significant in the 

KCPS2 (median MAF 0.26 versus 0.29, respectively) (Figure 3b).  

 

We compared effect sizes from KCPS2 to effect sizes by study for the lead variants at the 11,861 genome-wide 

significant loci from meta-analysis (Figure 3c). The correlation with  KCPS2 effect sizes was greatest for the BBJ 

(regression slope=0.967, s.e.=0.017), followed by with KoGES (slope=0.772, s.e.=0.008), TWB (slope=0.725, 

s.e.=0.008), and UKB (slope=0.418, s.e.=0.007). To further explore novel associations, we compared effect 

sizes from the meta-analysis to MAF by study (Figure S4). There was an inverse relationship between MAF and 

effect size, due in part to the restriction to genome-wide significant variants. The lead variants from genome-

wide significant loci identified in the meta-analysis had in general similar study-specific MAF in East Asian 

populations (KCPS2 [median MAF=0.26], KoGES [median MAF=0.26], and BBJ [median MAF=0.28]) compared 

to European ancestry populations in UKB (median MAF=0.26).  
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Figure 3 | Meta-analysis of 21 traits across KCPS2, KoGES, BBJ, and UKB. (a) Genome-wide significant 

identified in the meta-analysis, Color of dots indicate significance in meta-analysis (black), KCPS2 (blue)

(orange), BBJ (purple), and UKB (green). Multiple dots in a bar represent simultaneous significance in m

cohorts. (b) Comparisons of allele frequency and effect sizes in KCPS2 for the genome-wide significant v

discovered only in KCPS2 (blue) versus those identified only in the meta-analysis (black). (c) Comparison

effect sizes in KCPS2 and study-specific effect sizes for the lead variants at the 11,861 meta-analysis gen

wide significant loci. The solid lines were estimated by spline smoothing from generalized additive mod

or linear regression model (c). Full meta-analysis results are shown in Table S6-7. 

 

Genetic architecture compared between KCPS2, BBJ, TWB, and UKB  

We investigated the genetic architecture in KCPS2 (Figure S5) and compared it with BBJ, TWB, and UKB 

six trait categories (Figure 4a, Table S8). The S parameters linking MAF and effect sizes were similar acro
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biobanks (median S=-0.59, range -0.84, -0.22), suggesting a pervasive action of negative selection on the trait-

associated variants.36 The SNP-heritability estimates (ℎ
2

g) varied widely across different biobanks and 

categories. For example, compared to BBJ, KCPS2 has higher heritability estimates for anthropometry (median 

ℎ
2

g=0.26 vs. 0.25), cardiovascular (median ℎ
2

g=0.12 vs. 0.08), and hematological traits (median ℎ
2

g=0.17 vs. 

0.11). For hematological traits, UKB has the largest heritability estimates (median h
2
=0.23), with the exception 

of platelet (ℎ
2

g=0.42) and RBC (ℎ
2

g=0.31) being the largest in TWB. Compared to TWB, KCPS2 has lower 

heritability estimates for metabolic (median ℎ
2

g=0.19 vs. 0.22), liver (median ℎ
2

g=0.13 vs. 0.17), and kidney 

traits (median ℎ
2

g=0.15 vs. 0.24). Overall, the heritability estimates of KCPS2 had lower correlations with TWB 

(Pearson correlation r=0.68, 95% confidence interval [CI]: 0.37-0.85), particularly for metabolic and 

hematological traits, whereas we observed higher correlations with BBJ (r=0.86, 95% CI: 0.57-0.96) and UKB 

(r=0.9, 95% CI: 0.67-0.97) (Figure 4b-d). However, we note that our TWB heritability estimates were higher 

than  those reported by Chen et al., (2023)15 using LDSC and in-sample LD, especially for metabolic and 

hematological traits (Figure S6A). When we used the heritability estimates reported by Chen and colleagues, 

the correlation in heritability between KCPS2 and TWB improved (r=0.80, 95% CI: 0.58-0.91) (Figure S6B,C). 

