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Abstract 

Type 2 Diabetes Mellitus (T2DM) is increasingly prevalent and significantly impacts patients' lives. 

However, the phenotypic and genetic heterogeneity of the preclinical stage of T2DM, along with the 

subsequent effects on various clinical outcomes, remain unclear, impeding progress in disease screening 

and prevention. To address this gap, we employed a robust machine learning algorithm (Subtype and 

Stage Inference, SuStaIn) with cross-sectional clinical data from the UK Biobank (20,305 

preclinical-T2DM participants and 20,305 controls) to identify underlying subtypes and their 

progression trajectories for preclinical-T2DM. Our analysis revealed one subtype distinguished by 

elevated circulating leptin levels and decreased leptin receptor levels, coupled with increased BMI, 

diminished lipid metabolism, and heightened susceptibility to psychiatric conditions such as anxiety 

disorder, depression disorder, and bipolar disorder. Conversely, individuals in the second subtype 

manifested typical abnormalities in glucose metabolism, including rising glucose and HbA1c levels, 

with observed correlations with neurodegenerative disorders. Over ten-year follow-up observations of 

these individuals reveal differential deterioration in brain and heart organs, and statistically significant 

difference in disease risk and clinical outcomes between the two subtypes. Our findings indicate a 

heterogenous pathobiological basis underlying the progression of preclinical-T2DM, with clinical 

implications for understanding human health from a multiorgan perspective, and improving disease risk 

screening, prediction, and prevention efforts. 

 
 

Introduction 
Type 2 Diabetes Mellitus (T2DM) represents a significant global public health challenge, with its 

prevalence steadily increasing. In 2021, it affected 537 million adults worldwide 1. Projections from the 

International Diabetes Federation indicate that by 2030, this number will rise to 643 million, reaching a 

staggering 783 million by 2045 1,2. The phase that clinical symptoms remain absent but biological 

irregularities hint at the potential development of T2DM, called as preclinical stage of Type 2 Diabetes 

(hereafter, preclinical-T2DM), play an important role in the developing into T2DM 3. Large cohort 
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studies, such as the UK Biobank (UKB), offer a valuable opportunity to investigate this pivotal phase. 

Within these cohorts, individuals are identified as being at risk of T2DM development and are 

monitored for progression during follow-up. Understanding the heterogeneity of preclinical-Type 2 

Diabetes will be beneficial to the precision prevention and early diagnosis of heterogeneous T2DM. 

The heterogeneity and organ-specific impacts of preclinical-T2DM remain poorly understood, though 

these related with T2DM have been widely recognized 4,5. First, there is less knowledge regarding how 

preclinical-T2DM progresses over time before the onset of T2DM. Second, it remains unclear how the 

phenotypic and genetic etiology of preclinical-T2DM vary. Third, the magnitude and extent of 

interindividual differences in progression trajectories of preclinical-T2DM and their alterations on 

clinical outcomes, such as cardiovascular, renal, ophthalmological, neurological, and cognitive 

functions, remain undetermined. Existing studies have clustered prediabetes into subtypes regardless the 

progressive stage of prediabetes and explored their associations with T2DM as well as its complications 
6, but such approaches fail to capture the longitudinal heterogeneity of preclinical-T2DM. Conversely, 

the progressive heterogeneity is a hallmark of T2DM, which could be sourced from the preclinical stage 

of the T2DM continuum. 

Addressing this challenge can be achieved by leveraging machine learning models that are increasingly 

used in biomedical research 7. One such model, the subtype and stage inference (SuStaIn) model 8, 

originally designed to capture disease progression patterns in chronic conditions, facilitates longitudinal 

inference from cross-sectional data by automatically identifying distinct spatiotemporal trajectories of 

cumulative pathological alterations shown by measured biomarkers 8–13. In this study, we employed 

SuStaIn to decipher heterogenous progressive patterns of preclinical-T2DM, offering valuable insights 

into disease onset and progression. This aids in the establishment of quantitative metrics for T2DM 

screening and prognostication. By identifying the disease pathways and subtypes of preclinical-T2DM, 

and exploring systematic changes in the brain, heart, and other clinical outcomes linked to 

preclinical-T2DM, we can enhance our ability to precisely assess it in clinical practice. This not only 

benefits individuals with preclinical-T2DM but also contributes to better health outcomes, reducing the 

risk of neuropathy, cognitive dysfunction, and cardiovascular issues, etc 14. 

In the present study, we embarked on a comprehensive investigation into the heterogenous progression 

of preclinical-T2DM and its implications for clinical outcomes using a multi-faceted research approach 

(Fig. 1). First, we identified 20,305 preclinical-T2DM subjects with a balanced 20,305 control group 

from UKB for analysis (Fig. 1a). Next, we utilized screened 18 preclinical-T2DM-associated clinical 

indexes and applied SuStaIn to stratify preclinical-T2DM subjects into distinct subtypes and stages, 

leading to two subtypes with distinct progression trajectories (Fig. 1b). Subsequently, we analysed 

phenotypic associations between the two subtypes and a variety of clinical outcomes, including cardiac 

diseases, kidney diseases, brain disorders, and cognitive functions as well as molecular phenotypes, 

proteins and metabolites (Fig. 1c). Furthermore, we identified significantly subtype-specific genetic 

variants associated with the two preclinical-T2DM subtypes utilizing Genome-Wide Association 

Studies (GWAS). Expending on the findings from GWAS, we investigated the genetic relationships 

between the two subtypes and clinical outcomes via genetic correlation analysis, genetic colocalization 

and Mendelian Randomization (MR) analysis (Fig. 1c). By exploring the genetic and molecular 

landscape of preclinical-T2DM subtypes and their impact on clinical outcomes, we highlighted how 

underlying phenotypic and genetic variation drives the subtypes and stages of preclinical-T2DM. These 
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insights improve our understandings of the complex interplay between preclinical-T2DM-associated 

metabolic disorders and human health. Our findings pave the way for personalized medicine approaches 

in the prevention and management of T2DM and its effects on subsequent clinical outcomes.  

 
Fig. 1: Overview of the study design. a. Flow chart depicting the inclusion and exclusion criteria for data 

selection from the UK Biobank (UKB). We selected subjects with preclinical-T2DM, defined as the phase 

that preceding the onset of T2DM, along with a corresponding balanced control group from the UKB for 

analysis. b. Application of the SuStaIn model for identification of subtypes and stages for preclinical-T2DM. 
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The model identified two subtypes, Subtype 1 (Leptin-sensitive), and Subtype 2 (Diabetes-vanilla) with two 

distinct progression trajectories, using preclinical-T2DM-associated 18 clinical biomarkers. c. Associations 

with outcomes. We examined the associations of the identified subtypes with a variety of outcomes using 

multiple analytical methods, including phenotypic associations, long-term imaging-derived phenotypes 

association analysis, genetic associations, Mendelian randomization, and prediction analysis. 

