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Abstract 
Background: The ability of large language models (LLMs) to interpret and generate human-like text 
has been accompanied with speculation about their application in medicine and clinical research. 
There is limited data available to inform evidence-based decisions on the appropriateness for 
specific use cases. 

Methods: We evaluated and compared four general-purpose LLMs (GPT-4, GPT-3.5-turbo, Flan-T5-
XXL, and Zephyr-7B-Beta) and a healthcare-specific LLM (MedLLaMA-13B) on a set of 13 datasets –  
referred to as the Biomedical Language Understanding and Reasoning Benchmark (BLURB) – 
covering six commonly needed medical natural language processing tasks: named entity recognition 
(NER); relation extraction; population, interventions, comparators, and outcomes (PICO); sentence 
similarity; document classification; and question-answering. All models were evaluated without 
modification. Model performance was assessed according to a range of prompting strategies 
(formalised as a systematic, reusable prompting framework) and relied on the standard, task-specific 
evaluation metrics defined by BLURB. 

Results: Across all tasks, GPT-4 outperformed other LLMs, followed by Flan-T5-XXL and GPT-3.5-
turbo, then Zephyr-7b-Beta and MedLLaMA-13B. The most performant prompts for GPT-4 and Flan-
T5-XXL both outperformed the previously-reported best results for the PubMedQA task. The 
domain-specific MedLLaMA-13B achieved lower scores for most tasks except for question-answering 
tasks. We observed a substantial impact of strategically editing the prompt describing the task and a 
consistent improvement in performance when including examples semantically similar to the input 
text in the prompt. 

Conclusion: These results provide evidence of the potential LLMs may have for medical application 
and highlight the importance of robust evaluation before adopting LLMs for any specific use cases. 
Continuing to explore how these emerging technologies can be adapted for the healthcare setting, 
paired with human expertise, and enhanced through quality control measures will be important 
research to allow responsible innovation with LLMs in the medical area. 
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Introduction 
Recent advances in large language models (LLMs) have generated substantial interest in using them 
to perform natural language processing (NLP) tasks in the medical domain, including writing clinical 
notes, summarizing scientific literature, and reasoning about public health topics.1  

There are also serious concerns about the safety, ethics, and trustworthiness of LLM outputs,2 with 
evidence of plausible – but factually incorrect – hallucinations of medical information,3 perpetuation 
of racial bias,4 and omission of important information from LLM summaries.5 Calls to rigorously 
evaluate LLM performance when performing specific medical tasks6 emphasize the need to ensure 
adequate information is available for evidence-based decision making when these technologies will 
impact patient care and treatment.   

In addition to the need for robust evaluation, there are open questions about how to prompt models 
to ensure quality outputs specific biomedical tasks and to what extent domain-specific fine-tuning of 
models is beneficial. Significant performance increases have been observed when the instructions 
for the task are accompanied by several examples (few-shot learning), compared to only providing 
instructions (zero-shot learning).7 Example selection strategies to populate few-shot prompts can 
also meaningfully impact performance, specifically by selecting semantically similar examples using 
sentence-level embeddings.8,9 Another strategy for improving LLM performance is fine-tuning with 
data from the medical domain; while this approach requires substantial compute resources, 
specialized technical expertise, and a relatively large amount of high-quality training data, it could be 
worthwhile to increase trustworthiness of the LLM’s output.  

We conducted an empirical evaluation to assess the ability of five LLMs – four general-purpose and 
one domain-specific (i.e., fine-tuned on biomedical texts) – to perform biomedical NLP tasks, all of 
which are included in the Biomedical Language Understanding and Reasoning Benchmark (BLURB).10 
In addition to benchmarking, we investigated how the quality of LLM responses can be improved 
through prompting strategies.  

Methods 
BLURB is a collection of 13 datasets that cover 6 distinct NLP tasks, each with a pre-defined 
evaluation metric (Figure 1). We compared 5 LLMs against the BLURB datasets and evaluated 
performance using the standard BLURB metrics.  For each LLM and task, several prompting 
strategies were compared. 