The most polygenic traits (weight, BMI, and waist circumference) had about 2% SNPs with nonzero effects, 

whereas the least polygenic traits (coffee intake, bilirubin, and MCHC) were affected by about 0.006-0.04% 

common SNPs in KCPS2. The median polygenicity estimates for the 8 traits available in all four studies were 

largest in UKB (median π=0.02), followed by BBJ (median π=0.007), KCPS2 (median π=0.006), and TWB 

(median π=0.001), which follows the same order as the sample sizes of the biobanks. Nevertheless, the 

genetic correlation (rg) estimates within EAS were close to 1 (KCPS2-KoGES median rg=0.997, KCPS2-BBJ 

median rg=0.885, KCPS2-TWB  median rg=0.926) and were in general higher than the rg between EAS and EUR 

(KCPS2-UKB median rg=0.815) for these traits (Figure S7, Table S9). 
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Figure 4 | Genetic architecture of complex traits across KCPS2, BBJ, TWB, and UKB. (a) The dots repre

posterior means and horizontal bars represent standard errors of the parameters for each trait. The ver

dashed line shows the median of the estimates across traits. Full results are shown in Table S8. (b-d) Pe

correlations of SNP-heritability between KCPS2 and TWB (b), BBJ (c), and UKB (d) across the traits show

Data are presented as posterior means of SNP-heritability. The trait categories are indicated by differen

colors labeled with their trait names.  

 

Fine-mapping and colocalization analysis 

To identify potential causal variants, we performed a single-population fine-mapping using SuSiE37 in KC

Specifically, we fine-mapped 26 traits associated with the region spanning ALDH2 on chromosome 12 (±

from rs671, which is known to be functionally related to alcohol metabolism). 1,476 variants in this regi
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were fine-mapped to a total of 56 credible sets, among which 17 contain exactly one variant (median 17.5, 

range 1-470 variants) (Table S10). rs671, a non-synonymous SNP associated with alcohol metabolism and 

alcohol intake, had a posterior inclusion probability (PIP) of  greater than 90% for 8 traits including alcohol 

intake, GOT, GPT, GGT, SBP, DBP, coffee intake, and triglyceride (Figure 5a-b). For alcohol intake, we found 

seven credible sets with exactly one variant, all with PIP=1, including rs671, rs555501971, rs141043717, 

rs61055528, rs149178839, rs11066008, and rs550463060 ; in a sensitivity analysis setting the maximum 

number of credible sets to one (L=1), only rs671 remained in the credible set  (Table S11). 

 

To examine the mechanisms underlying these pleiotropic associations, we performed colocalization by pairing 

GWAS for alcohol intake with GWAS for each of traits where the PIP of rs671 was greater than 90%. These 

traits included liver enzymes (GOT, GPT, GGT), blood pressure (SBP, DBP), coffee intake, and triglyceride. rs671 

was colocalized between alcohol intake and all of these traits with PP4=100%, supporting a shared causal 

variant for these two traits at the locus (Figure 5b). 
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Figure 5 | Fine-mapping and colocalization analysis of ALDH2 region in KCPS2. (a) Association between

ALDH2 (12q24.12) and alcohol intake in KCPS2. Colors in the Manhattan panels represent r
2
 values to th

variant rs671. In the posterior inclusion probability (PIP) panels, only fine-mapped variants in the 95% c

sets (CS) are colored. Heatmap represents significant variants (P < 5.0 × 10
−8

) for the other quantitative 

(b) Colocalization analysis between alcohol intake and six traits that showed PIP>0.9 for rs671 was done

same region. Coloc.PP4 represents the posterior probability of colocalization at the specified region. Ea

regional plot shows associations of each locus for the most significantly associated trait, which was all r

with PIP>0.9. Full fine-mapping results are shown in Table S10.  
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Discussion 

In this study, we identified novel quantitative trait loci for 36 complex traits and investigated the genetic 

architecture of complex traits in 153,950 Korean individuals. Our analysis discovered 616 novel genetic loci 

that were not reported in previous GWAS related to the corresponding trait. We also demonstrated 

widespread pleiotropy and variants near ALDH2 were associated with 26 traits. Meta-analysis of 21 traits 

across KCPS2, KoGES, BBJ, TWB, and UKB identified 3,524 loci that were not significant in any of the other four  

contributing GWAS. We compared the genetic architecture of these traits in KCPS2, BBJ, TWB, and UKB, and 

pinpointed one of the most pleiotropic regions (ALDH2) through fine-mapping, which colocalized with high 

probability with a diverse set of traits such as liver enzyme values. 