 

Results 
Identification of robust subtype and stages for preclinical-T2DM 

Two distinct subtypes of preclinical-T2DM were identified with 18 biomarkers of 40,610 individuals in 

UKB using the SuStaIn algorithm (Fig. 2a). We selected preclinical-T2DM individuals, defined at the 

individuals at the cohort baseline who will have T2DM in the follow-up based on the inclusion and 

exclusion criteria (Fig. 1a), resulting in 20,305 preclinical-T2DM and 20,305 propensity score matched 

controls. Due to the computation requirements, we selected 18 out of 62 biomarkers from the baseline 

UKB dataset due to their significance for preclinical-T2DM, as determined by larger effect sizes in 

univariable logistic regression (Fig. 2a and Table 1). Using a ten-fold cross-validation approach, we 

determined the most robust result, revealing two distinct subtypes, Subtype 1 (S1) and Subtype 2 (S2), 

with 36 subtype-specific stages (S1, N= 9,402, mean age 59 years, 52% female, and S2, N = 10,903, 

mean age 60 years, 37% female). This distinction highlights two distinct clinical and pathophysiological 

trajectories for preclinical-T2DM (Fig. 2a-b). Moreover, cross-validation demonstrated a high 

consistency in the identification of subtypes for each preclinical-T2DM participants, with the majority 

of subjects (96.18% on average) consistently assigned to the same group across validation folds 

(Supplementary Fig. 2). These findings further confirm the stability and reproductivity of the results 

obtained from SuStaIn.  

Two distinct metabolic trajectories of preclinical-T2DM  

The two subtypes of preclinical-T2DM exhibited significant differences in clinical biomarkers (Fig. 2d). 

Compared to S2, S1 exhibited elevated levels of Body Mass Index (BMI), total cholesterol (CHOL), 

urate, and low-density lipoprotein cholesterol (LDLc) (Table 1, Figs. 2c, g, h, and Supplementary Figs 

12, 14). These heightened biomarkers may suggest a correlation with more severe metabolic 

dysregulation in lipid metabolism for S1. Additionally, S1 demonstrated higher levels in inflammatory 

biomarkers, including reticulocyte count (RET), immature reticulocyte fraction (IRF), C-reactive 

protein (CRP), and lymphocytes (LYM) (Figs. 2c, j, and Supplementary Figs 7-8, 13, 15), potentially 

indicating a more pronounced inflammatory activity contributing to the progression of S1. In contrast, 

S2 exhibited elevated levels of glucose as well as HbA1c (Fig. 2c). Notably, the rates of progression for 

glucose and HbA1c were significantly faster in S2 compared to S1 (Fig. 2d, e-f), suggesting a more 

rapid decline in glycaemic control. Moreover, S1 presented with lower levels of Vitamin D (Fig. 2c and 

Table 1). Studies have reported that vitamin D supplementation among individuals with prediabetes can 

mitigate the risk of developing T2DM and facilitate the transition from prediabetes to normoglycemia 15. 

Furthermore, it was observed that S2 exhibited a more rapid progression to T2DM through stages, with 

an average progression time of 6.5 years, compared to the 7.6 years observed for S1 (Fig. 2c, Table 1, 

and Supplementary Fig. 4). This observation suggests that although both subtypes were in the early 

stage of T2DM, S2 may represent a more aggressive progression to T2DM, possibly due to faster 

deterioration of glycaemic control. These findings underscore the heterogeneity within 
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preclinical-T2DM and suggest that the two subtypes may represent distinct pathological progressions of 

T2DM. 

 

Fig. 2: Identification of subtypes and stages for preclinical-T2DM. a. An overview of the two distinct 
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preclinical-T2DM subtypes identified by the SuStaIn algorithm. b. Positional variance diagrams of two 

distinct metabolic trajectories obtained from SuStaIn. The diagrams visualize the cumulative probability of 

each biomarker reaching a specific z-score, depicted in different colours. Red indicates mild effects (z-score 

= 1, i.e., 1 standard deviation from the healthy control average) and blue indicates severe effects (z-score = 2). 

The colour density represents the proportion of the posterior distribution where events (y-axis) occur at 

specific positions in the sequence (x-axis); f represents the proportion of individuals assigned to each 

phenotype. c. Comparison of time to T2DM diagnosis for the two subtypes. d. Comparison of the mean 

z-scores of 18 selected clinical biomarkers across the two identified subtypes, where biomarkers were 

z-scored relative to the control group, adjusting for age, sex, smoking status, alcohol drinking status, income 

level, and educational attainment. A higher z-score indicates a greater deviation from the control group norm. 

e-j. Progressions of various biomarkers across SuStaIn stages. We illustrated 6 selected biomarkers with 

remarkably distinct progression on the two subtypes. Progressions of other biomarkers were presented in 

Supplementary Figs. 5-16. R is the Pearson’s correlation between biomarkers and SuStaIn stages for each 

subtype. 

 

Table 1. Basic characteristics and 18 clinical biomarkers of the two subtypes of preclinical-T2DM. 

Abnormal values of clinical indexes are marked in red colour. 

Biomarker Full Name Units 
Normal 
range 

S1 

(n = 9,402) 

S2 

(n = 10,903) 
P-value 

Age Age years / 58.58 60.48 4.95E-80 

Sex (Female %) Sex % / 48.60 37.18 6.58E-61 

Time to diabetes Time to diabetes diagnosis years / 7.61 6.45 1.33E-121 

HbA1c Hemoglobin A1c mmol/mol  < 42 39.33 44.25↑ < 2.23E-308 

Glucose Glucose mmol/L 3.9 ~ 5.6 5.15 5.96↑ < 2.23E-308 

TyG Triglycerides-glucose index / 6.98 ~ 10.71 9.18 8.95 3.02E-215 

BMI Body mass index / 18.5 ~ 24.9 32.42↑ 30.16↑ 6.38E-206 

HDLc High-density lipoprotein cholesterol mmol/L > 1.6 1.23↓ 1.26↓ 3.03E-09 

LDLc Low-density lipoprotein cholesterol mmol/L < 3 3.79↑ 2.89 < 2.23E-308 

TG Triglycerides mmol/L < 1.69 2.62↑ 1.85↑ < 2.23E-308 

CHOL Cholesterol mmol/L < 5.17 5.90↑ 4.74 < 2.23E-308 

ALT Alanine aminotransferase U/L 7 ~ 56 29.95 26.82 2.74E-61 

HLS Retic High light scatter reticulocyte count 1012 cells/Litre / 0.026 0.021 6.42E-276 

RET Reticulocyte count 1012 cells/Litre / 0.078 0.066 6.51E-251 

IRF Immature reticulocyte fraction / 0.16 ~ 0.24 0.32↑ 0.31↑ 6.06E-93 

WBC White blood cell count 109 cells/Litre 4 ~ 11 7.79 7.34 3.97E-66 

CRP C-reactive protein mg/L < 10 4.26 2.70 3.18E-209 

LYM Lymphocyte count 109 cells/Litre / 2.22 2.07 3.69E-58 

ApoA Apolipoprotein A g/L 1.02 ~ 2.0 1.43 1.44 0.40 

Urate Urate umol/L 
M: 200 ~ 

420, F: 140 ~ 
360 

366.16 335.35 3.29E-170 

Vitamin D Vitamin D nmol/L 30 ~ 50 39.15 47.75 4.18E-211 
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Fig. 3: Phenotypic associations with outcomes. a. The odds ratios (ORs) of associations between 

preclinical-T2DM subtypes and 22 diseases, including 12 brain disorders, 4 cardiac disorders, 3 renal 

disorders, and 3 other related disorders. The significance of each association was calculated using a t-test, 

with “*” indicating significant differences after adjusting for multi-testing by Benjamini-Hochberg 

procedure to control the false discovery rate (FDR) at the 5% level (FDR-p < 0.05). b-g. Phenotypic 

associations between subtypes and 6 cognitive functions, which were z-scored relative to the control group 

and adjusted for sex, age, smoking status, alcohol drinking status, income level, and educational attainment. 