Models 
Five LLMs were compared: Azure-based GPT-3.5-Turbo (commercial, general purpose), GPT-4 
(commercial, general purpose),11 Flan-T5-XXL (open-source, general purpose),12 Zephyr-7B-Beta 
(open-source, general purpose)13 and MedLLaMA-13B (open-source, fine-tuned).14 The only fine-
tuned model included in the evaluation, MedLLaMA-13B, was fine-tuned on a variety of clinical and 
medical text data sources.15 

None of the models were modified or underwent further fine-tuning for this evaluation. 

BLURB benchmarking datasets and healthcare-based tasks 
BLURB is a collection of 13 publicly available biomedical NLP datasets used to evaluate the following 
common medical NLP tasks:  

• Named entity recognition refers to the extraction of specified categories of information 
from text - such as identifying all mentions of medications, diseases, or cell types. Associated 
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datasets are all based on PubMed abstracts with specific annotated mentions: BC5-chem: 
drugs and chemical compounds; BC5-disease: diseases; NCBI-disease: diseases; BC2GM: 
genes; JNLPBA: molecular biology concepts (i.e., protein, DNA, RNA, cell line, cell type). 

• Population, interventions, comparators, and outcomes (PICO) identifies each of the 
categories from the PICO research framework from an abstract.16 The PICO data set, EMB-
PICO, is a collection of clinical trial abstracts with annotated mentions of these key elements 
of study design.  

• Relation extraction assesses the ability of an algorithm to classify the relationship between 
pairs of entities in a text. There are three datasets: ChemProt is a collection of PubMed 
abstracts that requires the algorithm to classify the relationship described between chemical 
and protein entities; DDI is a collection of texts from PubMed abstracts and DrugBank that 
requires the algorithm to classify the drug-drug interactions that are described; GAD is a 
collection of sentences from PubMed abstracts that requires the algorithm to identify 
whether a gene-disease relationship is being described. 

• Sentence similarity assesses the ability of an algorithm to determine the similarity of the 
meaning of two sentences. The sentence similarity dataset, BIOSSES, is a collection of 
sentence pairs that have been rated on a scale of 0 (no relation) to 4 (equivalent meanings) 
by subject matter experts; the algorithm must estimate the annotated score. 

• Document classification assesses the ability of an algorithm to correctly categorize a 
document. The document classification dataset, HoC, is a collection of PubMed abstracts 
that have been classified according to whether they discuss specific cancer hallmarks.  

• Question answering assesses the ability of an algorithm to correctly answer free-text 
questions. The two question answering datasets are both based on PubMed abstracts and 
annotated with question-answer pairs based on the provided text: PubMedQA captures 
whether the text contains the answer to a research question (yes/no/maybe); BioASQ 
annotates whether an extract is the correct answer to a research question (yes/no).  

Each dataset has clearly defined ground truth labels and was partitioned into training, validation, 
and test sets as part of the BLURB benchmark; all evaluations reported here were performed on the 
standard BLURB test set using the provided labels. Further detail on BLURB tasks is available17 and 
information is summarized in Figure 1. 

Prompting strategies 
A series of experiments were conducted to systematically evaluate prompting strategies based on 
the structure of the prompt and example selection. Each of the five LLMs were provided with 
prompts constructed from four high-level templates (based on studies from previous work18,19) 
across all datasets to assess the impact of distinct combinations of three key variables: 

• Verbosity (short versus long): Short prompts contain concise instructions to the model. 
Long prompts provide details (e.g., a description of each label) that could be potentially 
useful to the model. 

• Number of examples (zero-shot versus few-shot): Zero-shot prompts provide instructions 
to the model with no examples. Few-shot prompts provided the model with three 
examples of inputs and the corresponding correct responses.  