 

Our study underscores the importance of enhancing the ancestral diversity and sample size of GWAS samples 

to facilitate genetic discovery and provide insights into the biological mechanisms of human quantitative 

complex traits. We discovered 616 novel loci that have lower median MAF in European ancestry individuals 

than in East Asian populations, which was enabled by leveraging samples from diverse ancestry groups. In 

particular, the novelty rate was high for TSH (55 out of 100 loci) in KCPS2. The most strongly associated lead 

variant with TSH, rs10799824 (Beta=-0.14, P=2.98x10
-139

), was previously reported in GWAS of TSH38 (Beta=-

0.11, P=4.0x10
-21

) and strict autoimmune hypothyroidism17 (Odds ratio=0.87, P=4.1x10
-18

) in European 

ancestry individuals. Several lead TSH loci were mapped to nearby genes previously linked to thyroid function, 

including rs13030651 (Beta=0.035, P=1.09x10
-13

) in the thyroid adenoma associated gene (THADA)39,40 and 

rs2160215 (Beta=0.065, P=1.75x10
-51

) in thyrotropin receptor gene (TSHR).41,42 Notably, a novel missense 

variant CD36 p.Pro90Ser (rs75326924; Beta=-0.052, P=9.08x10
-11

) found in our TSH GWAS (AFKCPS2=0.068) has 

low frequency in the gnomAD v4.1.0 East Asian genetic ancestry group (MAF=0.03) but is exceedingly rare 

outside of that group (MAF<10
-5

) and entirely absent from European genetic ancestry groups.43 CD36 (also 

known as fatty acid translocase [FAT]) facilitates the transport of fatty acids into cells and participates in 
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triglyceride storage.44 A study in hypothyroid rats showed a reduced fatty acid absorption in the liver 

compared to euthyroid rats45 and decreased hepatic FAT expression has been demonstrated in rats with 

postnatal hypothyroidism.46 Moreover, recent studies have revealed that CD36 contributes to the 

tumorigenesis and development of multiple cancer types by reprogramming the metabolism of glucose and 

fatty acid,47–49 providing new insights for developing potential therapeutic target and prognostic biomarker in 

the clinical setting. We also found high novelty rate for GWAS of CEA in KCPS2, which recapitulates several 

known tumor biomarkers in various cancer types, including a non coding transcript exon variant (rs149037075; 

Beta=0.179, P=4.8x10
-477

) in ABO50,51 and a missense variant (rs28362459; Beta=0.068, P=4.85x10
-128

) in FUT3 

(also known as Lewis gene),52–55 consistent with previous CEA GWAS.56  Previous studies show that 

determinants of the blood A and B antigens and Lewis antigens and of CEA share the same glycoprotein carrier 

molecules,57,58 which might explain the association of CEA concentrations with the ABO and the FUT3 locus. 

Several variants not previously reported in CEA GWAS were mapped to genes with potential role in cancer 

such as C15orf3959 (rs143001709; P=1.31x10
-8

), ST6GAL160 (rs73187787; P=3.36x10
-11

), and CCDC13861 

(rs10179849; P=6.55x10
-19

). Further studies are warranted to investigate the potential functional importance 

of these associations. 

 

As a global effort to broaden the population diversity of genetic studies in East Asia, the KCPS2 GWAS 

enhanced our understanding of the genetic basis of complex traits in a Korean population. Our genetic 

correlations across 36 quantitative traits recapitulated known biology, including negative genetic correlations 

of HDL, adiponectin, and bilirubin with cardiometabolic risk factors 29,31–33 and positive genetic correlations of 

smoking, alcohol intake, and hemoglobin with cardiometabolic traits.35,62 Notably, most of the significant 

genetic correlations were consistent with phenotypic correlations, which underscores the robustness and 

potential of the genetics-based approaches to understand biological architectures of complex traits. Many of 

the significant findings were consistent with BBJ,8 KoGES,13 TWB,15 and UKB,63 suggesting a similar genetic 
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architecture for these quantitative traits within EAS populations and across EAS and EUR populations as shown 

by our work and previous findings on within- and cross-ancestry genetic correlation analysis.6,9,15 

 

Our findings provide opportunities to investigate the genetic architecture of complex traits within East Asian 

and across continental populations. While similar negative selection patterns were observed across traits and 

populations, the heritability estimates vary within EAS and across EAS and EUR populations, which may be 

attributed to several factors such as phenotype data collection, biobank design and environmental influences. 