Associations were measured using univariate analysis, where “*” indicates a significant association after 

FDR correction (FDR-p < 0.05). h. Comparison of proteomic expressions between controls and the two 

subtypes. Proteins from six tissues: adipose, artery, brain, heart, kidney, and liver, were analysed. Log fold 

change (LogFC) was used to identify differences in proteomic expressions across the three groups: Controls, 

S1 and S2. Significant differences were assessed using one-way ANOVA tests with FDR-p < 0.05. I-j. 

Progressions of the abundance of leptin (LEP) and leptin receptor (LEPR) across SuStaIn stages. 

Abbreviations for diseases: AD, Alzheimer’s disease; AN, anorexia nervosa; ANX, anxiety disorder; BD, 

bipolar disorder; DEP, depression disorder; EP, epilepsy; MS, multiple sclerosis; OCD, obsessive compulsive 

disorder; PD, Parkinson’s disease; SCZ, schizophrenia; SD, sleep disorder; STK, stroke; HTN, hypertension; 

HF, heart failure; IHD, ischemic heart disease; CA, cardiac arrhythmias; AKF, acute kidney failure; CKD, 

chronic kidney disease; GN, glomerulus nephritis; RP, diabetic retinopathy. 

 

Phenotypic associations of preclinical-T2DM subtypes on outcomes 

We examined the phenotypic association between the two subtypes and 22 types of diseases, grouping 

into 12 brain, 4 cardiovascular, 3 renal, and 3 other related disorders (Fig. 3a and Supplementary Table 

3), to explore clinical significance of the two preclinical-T2DM subtypes. We discovered both subtypes 

of preclinical-T2DM are associated with almost all the cardiovascular diseases, renal diseases, asthma, 

obesity, and diabetic retinopathy (Fig. 3a). Notably, S1 was associated with a significantly higher risk of 

obesity compared to S2 (ORs1 = 6.02, ps1 < 2.23E-308, and ORs2 = 3.02, ps2 = 6.39E-219). We also 

observed significant disparities in brain disorders between two subtypes. Compared with S2, S1 showed 

a significantly higher risk of psychiatric disorders, including anxiety disorder (ORs1 = 2.17, ps1 = 

5.25E-72, and ORs2 = 1.49, and ps2 = 2.58E-18), bipolar disorder (ORs1 = 3.33, ps1 = 7.21E-16, and 

ORs2= 1.98, ps2 = 5.99E-05), depression disorder (ORs1 = 2.33, ps1 = 1.14E-128, and ORs2 = 1.55, ps2 = 

1.65E-32), obsessive compulsive disorder (ORs1 = 2.57, ps1= 0.0069, ORs2 = 1.40, ps2 = 0.0080) and 

sleep disorder (ORs1= 4.29, ps1 = 2.01E-153, and ORs2 = 2.86, ps2 = 2.81E-70). S2, in contrast, was more 

strongly associated with neurodegenerative disorders, including Alzheimer’s disease (ORs1= 1.06, ps1 = 

0.65, and ORs2 = 1.51, ps2 = 1.11E-04), Parkinson’s disease (ORs1= 0.92, ps1 = 0.53, and ORs2 = 1.48, ps2 

= 4.30E-05), and a more increased risk of stroke (ORs1= 1.62, ps1 = 5.52E-10, and ORs2 = 2.08, ps2 = 

3.37E-26). These associations highlight the intricate relationship between preclinical-T2DM subtypes 

and a wide array of health conditions, shedding light on potential shared mechanism-related pathways 

and comorbidities. 

We also investigated the associations between two subtypes and 6 cognitive functions tested in the UKB. 

Both subtypes were associated with declines across several cognitive aspects, including numeric 

memory, symbol digit substitution, reaction time, fluid intelligence and reasoning, and trail making test 

performance (Figs. 3b-g). Specifically, S1 showed a more pronounced effect on executive functioning, 

with greater impairments in symbol digit substitution (Fig. 3c, βs1 = -0.22, ps1 = 4.84E-07, and βs2 = -0.18, 
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ps2 = 2.07E-05) and Trail making tests (Fig. 3g, βs1= 0.14, ps1 = 0.0044, and βs2 = 0.10, ps2 = 0.014). 

Conversely, S2 showed a more substantial impact on numeric memory (Fig. 3b, βs1= -0.16, ps1 = 

4.84E-07, and βs2 = -0.20, ps2 = 6.63E-11) and reaction time (Fig. 3d, βs1= 0.07, ps1 = 3.24E-08, and βs2 = 

0.10, ps2 = 1.93E-15), involving the ability of memorising and neural processing speed and response. 

We evaluated the proteomic phenotypes with two subtypes of preclinical-T2DM. In the proteomic 

analysis, we found heart-specific and kidney-specific proteins (NTproBNP, NPPB and REN) were 

highly expressed in S2, while brain-specific protein, OXT, are highly expressed in S1 (Fig. 3h). 

Fibroblast Growth Factor 21 (FGF21) is upregulated in both subtypes, with the highest expression 

observed in S1 compared to healthy controls. FGF21, a pivotal player in the regulation of energy 

balance and glucose as well as lipid homeostasis, has gathered attention as a therapeutic target for 

T2DM and obesity. Clinical trials utilizing FGF21 analogues and mimetics have shown promise in 

patients with obesity and T2DM 16, suggesting a potential physiological response of FGF21 to the 

preclinical status of T2DM. Leptin (LEP) exhibits a similar expression pattern to FGF21, indicating a 

potential association with the preclinical state of T2DM (Figs. 3h-i). Conversely, the expression patterns 

of Leptin Receptor (LEPR) across the three groups are dramatically opposite, suggesting a possible 

impairment in leptin receptor signalling (Figs. 3h-j). This observation aligns with studies utilizing leptin 

receptor-deficient db/db mice as models for T2DM 17. Elevated circulating leptin concentrations, as 

observed in individuals with obesity, are often attributed to leptin resistance 18,19, potentially implicating 

S1 is related with leptin resistance. Leptin-resistant syndromes are known to contribute to severe insulin 

resistance and diabetes 20. Furthermore, Insulin-like Growth Factor Binding Proteins 1 and 2 (IGFBP1 

and IGFBP2) as well as β-klotho (KLB) exhibit decreased expression levels in S1 compared to healthy 

controls (Fig. 3h). Reduced concentrations of circulating IGFBP1 and IGFBP2 have been linked to 

insulin resistance and diabetes 21, while KLB, acting as a cell-surface glucose sensor and co-receptor for 

FGF21, holds promise as a therapeutic target for T2DM by modulating glucose-stimulated insulin 

release in pancreatic β-cells. As the ratio of triglycerides to high-density lipoprotein cholesterol (TG: 

HDLc) and the metabolic score for insulin resistance (METS-IR) serve as readily measurable markers of 

insulin resistance, our findings reveal that S1 exhibits significantly elevated TG: HDLc and METS-IR 

levels compared to S2 and the healthy control group. Significantly higher IL1RN is observed on S1, 

compared with S2 and controls. Circulating IL-1RA (encoded by IL1RN), an endogenous inhibitor of 

proinflammatory IL-1β, may be protective against the development of insulin resistance 22.  