• Selection strategy for examples (semantically similar versus random): Previous studies 
suggest that when prompting an LLM to analyse a specific text excerpt, performance of 
LLM response could be improved by including examples that are semantically similar to the 
text excerpt to be analysed as a part of the prompt.8,9 Based on these studies, we 
implemented two approaches for example selection from the training set: semantically 
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similar selection scheme and random selection scheme. Under the semantically similar 
selection scheme, the three most semantically similar training examples and their correct 
answers were provided to the LLM as part of the prompt. For NER tasks, among the three 
semantically similar examples, we included two positive examples (i.e. ground truth 
contains target entities) and one negative example (i.e. ground truth contains no entities). 
Under the random selection scheme, three examples were randomly selected.  

 
For all the few-shot experiments for EBM-PICO dataset and the few-shot experiments for 
PubMedQA with MedLLaMA-13B and Flan-T5-XXL, we encountered the issue of prompt length 
exceeding maximum context size of some models, and therefore did not conduct the experiments. 
We also used separate calls for each category (EBM-PICO) and entity mention pair (ChemProt and 
DDI) to ensure the consistency of prompts with long-text examples.  

The precise prompt texts used in experiments are provided in Appendix A. 

Evaluation methodology 
For each LLM and each dataset, six experiments were run varying the length of the prompt, number 
of examples, and the example selection strategy. The same prompts were used to interact with all 
LLMs; full prompts are available in Appendix A. An overview of the evaluation strategy is provided in 
Figure 1.  

To enforce standardisation and repeatability of evaluations, raw responses from LLMs were 
formatted according to a standard JSON schema for each BLURB dataset. A detailed explanation of 
this process can be found in Appendix B. 

For all experiments performed, the entire test set was used to evaluate performance for a given 
dataset using the standard, task-specific metrics from the BLURB benchmark (see Figure 1). For NER 
tasks, the F1 score (the harmonic mean of sensitivity and positive predictive value [i.e., recall and 
precision]) was calculated. For the PICO task, we used a generalization of this metric, the macro F1 
score (an unweighted mean of the F1 score for each of the four information categories). The micro 
F1 score – a weighted mean of category-specific F1 scores – was used for relation extraction and 
document classification. Pearson correlation coefficients were calculated to evaluate performance 
on the sentence similarity task. For the question answering tasks, accuracy – the overall proportion 
of correct answers – was used.  
 
All analyses were performed using Python (3.9) packages, with scikit-learn (1.4.0) and scipy (1.12.0) 
for computing the metrics. The version of GPT models used was gpt-35-turbo, 0613 and gpt-4, 0613.  
Please reach out to authors for scripts used to perform the evaluations. 

Results  
Table 1 characterizes the performance of the five LLMs against all data in the test set of all BLURB 
datasets. For NER, relation extraction and PICO datasets, number of examples contained in each 
dataset varies from hundreds to thousands or tens of thousands. Document classification and 
question-answering datasets contain hundreds of examples. Sentence similarity contains twenty 
examples.  

Across 11 of the 13 BLURB datasets, GPT-4 had the highest score (Table 1). For all NER datasets, GPT-
4 exceeded the comparators across all prompts (higher 100% of the time, with F1 scores ranging 
from 47.6-78.2). For BC5-chemical, BC5-disease and NCBI-disease, the gap was large (for example, 
difference between best performing GPT-4 prompting strategy and the next best performing model 
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for NCBI-disease was 14.49 points); for others, it was considerably smaller (for example, difference 
between best performing GPT-4 prompting strategy and next best performing model for BC2GM was 
3.99 points). For GAD, prompting Zephyr-7B-Beta with semantically similar examples performed 
better than any GPT-4 prompting strategy (3 points higher than the best of GPT-4). For PubMedQA, 
all prompting strategies for Flan-T5-XXL outperformed GPT-4 (the best Flan-T5-XXL prompting 
strategy achieved 1.40 points higher than the best of GPT-4). 