For instance, compared to a hospital-based cohort such as BBJ, participants of a population-/community-

based cohort such as KCPS2, KoGES, TWB, and UKB may have different distributions of disease-related traits 

due to healthy-volunteer effects.64 Hence, the comparison of heritability estimates across biobanks requires 

careful consideration of technical differences, potential collider bias, and variability in baseline health status 

among studies.6 Moreover, we demonstrated the correlation in heritability between KCPS2 and TWB improved 

when the heritability of TWB were replaced by the previously reported estimates15 that used LDSC and in-

sample LD, especially for metabolic and hematological traits. Thus, in addition to the phenotype heterogeneity, 

heritability may be affected by different heritability estimation methods and LD matrices. Further research is 

needed to explore the impact of these factors on genetic architecture comparisons. Nevertheless, our study 

highlights the importance of increasing genetic diversity to understand genetic architecture of diverse 

populations, which is crucial to achieve equitable delivery of genomic knowledge to global populations.6,65,66 

 

The KCPS2 GWAS facilitated pinpointing causal variants through fine-mapping. For example, a missense 

variant rs671 (AFEAS=0.2254 vs. AFEUR=2.4x10
-5

 in non-Finnish EUR populations in gnomAD v4.0.043) was 

identified as the causal variant in the ALDH2 gene for 8 traits including alcohol intake, GGT, GOT, GPT, SBP, 

DBP, coffee intake, and triglyceride through fine-mapping. ALDH2 gene is the target of drug for alcoholism 

which irreversibly inactivate catalytic Cys302 in ALDH2 by carbamylation in the substrate site of the 
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enzyme.67,68 Furthermore, our colocalization results suggest that alcohol intake is a causal risk factor for liver 

enzymes (GGT, GOT, GPT), blood pressure,  and triglyceride levels at the rs671 region, which is supported by 

evidence for causation from previous MR studies among East Asian populations.34,69,70 Our findings 

demonstrated the potential of diversifying EAS GWAS to uncover genetic associations that are common in EAS 

populations but rare in EUR populations, which could not be discovered even with very large European sample 

sizes. Furthermore, discovery of such variants may help identify targets for prevention and treatment, thus 

offering equitable access to precision medicine to diverse populations. 

 

We note several limitations to our study. First, we only conducted GWAS of continuous traits due to limited 

power for disease phenotypes. Further investigation into disease outcomes should be conducted. Second, we 

conducted fine-mapping in KCPS2 only for a particular locus, which might cause a concern about potential LD 

tagging effects for observed pleiotropy. Recent studies suggest that multi-ancestry fine-mapping can improve 

refinement of causal variants by leveraging different LD patterns across ancestries.71,72 We will explore these 

potential extensions in the near future. Third, for the estimation of genetic architecture parameters, in-sample 

LD was used for KCPS2, BBJ, and UKB but not for TWB. Since we were unable to find publicly available data to 

estimate LD in a Taiwanese population, we estimated the genetic architecture parameters using the LD matrix 

based on the 50K individuals from KCPS2. Such disagreement between the genetic associations and the 

correlation matrix may induce spurious results due to different LD patterns between the Taiwanese 

population and Korean individuals from KCPS2, even though both are East Asian populations. 

Our findings highlight how broadening the population diversity of GWAS samples can aid discovery and post-

GWAS analyses. Our results also provide insights into the genetic architecture of complex traits in East Asian 

populations. By increasing the sample size and ancestral diversity of GWAS samples, our analysis may help 
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identify novel population-specific targets for prevention and treatment, thus offering equitable access to 

precision medicine to diverse populations. 
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Methods 

Study population 

The Korean Cancer Prevention Study-II Biobank (KCPS2) is a prospective cohort study based in Korea with 

genotype data and measurements of a wide range of phenotypes collected from 153,950 subjects (Figure 1). 