Moreover, we evaluated the associations between metabolomic phenotypes and two subtypes of 

preclinical-T2DM. We observed significantly higher levels of lipoproteins, such as large VLDL, very 

large VLDL, chylomicrons, and extremely large VLDL, in S1 compared to S2, and the healthy control 

group (Supplementary Fig. 17). Previous studies have also reported positive associations of T2DM with 

lipoprotein subfractions in large VLDL, very large VLDL, and chylomicrons and extremely large VLDL 
23. Our findings suggested that these associations tended to be particularly pronounced in S1. 

Furthermore, we found that levels of large HDL, fatty acid ratios, and chylomicrons and extremely large 

VLDL ratios are lowest in S1 among the three groups. This indicates an elevated risk of cardiovascular 

disease for S1 individuals with preclinical-T2DM. 
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Fig. 4: Long-term associations with the brain and the heart. a-d. Long-term effects of preclinical-T2DM 

subtypes on the selected image derived phenotypes (IDPs) from brain MRIs. e-h. Long-term effects of 

preclinical-T2DM subtypes on the selected IDPs from CMRs. Subjects for each subtype were categorized 

into three groups based on imaging acquisition intervals: 4-7 years, 7-10 years, and more than 10 years, to 

analyse temporal changes in brain and heart structures and functions. We illustrated selected IDPs with most 
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pronounced effect associated with subtypes. Long-term associations with other IDPs were presented in 

Supplementary Figs. 28-33. The IDP values were z-scored relative to the control group and adjusted for sex, 

age, smoking status, alcohol drinking status, income level, and educational attainment. The colormap 

illustrates the mean z-scores of the IDPs for each time interval, where a red colour indicates larger IDP values, 

and a blue colour indicates smaller IDP values. 

 

Long-term effects of preclinical-T2DM subtypes on the brain and the heart 

The analysis of long-term effects on brain and heart structure and function across the two subtypes 

unveiled distinct outcomes in both organs (Fig. 4). Subtypes were grouped into three categories based on 

the intervals of imaging acquisition following their initial assessment at the UK Biobank: 4-7 years, 

7-10 years, and more than 10 years, ensuring a balanced sample size per group. In terms of MRI-based 

brain structure, S1 exhibited significant atrophy in volumes of brain regions and cortical thickness over 

time, particularly in the left hippocampus, right accumbens, left thalamus, and putamen (Figs. 4a, c, and 

Supplementary Figs. 18, 20). Conversely, S2 displayed notable atrophy in brain region volumes and 

areas of the right paracentral, left fusiform, and superior frontal regions (Figs. 4a, b, and Supplementary 

Figs. 18-19). Regarding white matter integrity and microstructural organization, both subtypes showed 

significant decreases in mean white matter fractional anisotropy (FA) in regions such as the middle 

cerebellar peduncle, cerebral peduncle, and fornix regions (Figs. 4d and Supplementary Fig 21). S1 also 

demonstrated marked reductions in the pontine crossing tract and right external capsule, while S2 

displayed significant decreases in the splenium of the corpus callosum and the right retrolenticular part 

of the internal capsule (Fig. 4d). 

Concerning cardiac magnetic resonance (CMR) traits, both S1 and S2 demonstrated an increase in 

ejection fraction in the left ventricle (LV) and right ventricle (RV), alongside a significant decrease in 

ascending aorta distensibility (Fig. 4e-f). Additionally, S2 exhibited a mild increase in ejection fraction 

in the left atrium (LA) (Fig. 4e). Moreover, S1 displayed a marked decrease in circumferential strain in 

the LV American Heart Association (AHA) segments 7, 9, 11, 14, and 16 (Fig. 4h), while S2 exhibited a 

notable reduction in myocardial wall thickness in LV AHA segments 8, 13, 14, and 15 (Fig. 4g). 
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Fig. 5: Genetic profiles and associations for the preclinical-T2DM subtypes with outcomes. a. The 

Miami and Q-Q plot of GWAS results for the two preclinical-T2DM subtypes. The dashed line indicated the 

significant level (p < 5E-08). Regions in a sidling window size of 500 kilobase (kb) around the lead SNPs 

were highlighted in the plot. Genes annotated for lead SNPs were marked in each region on the GWAS plot. 

The genomic control lambda (λGC) on the QQ-plot is used to assess the degree of inflation in test statistics due 

to potential population stratification. A value of λGC close to 1 indicates no significant bias from population 

stratification. b. Genetic correlations between subtypes and 22 diseases. Results that passed the significant 

threshold adjusted by Benjamini-Hochberg procedure to control the FDR at the 5% level (FDR-p < 0.05) 

were marked in the plot. c-e. Significant colocalization results between subtypes and diseases (PPH4 > 0.75). 

f. Genetic causal effects estimated by MR analyses of subtypes on 22 diseases. we employed the inverse 

variance weighted (IVW) method for S1 with 2 SNPs as instrument variables (IV), and another four MR 

methods, MR egger (Egger), MR-RAPS (RAPS), weighted median (WMed) and weighted mode (WMod) for 

S2 with 18 SNPs as IVs. Results that pass the significant threshold adjusted by Benjamini-Hochberg 

procedure to control the FDR at the 5% level (FDR-p < 0.05) were marked with asterisks. Abbreviations for 

diseases: AD, Alzheimer’s disease; AN, anorexia nervosa; ANX, anxiety disorder; BD, bipolar disorder; DEP, 

depression disorder; EP, epilepsy; MS, multiple sclerosis; OCD, obsessive compulsive disorder; PD, 

Parkinson’s disease; SCZ, schizophrenia; SD, sleep disorder; STK, stroke; HTN, hypertension; HF, heart 

failure; IHD, ischemic heart disease; CA, cardiac arrhythmias; AKF, acute kidney failure; CKD, chronic 

kidney disease; GN, glomerulus nephritis; RP, diabetic retinopathy.  

 

GWAS on the two preclinical-T2DM subtypes 

We investigated the subtype-specific associated SNPs for the two preclinical-T2DM subtypes using 

GWAS, respectively, identifying 2 genomic risk loci with 2 independent lead SNPs for S1, and 15 

genomic risk loci with 19 lead SNPs for S2 (Fig. 5a, and Supplementary Tables 5-6). The SNP-based 

heritability estimates for the two subtypes are 0.14 and 0.17, respectively (Supplementary Fig 34). 