For all models and datasets, performance varied widely based on the prompting strategy used (Table 
1). Notably, prompts with semantically similar examples had the highest score for 7 of 11 datasets.  
For GPT-4, the differences between the highest and lowest scores were less than 5 points for NER 
and PICO datasets, but it were much larger for the three relation extraction tasks (range: 9.55 to 
26.34 points). The differences were about 12 points for sentence similarity and document 
classification datasets and less than 8 points for question-answering. However, this pattern is not 
generalizable across models; for example, the differences between highest and lowest scores for 
Flan-T5-XXL were for 10 to 20 points for the NER datasets and less than 8 points for the relation 
extraction datasets. Although there seems to be no clear best prompting strategies across models or 
tasks, performance improvements clearly could be made by choosing the optimal prompting 
strategy. For instance, the accuracy for Zephyr-7B-Beta on PubMedQA dataset was enhanced from 
18.40% to 59.40% by changing from a short, zero-shot prompt to a long, few-shot prompt with 
random examples. 

Figure 2 summarizes the average best performance of each model by task. We consider each model, 
prompt, and dataset as one combination and report the average per-model score across datasets of 
the same task. Overall, GPT-4 showed the highest average best performance for all tasks, followed 
by Flan-T5-XXL and GPT-3.5-turbo, then Zephyr-7B-Beta and MedLLaMA-13B. For PICO, only zero-
shot experiments were performed and the performance was not ideal – no combination achieved a 
score higher than 34%. Across tasks, MedLLaMA-13B showed lower performance than other LLMs 
except for question-answering tasks. 

Prompting strategies: impact of short versus long instructions 
Figure 3 compares the mean per-task performance of long versus short instructions by model when 
no examples are included in the prompt. There is no clear best strategy across tasks and models. In 
some cases, providing longer prompts dramatically improved the performance of a model. For 
example, for the sentence similarity task, considering the zero-shot scenarios, long instructions 
improved the MedLLaMA-13B model performance by 16.36 points and the Zephyr-7B-Beta model by 
52.27 points; yet for the documentation classification task, more verbose prompts improved 
MedLLaMA-13B performance by 15.63 points but decreased performance of Zephyr-7B-Beta by 
26.00 points. For other models, like Flan-T5-XXL and GPT-4, more verbose instructions tended to 
decrease performance, as observed in four out of six tasks. For the relation extraction task, all 
models saw increased performance from the longer instructions, though the magnitude of the 
improvement varied (Figure 3). For all other tasks, changes in performance were mixed across 
models.  

The mean per-task performance of long versus short instructions by model when using few-shot 
prompting strategies are displayed in Appendix Figure A.1 (random example selection) and Appendix 
Figure A.2 (semantically similar example selection). The effect of longer versus shorter prompts was 
highly dependent on the model and the task. Like zero-shot prompts, performance increased for all 
LLMs when using long prompts for the relation extraction task, regardless of example selection 
method.  
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Prompting strategies: impact of zero-shot versus random few-shot versus semantically 
similar few-shot 
Figure 4 compares the mean per-task performance of providing no examples (i.e., zero-shot), three 
randomly selected examples (i.e., random few-shot), and three semantically similar examples (i.e., 
semantically similar few-shot) in the prompt when short instructions are given. For most tasks and 
models, the introduction of three randomly selected examples resulted in modest changes in 
performance comparing to the zero-shot scenario. Occasionally the differences were more 
substantial; for example, there were large score increases in the question answering task for Zephyr-
7B-Beta and large score decreases in the sentence similarity task for MedLLaMA-13B.  

Providing three semantically similar examples to the short prompt resulted in a more consistent 
pattern of improvement across tasks and models. Only Flan-T5-XXL’s performance was negatively 
affected, and this occurred in 3 of 5 tasks. For all other models, the addition of semantically similar 
examples resulted in improvements that ranged from modest (e.g., the NER task for GPT-3.5-Turbo) 
to substantial (e.g., the sentence similarity task for Zephyr-7B-Beta). 

We observed similar patterns for long prompts scenarios; the mean per-task performance across 
different example selection strategies when using long prompts are compared in Appendix Figure 
A.3. Like the short prompts scenarios, providing random examples in the prompts had a modest and 
occasionally negative impact on the performance, while providing semantically similar examples 
resulted in consistent improvement across all tasks and models.  