Participants in KCPS2 undertook routine health assessments at nationwide health promotion centers between 

2004 and 2013. The study design and recruitment have been described in detail previously.22 KCPS2 collects 

extensive phenotypes including demographics, socioeconomic status, environmental exposures, lifestyle, 

dietary habits, family history and self-reported disease status through structured questionnaires. The 

aAnthropometric measures as well as, and blood and urine samples were collected at recruitment, and several 

biomarkers were assayed subsequently. All participants in the KCPS2 were genotyped using either the Illumina 

Global Screening Array (GSA) v2.0 (78,260 samples) or the Korean Chip array v1 (90,245 samples). All 

participants provided written informed consent before participation.  

 

Quality control (QC) and imputation were conducted separately for each of the two SNP arrays. First, SNPs 

with low call rate (<95%) were filtered out, along with samples with low call rate (<98%), gender discrepancy, 

excessive heterozygosity, excessive singletons, and duplicates. Additionally, SNPs with Hardy-Weinberg 

equilibrium p-value <10
-4

 or minor allele frequencies (MAF) <0.01 were excluded. Following QC, the data were 

phased using SHAPEIT423 and imputed using IMPUTE524 with 1000 Genomes Project Phase 3 data. Variants 

with imputation INFO <0.8 were excluded after imputation. The two imputed data of GSA chip and the Korean 

chip were then merged, resulting in a total of 6,809,738 overlapping variants. 

Genome-wide association analysis in KCPS2 

We performed GWAS on 36 quantitative traits including anthropometric measures and biomarkers spanning 8 

categories (metabolic, liver, thyroid hormone, tumor marker, kidney, hematological, cardiovascular, 
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arthrometry, and lifestyle factors). For each trait, we excluded samples with measurements that were more 

than 6 standard deviations away from the sample average.  

 

We used linear mixed models implemented in SAIGE (v.1.1.9)25 for association testing, controlling for age, sex, 

10 PCs, and SNP array. The SAIGE method contains two main steps: in step 1, we used a subset of linkage 

disequilibrium (LD)-pruned variants with R
2
<0.2 (158,729 variants) to obtain the genetic relationship matrix. 

We included age, sex, 10 PCs, and SNP array as covariates in step 1. Single-variant association testing was 

performed in step 2 where the phenotypes were inverse rank-based normal transformed and leave-one-

chromosome-out scheme to remove the proximal contamination. We used FUMA28 with 1000 Genome Project 

Phase 373 EAS samples as LD reference to identify independent genome-wide significant loci (p<5x10
-8

) for 

each trait, window size of 5 Mb, and LD threshold R
2
 of 0.1.  

 

Linkage disequilibrium score regression (LDSC)74 was applied to estimate cross-trait genetic correlations (rg) in 

KCPS2. We ran stratified-LDSC (S-LDSC)75 with a full baseline-LD v1.2 model75 to compute LDSC intercept. To 

correctly specify effective sample size in LDSC or S-LDSC analysis, we used GWAS summary statistics generated 

from simple linear regression models instead of linear mixed models, which have a different effective GWAS 

sample size than the study sample size.76 We ran linear regression using PLINK277 for association testing, 

controlling for age,  sex, 10 PCs, and SNP array. All phenotypes used in these GWAS were inverse rank-based 

normal transformed. 

Novel association identification 

We mapped each trait to a term in the Experimental Factor Ontology (EFO) each trait (Table S3). For each of 

the independent loci we identified to be associated with a given trait, wWe queried the Open Target Genetics 

database  (release 22.09)27,78 for each of the independent loci we identified to be associated with a given trait 

to identify any previously reported associations (with the same EFO term or category, see below) within ±500 
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kb of the lead variant at that locus. If none were identified for a locus, we considered that locus to be novel. 