Notably, the GWAS results for the subtypes are weakly correlated (Pearson correlation coefficient 0.34, 

p < 2.23E-308) though significantly, indicating a minimal correspondence with the presence of some 

shared genetic variants while also underscoring substantial differences (Supplementary Fig. 35). The 

gene annotation of these lead SNPs reveals that there is obvious difference between the two subtypes. A 

S1-assoicated significant SNP at 3q27.2, rs66513933, is in the intron of IGF2BP2, the high 

concentration of which is strongly associated with low type 2 diabetes risk 24. Another risk loci of S1 at 

10q25.2-q25.3 with 3 independent significant SNPs, are in the intron of TCF7L2, the most potent locus 

for T2DM 25. Almost all the genes associated with the lead SNPs of S2 are reported associated with 

T2DM before, including IGF2BP2 and TCF7L2. For example, GCKR is a hepatocyte-specific inhibitor 

of the glucose-metabolizing enzyme glucokinase 26; IRS1 plays a critical role in insulin-signalling 

pathways 27; A paralog of ELF5A2 is associated with T2DM 28; CDKAL1 are involved in misfolded 

insulin, leading to oxidative and ER stress in the pancreatic β-cells 29; DGKB is causally associated with 

T2DM 30; JAZF1 directly and negatively regulates insulin gene transcription 31; a loss-of-function of 

SLC30A8 protects against T2DM 32; HHEX are repeatedly associated with T2DM 33; KCNQ1 is highly 

associate with the risk of T2DM 34; ARAP1 is located near risk alleles for T2DM 35; a variant of CCND2 

could reduce risk of T2DM by half 36; HMG20A is a key for the functional maturity of islet β cell 37. The 

consistence between our results and these reported associations indicates the reliably of our GWASs 

results for the two subtypes. Meanwhile, the large difference between the GWASs of S1 and S2 showed 
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the different genetic sources of the two subtypes, suggesting the rationality of our subtyping results with 

SuStaIn, which forms a foundation for the genetic association with the clinical outcomes. 

Genetic associations between preclinical-T2DM subtypes and outcomes 

We examined the genetic correlation between the two preclinical-T2DM subtypes and a series of disease 

outcomes using linkage disequilibrium score regression (LDSC). Both subtypes showed significant 

genetic associations with a range of brain disorders (for example, depression disorder and stroke), 

cardiac disorders (hypotension, heart failure, ischemic heart disease and cardiac arrhythmias), renal 

disorders (acute kidney failure and chronic kidney disease) and other disorders (obesity and diabetic 

retinopathy) (Fig. 5b). Notably, both subtypes exhibited strong genetic correlations with hypertension 

(rgs1 = 0.44, ps1 = 4.69E-20, and rgs2 = 0.39, ps2 = 1.08E-19), chronic kidney disease (rgs1= 0.57, ps1 = 

1.94E-05, and rgs2 = 0.40, ps2 = 0.00030), and obesity (rgs1= 0.50, ps1 = 1.65E-17, and rgs2 = 0.44, ps2 = 

2.13E-15), suggesting a shared genetic predisposition that may increase the risk of these diseases (Fig. 

5b). Alzheimer’s disease, anxiety disorder, schizophrenia, anorexia nervosa and acute kidney failure are 

significantly associated with S1, but not with S2. Particularly, acute kidney failure was significantly 

association with only S1 (rgs1= 0.56, ps1 = 0.0019, and rgs2 = 0.27, ps2 = 0.052) and chronic kidney 

disease has slightly higher genetic correlation with S1 than S2, suggesting a distinct genetic component 

influencing renal outcomes (Fig. 5b). Furthermore, S2 showed a significantly genetic correlation with 

epilepsy compared to S1 (Fig. 5b). These subtype-specific genetic association of different diseases 

reveals different genetic risk on diabetes-related complications. 

For cognitive traits, we observed strong correlations between fluid intelligence and reasoning for both 

subtypes (rgs1 = -0.23, ps1 = 5.87E-06, and rgs2 = -0.16, ps2 = 0.00020), along with a significant 

correlation between numeric memory and S1 (rgs1 = -0.23, ps1 = 0.013) (Supplementary Fig. 36). 

Moreover, in terms of IDPs from brain and heart, we also observed significant genetic correlations 

between S1 and RV end-diastolic volume (RVDEV, rgs1 = -0.30, ps1 = 0.0002), and RV end-systolic 

volume (RVESV, rgs1 = -0.24, ps1 = 0.0011) (Supplementary Data. 14). Likewise, associations were 

noted between S2 and LV myocardial-wall thickness AHA9 (rgs2 = 0.20, ps2 = 0.0011) and AHA10 (rgs2 

= 0.24, ps2 = 7.33E-05) (Supplementary Data. 14).  

Next, we identified the shared causal variant between the two subtypes and outcomes via Bayesian 

colocalization analyses. Evidence of colocalization was defined as having a posterior probability of the 

shared causal variant hypothesis (PPH4) > 0.75. Our results revealed that S1 has significant 

colocalization with bipolar disorder at SNP rs9834970 (Fig. 5c, PPH4 = 0.89) and with chronic kidney 

disease at SNP rs77924615 (Fig. 5d, PPH4 = 1.0). Moreover, we identified significant colocalization for 

S2 with asthma at SNP rs7903146 (Fig. 5e, PPH4 = 1.0). These findings underscore both the shared 

genetic predisposition between the two subtypes and the existence of distinct genetic association 

contributing to the intricate relationship between subtypes and these outcomes. These findings from 

genetic associations further indicate the genetic distinctions between the subtypes in relation to different 

diseases, highlighting the importance of considering subtype-specific genetic profiles in understanding 

the pathogenesis for these complex conditions. 
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Fig. 6: Survival Curves for diseases progression grouping by two preclinical-T2DM subtypes. We 

illustrated 12 selected diseases that demonstrated significantly distinct progression rates over the years 

among the three groups, S1, S2, and the control group (log-rank p-value < 0.05). Survival Curves of other 

diseases were illustrated in Supplementary Figs 37-47. a-f, Diseases that showed a faster progression rate in 

S1 compared to S2 and the control group. g-l, Diseases that showed a faster progression rate in S2 compared 

to S1 and the control group. The two tables below the survival curves present the number of subjects 

currently at risk (not progressed to the specific disease or censored) and the cumulative number of subjects 

who had an event (progressed to the specific disease) for each group, corresponding to the years on the 

x-axis.  

 

Mendelian Randomization for the preclinical-T2DM subtypes with disease outcomes  

In light of the robust associations uncovered through phenotypic and genetic analyses, we expanded our 

inquiry using two-sample MR analyses to explore the underlying causal link between preclinical-T2DM 

subtypes and disease outcomes. By leveraging instrumental variables (IVs) derived from genome-wide 

association study (GWAS) summaries of the two subtypes, we identified 2 IVs for S1 and 18 IVs for S2 

(Supplementary Tables 8-9). Notably, a lead SNP, rs780094 on chromosome 2 for S2 was excluded  due 

to its strong association with alcohol consumption 38, which could potentially be a confounding factor 

for the causal interpretation between the subtypes and disease outcomes.  Following correction for 

multiple testing using an FDR threshold of p < 0.05, we discerned significant causal relationships for 

both subtypes with stroke, cardiac arrhythmias, chronic kidney disease, ischemic heart disease, and 

diabetic retinopathy (Fig. 5f). Notably, several types of MR analysis support the causal association 

between S2 and these diseases above, while only one MR analysis, IVW, for S1, indicating there still 

were some differences between the causal relationship identified. 