Discussion 
This paper evaluates multiple state-of-the-art LLMs using a standard set of benchmarking tasks and 
systematically compares the performance of different prompting strategies. GPT-4 generally had the 
best performance on most tasks and datasets; however, for some tasks, one or more smaller open-
source models performed similarly. Across tasks and models, LLMs made a sizable number or errors, 
indicating that they likely require some form of human oversight and correction to meet adequate 
quality standards for use in clinical research and medical applications. Our results also underscore 
the impact of prompt design on model performance, with the inclusion of semantically similar 
examples generally improving scores; however, there is no clear ‘optimal’ prompting strategy that 
generalizes across tasks and models.  

MedLLaMA-13B, the only model that has been fine-tuned for the biomedical domain, had 
consistently lower performance than nearly all the general-purpose comparator LLMs. One possible 
explanation is that the generalizability of the model might have been reduced after being fine-tuned 
mainly for question-answering task20,21. Enhancing the fine-tuning process for better performance on 
these tasks could be an interesting area to explore but is out of scope for this work. 

For some of the BLURB tasks, even the best general LLM results had substantially lower performance 
than other published models, including PubMedBERT, the baseline model introduced along with 
BLURB benchmark.10 GPT-4’s F1-score trailed PubMedBERT by 15.54 to 31.55 points for the named 
entity recognition datasets and by 24.78 to 41.46 points for relation extraction datasets. However, 
LLMs showed a more competitive performance on question answering datasets, especially 
PubMedQA. Here, both GPT-4 and Flan-T5-XXL outperformed BioLinkBERT-Large, the leading model 
on the BLURB leader board.22 

Our findings suggest that more verbose, detailed prompts may not always be an effective strategy 
for improving LLM performance. When the additional information provided is specific to the task 
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and is not routinely encountered during training, adding information regarding entity definitions for 
NER or how to answer questions for QA was rarely effective, whereas explaining complex relations 
for RE had an appreciable impact. Overall, adding semantically similar examples to prompts has been 
the most consistent way to increase performance across tasks and models. 

Our study has several limitations worth noting. First, the datasets of the BLURB benchmark are 
primarily constructed using publicly available data from abstracts catalogued in PubMed. It is unclear 
how model performance on specific tasks, such as NER, would generalize to excerpts from other 
medical data with substantially differences in format or content. Second, heuristics (detailed in 
Appendix B) were used to normalize model output and enable an automated evaluation of 
performance. This may not account for tasks that models are able to perform in a more 
conversational manner. Finally, there are more sophisticated prompting strategies that may further 
improve model performance but were beyond the scope of this work. For example, exploring the 
utility of chain-of-thoughts23 and automating prompt tuning strategies for biomedical NLP tasks is an 
area of promising future research.24-26 

These findings provide a comprehensive evaluation of the performance of LLMs on a variety of 
biomedical natural language processing tasks. The heterogeneity in results across prompting 
strategies, models, and datasets underscore the importance of evaluating the performance of a 
given model and prompt work for specific tasks. Our result has suggested great potential in adopting 
LLMs to execute biomedical tasks; yet it also showed the gap of only using the current stage LLMs for 
these tasks. Continuing to explore how to enhance the performance of these models in medical 
settings, paired with human expertise and quality control measures, will be important to allow 
responsible innovations with LLMs in the medical field. 
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Tables 
Table 1. Performance of five large language models on each of the Biomedical Language 
Understanding and Reasoning Benchmark (BLURB) tasks according to varying prompting strategies 
(best performing result appears in bold). 