Given the widespread pleiotropy and phenotypic heterogeneity,79 we may overcount novel associations. We 

therefore also used EFO categories, which are more generic than EFO terms to evaluate novelty. For example, 

“body height” (EFO_0004339) is an EFO term that maps to the broader EFO category of “body measurement” 

(EFO_0004324) by GWAS catalog.26 We further exhaustively searched for previous reports of genetic 

association in a given trait using the GWAS Catalog, which might not be included in the Open Target Genetics 

database. Since the recent GWAS results of height by Yengo et al. (2022)80 were not listed in the GWAS 

Catalog at the time of the curation, we additionally excluded variants that were genome-wide significant in the 

GWAS.  

Evaluation of gene pleiotropy 

We investigated gene pleiotropy, where a gene affects multiple traits in KCPS2. We defined the degree of 

pleiotropy as the number of significant associations per gene (p<5x10
-8

). The list of genes mapped to each SNP 

in KCPS2 GWAS results was taken from FUMA28 to map SNPs in GWAS results to a gene with the 1000 Genome 

Phase 373 EAS reference panel. We then quantified the degree of pleiotropy per gene by aggregating and 

counting the number of genome-wide significant associations across 36 traits.   

Meta-analysis of EAS and EUR GWAS 

We conducted meta-analysis of 21 traits across KCPS2, KoGES, BBJ, TWB, and UKB (European ancestry samples) 

to further identify novel loci across East Asian and European ancestry populations. We implemented inverse-

variance-weighted fixed-effect meta-analysis using METAL.81 We then used FUMA28 to identify genome-wide 

significant loci in the meta-analysis after clumping variants with p-values<5x10
-8

, window size of 5 Mb, and LD 

threshold R
2
 of 0.1. We identified the association as novel if none of the variants within the locus reached 

genome-wide significance (P< 5x10
-8

) in KoGES, BBJ, TWB, or UKB GWAS. 
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Genetic architecture of complex traits in KCPS2, BBJ, TWB, and UKB 

We used SbayesS82 to estimate the SNP-based heritability (S
2

g), polygenicity (π; proportion of SNPs with 

nonzero effects), and the relationship between minor allele frequency (MAF) and SNP effects (S parameter) 

for 36 traits in KCPS2. We constructed a full LD correlation matrix based on 50K individuals from KCPS2 and 

shrunk the matrix to ignore small LD correlations due to sampling variance using the shrinkage method from 

Wen and Stephens (2010).83 To calculate the LD matrix shrinkage estimate, we used a genetic map for East 

Asian populations, with the effective population sample size of 12,239,73 while using the default shrinkage 

cutoff (10
-5

). We then compared the genetic architecture of KCPS2 with BBJ, TWB, and UKB across six 

categories including anthropometry, cardiovascular, hematological, kidney, liver, and metabolic traits (among 

which 12 traits overlap between KCPS2 and BBJ/UKB, 23 traits overlap between KCPS2 and TWB, and 8 traits 

available in all biobanks: height, body mass index, platelet, red blood cell, white blood cell, hemoglobin, 

systolic blood pressure, and diastolic blood pressure). For BBJ and UKB, we used the previously reported 

genetic architecture parameter estimates,65 which were constructed using GWAS summary statistics 

generated from linear regression models and in-sample LD for the corresponding population. For a fair 

comparison of these parameters between KCPS2, BBJ, TWB, and UKB, we applied SbayesS to GWAS summary 

statistics generated from linear regression models in KCPS2 and TWB instead of linear mixed models. For TWB, 

we estimated the genetic architecture parameters using the LD matrix based on the 50K individuals from 

KCPS2 because we were unable to find publicly available data to estimate LD in a Taiwanese population. We 

did not include KoGES for the genetic architecture comparisons because 1) summary statistics from linear 

regression models were not publicly available, and 2) their relatively small sample size might lead to estimates 

with a higher degree of uncertainty, since the genetic architecture parameters are sample size dependent.82 

Cross-biobank genetic correlation 

To estimate cross-biobank genetic effect correlations within EAS (KCPS2-KoGES, KCPS2-BBJ, and KCPS2-TWB), 

we used LDSC74 to estimate rg using the 1000 Genomes phase 3 EAS reference panel. We used Popcorn 
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(v.1.0)84 to estimate cross-biobank genetic-effect correlation between KCPS2 and UKB GWAS with 

precomputed cross-population scores for EUR and EAS 1000 Genomes Project populations provided by the 

authors. For a fair comparison, we restricted to HapMap3 SNPs that were shared across all five biobanks. We 

applied the analysis to traits with heritability calculated by LDSC or Popcorn >0.01 and their GWAS summary 

statistics generated from linear mixed models from all biobanks which were publicly available. 