Additionally, we conducted an MR Egger intercept test for S2 to assess the presence of horizontal 

pleiotropy as applicable, which could potentially bias the causal estimates. The results of the test did not 

indicate significant horizontal pleiotropy (MR Egger p > 0.05), suggesting that the MR findings for S2 

are robust and unbiased (Supplementary Data 15). 

Disease progression prediction using the identified preclinical-T2DM subtypes 

Finally, we utilized survival analysis to assess the progression of various diseases in relation to the two 

preclinical-T2DM subtypes. Survival curves illustrated significant differences in disease progression 

relative to each subtype (Fig. 6). Subtype 1 exhibited a faster progression and higher risk (higher hazard 

ratios, HRS1 > HRS2) for anxiety disorder, bipolar disorder, depression disorder, sleep disorder, obesity, 

and asthma compared to Subtype 2 (Figs. 6a-f and Supplementary Fig. 48). Conversely, Subtype 2 was 

associated with more severe progression in Alzheimer’s disease, Parkinson’s disease, hypertension, 

cardiac arrhythmias, diabetic retinopathy, and a faster progression to T2DM (Figs. 6g-l and 

Supplementary Fig. 48). These findings align closely with the phenotypic associations previously 

identified, further revealing the distinct pathophysiological trajectories of each subtype. Of note, the 

three survival curves of S1, S2, and healthy controls exhibited an initial rapid decline followed by a 

slowdown towards the end of the follow-up period concerning most comorbidities (refer to Fig. 6 and 

Supplementary Fig. 48). This observation is primarily attributed to the rapid increase in censoring 

events, suggesting that the observed effects become less pronounced. 
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Moreover, we evaluated whether the preclinical-T2DM subtypes as biomarkers could enhance the 

accuracy of disease progression predictions. A baseline model using 18 clinical indicators was enhanced 

by incorporating information specific to each subtype. The predictive performance was evaluated using 

concordance index (C-Index). Our results indicated that the inclusion of subtype information could 

enhance the prediction accuracy for both disease onset and its complications (Supplementary Fig. 49).  

 

Discussion 

In this study, we uncovered the distinct subtypes and stages of preclinical-T2DM by using a cohort of 

20,305 UK Biobank participants. Utilizing the machine learning algorithm SuStaIn 37–39, we 

demonstrate that the heterogeneous progression of preclinical-T2DM can be delineated by two distinct 

trajectories. Both subtypes exhibit different illness durations, biomarker profiles, clinical outcomes and 

the brain and the heart signatures.  

S1, characterized by a higher leptin and lower leptin receptor phenotype, demonstrates elevated levels of 

BMI, ALT, LDLc, and CRP. S1 has highest circulating leptin and lowest circulating leptin receptor 

among the healthy control and participants with preclinical-T2DM (Figs. 3g-h). Subjects with leptin 

resistance have also slightly improved LDL level in the blood (Fig. 2h), which is revealed in S1. It is 

worth noting that leptin-deficiency is the main cause of massive obesity because of both hyperphagia 

and decreased energy expenditure 39–41. Leptin plays a crucial role in regulating insulin synthesis and 

secretion from pancreatic β-cells, thereby influencing insulin sensitivity, hepatic glucose production, 

and glucagon levels 42,43. Previous studies have indicated a correlation between leptin resistance and 

obesity, abnormal cholesterol levels, and heightened risks of psychiatric disorders 44–46. Our findings not 

only confirm these associations but also shed light on the pivotal role of leptin in the initiation and 

advancement of T2DM. On the contrary, S2 is represented with higher levels of HbA1c and Glucose 

(Fig. 2d and Table 1).  Notably, S2 exhibits a higher proportion of males and a shorter time interval to the 

onset of T2DM compared to S1 (Table 1). Additionally, the biomarker trajectories of both subtypes 

differ from each other (Figs. 2e-j, and Supplementary Figs. 5-16). For instance, Glucose and HbA1c 

levels escalate more rapidly for S2 than for S1 over time (Figs. 2e-f), whereas BMI levels increase more 

swiftly for S1 compared to S2 during the progression of both subtypes (Fig 2g). These may be caused by 

a reduced capacity of insulin utilization for participants with S1. However, it is intriguing to note that the 

progression curve of TyG of S1 initially exceeds that of S2, but the latter rises rapidly and eventually 

surpasses the former during the progression of preclinical-T2DM (Fig. 2i). This suggests that S1 may 

not represent a typical insulin-resistant form of T2DM. From a genetic standpoint, S2 manifests more 

significant genetic associations than S1, with noticeably stronger signals (Fig. 5a). Several identified 

genetic loci, such as GCKR and IGFI, have been identified as associated with insulin insensitivity 47,48. 

These findings suggest that while S2 is a T2DM genetic-relevant subtype, S1 is more complex and is 

based on multiple traits that may share common upstream clinical determinants, e.g., leptin resistance. 

These findings demonstrate the biological plausibility of distinct subtypes of preclinical-T2DM.  

We found preclinical-T2DM influences the structures and functions of human organs, particularly brain 

and heart health. The cumulative damage associated with diabetes can affect multiple organs, including 

the brain and heart, and we propose that the early susceptibility of neurobiological and cardiovascular 

structures to metabolic stresses may facilitate the early onset of these damages. Consequently, these 
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structural changes in organs may result in functional impairments. To quantify the associations between 

preclinical-T2DM and heart and brain health, we analysed brain MRI data from 1,143 individuals and 

CMR data from 855 individuals in the UK Biobank. After adjusting for various clinical indices, 

demographics, and imaging confounders, we observed that both subtypes of preclinical-T2DM have 

long-term effects on many common brain regions and CMR traits, although their impact differs slightly. 

For example, CMR traits affected by both subtypes, such as increased LV and RV ejection fraction and 

decreased ascending aorta distensibility (Fig. 4e-f), were associated with a higher risk of 

cerebrovascular diseases 49,50. In addition, a few distinct brain regions and CMR traits were remarkably 

affected by each subtype. For example, participants with S1 exhibited significant atrophy in the 

hippocampus and thalamus, while those with S2 showed more pronounced atrophy in the paracentral, 

left fusiform, and superior frontal regions (Fig. 4a-d). Friedman stated that leptin primarily acts on 

neurons in the hypothalamus, where it regulates feeding and many other functions, including glucose 

metabolism 20. Previous studies have indicated that “obesity-induced leptin resistance” could be caused 

by the decreased responsiveness of the hypothalamus to leptin 51,52. The reduction of hippocampus, 

thalamus as well as putamen regions for S1 will predict worse clinical symptoms of mental health, 

including emotional regulation, stress control, and cognitive performance, which were associated with 

higher risk of anxiety disorder and depression disorder 53–56. For participants with S2, atrophy in 

paracentral, superior frontal regions were associated with lower limb movement and cognitive 

impairment in working memory 57,58. Notably, the fusiform plays a critical role in cognitive decline 

associated with language comprehension 59, visual processing 60,61, and long-term memory 62. Atrophy in 

this region could contribute to Alzheimer's disease and semantic dementia 63,64. Specific associations 

were also observed between subtypes and CMR traits. For example, the LV circumferential strain traits 

were decreased in S1. This may suggest impaired myocardial contractility and could be a sign of 

underlying myocardial damage or early myocardial disease 65. A reduction in myocardial wall thickness, 

as observed in S2 in specific LV segments, are associated with a higher risk of ischemic heart diseases 66. 