Dataset Prompting strategy Flan-T5-
XXL 

GPT-3.5-
Turbo 

GPT-4 MedLLa
MA-13B 

Zephyr-
7B-Beta 

Named entity recognition tasks (F1 score) 
BC2GM 
(6,325 
examples) 

short, zero-shot 39.11 45.75 51.21 19.31 34.32 
short, few-shot (random) 41.44 47.69 54.63 22.39 38.36 
short, few-shot 
(semantically similar) 

43.15 50.71 54.70 33.24 42.86 

long, zero-shot 34.63 45.56 50.30 29.04 32.84 
long, few-shot (random) 38.17 46.14 53.18 31.03 38.54 
long, few-shot 
(semantically similar) 

41.11 49.21 53.99 41.68 43.79 

BC5-
chemical 
(5,385 
examples)  

short, zero-shot 65.61 60.64 75.06 27.07 49.04 
short, few-shot (random) 66.98 66.41 77.35 24.55 53.16 
short, few-shot 
(semantically similar) 

65.18 62.55 76.20 27.00 57.57 

long, zero-shot 49.74 65.08 76.47 43.57 53.40 
long, few 
-shot (random) 

63.70 62.42 78.23 55.15 54.35 

long, few-shot 
(semantically similar) 

64.31 59.09 77.79 53.88 59.34 

BC5-disease 
(4,424 
examples)  

short, zero-shot 52.16 44.61 60.63 21.84 30.84 
short, few-shot (random) 54.05 48.98 62.15 11.23 36.03 
short, few-shot 
(semantically similar) 

54.67 47.00 56.28 13.88 37.81 

long, zero-shot 34.29 41.50 55.52 27.16 35.52 
long, few-shot (random) 50.93 47.59 63.93 33.94 36.60 
long, few-shot 
(semantically similar) 

52.77 45.89 56.84 27.45 38.26 

JNLPBA 
(8,662 
examples)  

short, zero-shot 35.84 39.12 44.94 15.33 22.74 
short, few-shot (random) 37.99 40.25 45.43 23.85 33.13 
short, few-shot 
(semantically similar) 

40.34 42.01 45.99 27.83 38.76 

long, zero-shot 25.24 38.95 43.55 12.75 24.14 
long, few-shot (random) 33.05 40.69 45.51 32.28 34.49 
long, few-shot 
(semantically similar) 

37.38 42.18 47.55 36.49 39.68 

NCBI-
disease 
(960 
examples)  

short, zero-shot 51.63 47.46 64.67 22.85 30.64 
short, few-shot (random) 51.78 47.96 65.18 13.44 33.57 
short, few-shot 
(semantically similar) 

56.10 49.39 68.97 26.07 42.56 

long, zero-shot 27.58 55.72 58.95 31.41 37.51 
long, few-shot (random) 44.10 47.19 65.98 35.76 37.91 
long, few-shot 
(semantically similar) 

50.87 50.39 70.59 45.88 42.14 

Populations, interventions, comparators, outcomes task (macro F1 score) 
EBM-PICO short, zero-shot 28.42 23.78 33.49 10.80 14.32 
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(16,364 
examples) 

long, zero-shot 24.56 20.46 31.11 10.29 13.36 

Relation extraction tasks (micro F1 score) 
ChemProt 
(15,745 
examples)  

short, zero-shot 14.97 4.17 11.08 7.49 4.24 
short, few-shot (random) 16.08 6.81 16.62 5.40 5.33 
short, few-shot 
(semantically similar) 

17.63 7.53 31.61 12.40 13.31 

long, zero-shot 20.33 31.51 38.25 7.91 19.22 
long, few-shot (random) 19.94 26.46 37.59 8.86 13.07 
long, few-shot 
(semantically similar) 

22.39 21.64 47.42 14.27 19.57 

DDI 
(5,716 
examples)  

short, zero-shot 15.19 35.18 37.70 10.27 14.91 
short, few-shot (random) 16.01 18.26 27.98 8.79 16.06 
short, few-shot 
(semantically similar) 

16.90 34.69 44.66 7.91 18.85 

long, zero-shot 18.96 40.97 34.95 12.48 18.90 
long, few-shot (random) 19.46 20.76 29.12 9.86 18.97 
long, few-shot 
(semantically similar) 

19.75 36.53 40.90 14.27 19.62 

GAD 
(534 
examples) 

short, zero-shot 51.12 51.31 50.00 46.82 49.25 
short, few-shot (random) 50.94 49.06 54.68 48.50 47.00 
short, few-shot 
(semantically similar) 