Fine-mapping and colocalization analysis  

We fine-mapped one of the most pleiotropic regions identified by GWAS of the 36 traits above, a 500kb region 

flanking ALDH2 in KCPS2.  We applied SuSiE37 to GWAS summary statistics and in-sample LD on 1,476 SNPs in 

this region. We implemented colocalization analysis to further investigate whether two traits share a causal 

variant. We applied coloc.susie85 which allows multiple signals to be distinguished using SuSiE, and then 

performed colocalization analysis on all possible pairs of signals between the traits. We performed 

colocalization analysis in a 500kb window centered on an identified causal variant between alcohol intake and 

the other traits with PIP of rs671 being greater than 0.9 from fine-mapping results. We reported posterior 

probability of colocalization (PP4) for each of these pairs at the specified region. We applied LocusZoom86 to 

visualize the colocalization analysis. 
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Supplementary Figures 

Supplementary Figure 1. MAF comparisons of 2,962 independent genome-wide significant loci in KCPS2 with 

MAF in 1000 Genomes Project (1KG) EUR population. 
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Supplementary Figure 2. Pairwise genetic correlations (rg, upper diagonal) and phenotypic correlations 

lower diagonal) between the 36 traits in KCPS2. rg was estimated using bivariate LDSC based on associa

test statistics from linear regression. Significant rg and rp after false discovery rate correction is indicate

asterisk sign (two-sided Wald test). The complete set of rg and rp, is available in Table S5. 
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Supplementary Figure 3. Number of known and novel variants identified in the meta-analysis across Ko

Cancer Prevention study-II (KCPS2), Biobank Japan (BBJ), Korean Genome and Epidemiology Study (KoG

Taiwan Biobank (TWB), and UK Biobank (UKB). We identified the association as novel if none of the vari

within the locus reached genome-wide significance (P< 5x10
-8

) in KoGES, BBJ, TWB, or UKB GWAS. 
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Supplementary Figure 4. Comparisons of study-specific allele frequencies and effect sizes estimated fro

multi-ancestry meta-analysis. We identified the association as novel if none of the variants within the lo

reached genome-wide significance (P< 5x10
-8

) in KoGES, BBJ, TWB, or UKB GWAS. 
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Supplementary Figure 5. Genetic architecture of 36 traits in Korean Cancer Prevention study-II (KCPS2)

dots represent posterior means and horizontal bars represent standard errors of the parameters for ea

The vertical dashed line shows the median of the estimates across traits.  
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Supplementary Figure 6. Comparison of TWB heritability estimates using SbayesS and KCSP2 LD matrix 

TWB heritability estimates reported by Chen et al., (2023)15 using LDSC and in-sample LD from TWB. A) 

Comparisons between TWB heritability estimates using SbayesS and KCSP2 LD matrix (X-axis) and. TWB

heritability estimates reported by Chen et al., (2023)15 using LDSC and in-sample LD from TWB (Y-axis). 

Comparisons between heritability estimates in KCPS2 (X-axis) and heritability in TWB reported by Chen 

(2023)15 (Y-axis). C) Genetic architecture of these traits when replacing TWB heritability with the estima

reported by Chen et al., (2023)15. 
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Supplementary Figure 7. Comparison of within- and cross-biobank genetic correlation estimates for 21 

quantitative traits in KCPS2, KoGES, BBJ, TWB, and UKBB (rg). (a-c) The rg  estimates within EAS were computed 

in LDSC74 using 1000 Genomes Project EAS reference panel. (d-f) The cross-biobank population genetic effect 

correlations between KCPS2 and UKB were estimated in Popcorn (v.1.0)84 using precomputed cross-population 

scores for EUR and EAS 1000 Genomes Project populations (Tables S9). 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2024. ; https://doi.org/10.1101/2024.05.17.24307550doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307550
http://creativecommons.org/licenses/by-nc-nd/4.0/