Our findings suggest that structural changes in the brain and heart could potentially increase the risk of 

brain disorders and cardiac diseases. Overall, our study discloses associations between 

preclinical-T2DM and imaging phenotypes of the brain and heart, indicating potential connections 

between preclinical-T2DM and cardiovascular and neurological health. While our study specifically 

focuses on the connections between preclinical-T2DM and the brain/heart, it is also possible to explore 

the relationships between preclinical-T2DM and other human organs and systems. For example, 

participants with preclinical-T2DM have a higher risk of chronic kidney disease compared to healthy 

participants (Fig. 3a). Numerous evidences suggest the interplay among T2DM risk factors, chronic 

kidney disease, and the cardiovascular system, which has profound impacts on morbidity and mortality. 

Conducting a multisystem analysis using biobank-scale data may provide insights into interorgan 

pathophysiological mechanisms and assist in the prevention of T2DM and the early detection of its 

effects on human organs. 

It is widely recognized that individuals exhibit worsening symptoms and face an increased risk of 

T2DM onset and its complications over the course of the illness. Of note, the observed increases in 

glucose and HbA1C levels are consistent with an increased risk of stroke, heart failure, ischemic heart 

disease, chronic kidney disease, etc. These findings align with existing knowledge regarding the crucial 

role of glucose in cardiovascular and cerebrovascular functions and its causal link with elevated risks of 

vascular diseases. In addition, both subtypes are correlated with cognitive function decline, a trend 
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mirrored in alterations to brain structure (Figs. 4a-d). Studies have indicated that the probability of 

T2DM patients experiencing a decline in cognitive abilities is 1.5 to 2.0 times higher than that of 

non-diabetic individuals 67–69. However, despite the occurrence of cognitive function impairment during 

the preclinical stage of T2DM and the irreversible damage to the brain upon diabetes progression, the 

adverse effects of preclinical-T2DM on cognitive function are often underestimated, even when clinical 

symptoms are mild or asymptomatic. Furthermore, it is intriguing to note that both subtypes show 

differential risks of T2DM and its complications (Fig. 3a and Fig. 6, and Supplementary Fig. 49). For 

instance, participants with S1 exhibit higher hazard ratios (HRs) than those with S2 for psychiatric 

disorders, including depression disorder, anxiety disorder, and bipolar disorder, etc. It supports the 

emerging notion that leptin residence may serve as a potential indicator of neurotransmitter alterations, 

subsequently impacting the psychiatric status of individuals with preclinical-T2DM S1. Intriguingly, 

colocalization analysis reveals that genes involved in loci associated with S1 are correlated with bipolar 

disorder (Fig. 5c). These findings may shed light on why metabolic exposure generally accelerates brain 

tissue loss in conditions such as bipolar disorder, depression disorder, or other psychiatric disorders, 

despite being a complex neurobiological process. Conversely, participants with S2 are associated with a 

higher risk of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Over 

the past decade, accumulating evidence suggests a positive association between T2DM and dementia 
70–73. However, our results indicate that this link substantially exists within a subgroup of 

preclinical-T2DM patients (S2). For individuals with S1, there are no discernible differences between 

them and healthy controls regarding the risks of Alzheimer's disease and Parkinson’s disease (Figs. 6h-i). 

Although further MR analyses suggest no causal associations between Alzheimer’s disease/Parkinson’s 

disease and preclinical-T2DM (Fig. 5f), our efforts to identify disease subtypes and their associations 

with brain disorders were conceptual and predominantly relied on accumulating evidence regarding the 

progression of preclinical-T2DM and its impacts on the brain, which share biological mechanisms with 

brain disorders. This could potentially aid in the development of cost-effective health promotion 

strategies tailored to this extensive and vulnerable population.  

The identification of distinct trajectories of preclinical-T2DM opens avenues for personalized disease 

screening and prevention, ultimately leading to improved patient care and outcomes. It is crucial to 

acknowledge that the subtypes and stages we identified help delineate the heterogeneity of 

preclinical-T2DM and link them to specific treatments, suggesting that predicting clinical outcomes 

could benefit from stratification based on the biological subtypes of preclinical-T2DM. To this end, the 

development of a classifier cluster comprising specific subgroups corresponding to each subtype 

demonstrates enhanced performance in predicting the onset of T2DM and its complications compared to 

the model based solely on clinical information. Each subtype exhibits unique clinical characteristics and 

impacts on human organs, underscoring the importance of tailored approaches in disease management. 

Previous studies have also suggested the potential benefits of disease risk prediction for certain 

phenotypes of patients based on specific phenotypic or genetic features 9,74,75. While further 

investigation is warranted on the biological mechanisms of the progression of preclinical-T2DM from 

the interorgan perspective, factors such as increases in HbA1c and glucose levels, and leptin resistance 

have consistently shown associations with the disease onset and clinical outcomes. Embracing a 

perspective of stratified prediction models may unveil the underlying progressive heterogeneity of the 

disease and facilitate the adoption of more individualized treatment approaches in clinical practice, 

which holds promise for optimizing patient care, enhancing treatment efficacy, and ultimately 
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mitigating the burden of T2DM and its complications on individuals and healthcare systems alike. 

The potential clinical impact of our study is multifaceted. Broadly, it aids in dissecting the heterogeneity 

of preclinical-T2DM into more defined metabolic subtypes, thereby with implications for downstream 

tasks. For instance, establishing robust preclinical-T2DM subtypes can enhance the accuracy of 

individualized disease diagnosis and prognosis. Furthermore, modelling preclinical-T2DM 

heterogeneity offers novel patient stratification and treatment assessment tools for future clinical trials, 

which are particularly crucial given the mixed results and clinical limitations of glucose treatments. 

Recognizing that assessing treatment responses within more homogeneous patient subgroups can 

significantly enhance the efficacy of clinical trials, our findings suggest that preclinical-T2DM 

subtyping and staging could improve the ability to identify significant clinical characteristics of T2DM 

and its complications, which might otherwise be diluted in case-control comparisons due to underlying 

heterogeneity. Lastly, the identified subtypes, being both phenotypically and genetically relevant to 

human organs, serve as reliable prognostic biomarkers, thereby facilitating the prediction of disease 

onset and complication risks. 

There are strengths as well as limitations to this study. Firstly, while the SuStaIn algorithm offered 

estimates of preclinical-T2DM trajectories based on cross-sectional clinical indexes, it is crucial to 

validate these findings using longitudinal data to authenticate the disease progressions over time. 

Secondly, we identified two distinct subtypes from the UK Biobank dataset, each exhibiting different 

clinical phenotypes, neuroanatomical signatures, CMR traits, and clinical outcomes. Validation using 

independent discovery and replication cohorts would bolster the reliability of these identified subtypes. 