56.18 51.12 59.55 49.81 62.55 

long, zero-shot 50.19 48.88 51.50 51.69 47.00 
long, few-shot (random) 49.81 47.75 52.81 50.94 47.00 
long, few-shot 
(semantically similar) 

57.49 51.50 59.18 52.25 61.61 

Sentence similarity task (Pearson correlation coefficient) 
BIOSSES 
(20 
examples)  

short, zero-shot 90.88 48.84 89.27 -2.65 15.15 
short, few-shot (random) 65.82 79.80 84.65 -15.00 41.78 
short, few-shot 
(semantically similar) 

75.61 82.70 89.03 28.08 72.31 

long, zero-shot 89.86 72.69 80.53 13.71 67.42 
long, few-shot (random) 90.27 93.02 87.08 -30.86 56.79 
long, few-shot 
(semantically similar) 

91.20 92.20 93.18 10.45 77.04 

Document classification task (micro F1 score) 
HoC 
(371 
examples)  

short, zero-shot 49.81 54.10 62.52 0.79 44.11 
short, few-shot (random) 50.73 55.09 62.78 24.16 42.32 
short, few-shot 
(semantically similar) 

47.69 57.57 66.81 42.18 51.74 

long, zero-shot 43.33 43.18 54.45 16.42 18.11 
long, few-shot (random) 39.19 45.44 56.24 21.69 43.29 
long, few-shot 
(semantically similar) 

51.36 44.79 60.88 49.65 47.97 

Question answering tasks (accuracy) 
BioASQ 
(140 
examples) 

short, zero-shot 60.00 77.14 83.57 67.14 60.71 
short, few-shot (random) 60.00 80.71 82.86 66.43 61.43 
short, few-shot 
(semantically similar) 

61.43 81.43 81.43 69.29 64.29 

long, zero-shot 62.86 70.00 85.71 67.14 59.29 
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long, few-shot (random) 64.29 81.43 82.14 67.86 57.14 
long, few-shot 
(semantically similar) 

61.43 78.57 84.29 65.71 60.00 

PubMedQA 
(500 
examples)  

short, zero-shot 76.40 63.40 67.40 55.40 18.40 
short, few-shot (random) 76.60 58.40 72.60 N/Aa 56.80 
short, few-shot 
(semantically similar) 

N/Aa 63.40 72.20 N/Aa 56.40 

long, zero-shot 76.80 63.00 70.60 44.20 21.00 
long, few-shot (random) 76.40 56.80 74.20 N/Aa 59.40 
long, few-shot 
(semantically similar) 

N/Aa 60.40 75.40 N/Aa 58.00 

a Note: Prompt length exceeded the maximum context size of models for the set-ups of all the few-
shot experiments for EBM-PICO dataset and the few-shot experiments for PubMedQA with 
MedLLaMA-13B and Flan-T5-XXL; therefore we did not conduct the experiments for these set-ups, 
resulting in the N/A values in the table. 
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Figures 
Figure 1. An illustration of the methodology used for this evaluation of the Biomedical Language 
Understanding and Reasoning Benchmark (BLURB) tasks  

 

 

Figure 2. Normalized mean of task-specific scores for the best-performing prompt for each large 
language model (LLM) for the Biomedical Language Understanding and Reasoning Benchmark 
(BLURB)  
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Figure 3. Mean performance of each large language model (LLM) for each task in the Biomedical 
Language Understanding and Reasoning Benchmark (BLURB) using short style versus long style zero-
shot (i.e., no example provided to the model) prompts (see Appendix A for more details on prompt 
styles and templates). 

 

Figure 4. Mean performance of each large language model (LLM) for each task in the Biomedical 
Language Understanding and Reasoning Benchmark (BLURB) using different example selection 
methods: short, zero-shot: short prompt style, no example provided to the model; short, few-shot 
(random): short prompt style, three randomly selected examples provided to the model; short, few-
shot (semantically similar): short prompt style, three examples selected based on semantic similarity 
provided to the model (see Appendix A for more details on prompt styles and templates).  
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