With the availability of large-scale non-European ancestry populations in studies, there is potential to 

replicate and validate our findings, particularly in contextualizing the proposed subtypes with 

brain/heart connectivity, cytoarchitecture, metabolism, neurotransmitter receptors and transporters, 

gene expression, and cognitive function. Thirdly, while clinical biomarkers and genetics can influence 

the progression of individuals within preclinical stage of T2DM, the risk factors characterizing the 

clusters identified in our study are also shaped by behavioural, environmental, and dietary determinants, 

as well as the use or non-use of medications that lower risk factor levels. Future research integrating 

these determinants with clinical data is necessary to understand their contributions to the prevalence and 

trends in preclinical-T2DM subtypes and their impact on disease occurrence. 

In summary, we delineate two distinct and stable preclinical-T2DM trajectories originating from 

cross-sectional clinical data with 18 clinical indexes. These identified subtypes exhibit diverse 

progressive patterns, clinical symptom profiles, genetic characteristics and long-term outcomes. Our 

findings highlight the presence of subtypes in preclinical-T2DM and emphasize their importance for 

personalized treatment and prognostic assessment. This comprehensive understanding of 

preclinical-T2DM subtypes provides a groundwork for more tailored and effective management 

strategies, ultimately improving patient outcomes. 

 

Methods 

Study cohort 

In this study, we leveraged the UK Biobank (UKB) dataset, a large biomedical cohort consists of over 
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500,000 participants as the primary data for our analyses. The use of UKB data has been approved by 

UKB under application number: 85757. Approval for the UKB study was obtained from the National 

Research Ethics Committee (REC reference 11/NW/0382), and informed consent was obtained from all 

participants. The inclusion and exclusion criteria process depicted in Fig. 1a involves the identification 

of preclinical-T2DM cases and control participants from the UKB dataset. The preclinical-T2DM 

subjects included in this study were participants with T2DM diagnosis after their initial assessment at 

the UKB (instance = 0). The UKB dataset comprised 41,783 patients diagnosed with T2DM and 

460,628 control participants without T2DM. Diagnoses for T2DM were identified through the 

International Classification of Diseases, Tenth Revision (ICD-10) codes (E11 for T2DM), as well as 

self-reported non-cancer T2DM diagnoses. To refine the study population, several exclusion criteria 

(Fig.1a) were applied to excluded individuals who: (1) diagnosed with other forms of diabetes; (2) were 

on antidiabetic medications or had history of antidiabetic medication usage; (3) lacked crucial genomic 

data for subsequent genetic association studies; (4) with outlier biomarker values that deviating more 

than five standard deviations from the mean; (5) were diagnosed with T2DM prior to their initial 

assessment at the UKB to focus on preclinical cases; (6) were potential undiagnosed diabetes in the 

control group with HbA1c levels equal to or greater than 6.5% (47 mmol/mol), or glucose levels equal to 

or greater than 7 mmol/L. This exclusion process yields a total of 20,305 individuals (aged 40-70 years, 

mean age 59.60 years, 42.28% female) with preclinical-T2DM.  

Lastly, we employed propensity score matching (PSM) for the construction of a matched control group 

to ensure the computability of the SuStaIn model. PSM is a statistical technique used to reduce bias by 

balancing the distribution of confounding variables between two groups.  Specifically, we applied PSM 

to harmonize covariates between individuals exhibiting preclinical-T2DM and those in the control 

group. Covariates such as age, sex, smoking status, alcohol drinking status, income level, and education 

attainment were incorporated to estimate the probability of each individual being assigned to the 

preclinical-T2DM group. Then, we matched individuals with similar probabilities from the control 

group to ensure that the distribution of these covariates was similar between the two groups. Thereafter, 

we established a balanced control group of 20,305 individuals without any diabetes (aged 40-73 years, 

mean age 59.96 years, 41.73% female) with the least standard mean difference (SMD) compared with 

the preclinical-T2DM group for subsequent analyses (Supplementary Table 1).  

Feature selection process 

Initially, we collected 62 biomarkers, including blood cell counts, biochemical markers, lipid profiles, 

blood pressure, and BMI (Supplementary Table 2) from the UKB dataset for SuStaIn modelling. These 

biomarkers were accessed for each individual at their initial assessment at the UKB. Missing data (all 

biomarkers with a missing rate < 30%) were imputed using the multivariate imputation by chained 

equation (MICE) from R package “MICE” (version 3.16). Random forest was implemented as the main 

method for imputation. The imputation was performed 5 times, with 5 iterations for each imputation, 

then the average of the 5 times of imputation was taken as the final imputation result. Given the 

computational demands of the SuStaIn model and insight from prior research suggesting an optimal 

number of features of approximately 20 for computational feasibility 8,10, we implemented a cutoff 

criterion to select the most important biomarkers for SuStaIn modelling. Specifically, we quantified the 

influence of each biomarker on preclinical-T2DM through univariate logistic regression analyses to 

determine their effect size relative to preclinical-T2DM. Biomarkers with an absolute effect size 
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exceeding 0.3 were retained for SuStaIn modelling. This process identified 18 pivotal biomarkers, 

consisting of hemoglobin A1c (HbA1c), body mass index (BMI), High-density lipoprotein cholesterol 

(HDLc), triglycerides-glucose index (TyG), high light scatter reticulocyte count (HLS Retic), glucose, 

reticulocyte count (RET), immature reticulocyte fraction (IRF), apolipoprotein A (ApoA), alanine 

aminotransferase (ALT), triglycerides (TG), urate, white blood cell count (WBC), cholesterol (CHOL), 

c-reactive protein (CRP), lymphocyte count (LYM), Low-density lipoprotein cholesterol (LDLc) and 

Vitamin D. For detailed information on the selected biomarkers, please refer to Supplementary Table 2. 

Identification of subtypes and stages for preclinical-T2DM 

To unveil the diverse manifestations of preclinical-T2DM and explore its interplay with the health of the 

brain, the heart, and other organs related outcomes, we utilized the SuStaIn model to categorize 

participants with preclinical-T2DM into distinct subtypes and stages of disease progression. SuStaIn, an 

unsupervised machine-learning technique, identifies clusters that share similar patterns of disease 

evolution using cross-sectional data using an event-based model 8,76. Initially crafted for 

neurodegenerative conditions like Alzheimer’s disease 70, SuStaIn has proven its effectiveness in 

delineating unique subtypes and their progression in various disorders, including major depressive 

disorder 11 schizophrenia 12 and epilepsy 10,13. These insights highlight the adaptability of SuStaIn in 

unveiling disease subtypes and progression stages, which has significant implications for the care and 

management over the course of T2DM. 

We applied the linear z-scored SuStaIn model 11,77, integrating the 18 selected clinical biomarkers for 

subtype and stage identification. Prior to analysis, potential confounding variables, including age, sex, 

smoking status, alcohol drinking status, income level, and educational attainment, were adjusted for 

each biomarker. Subsequently, the adjusted biomarkers were z-scored relative to the control group. 

Model initialization was achieved through an expectation-maximization algorithm, executed across 25 

distinct random starting points to determine the maximum likelihood solution. We conducted 100,000 

iterations of the Markov Chain Monte Carlo (MCMC) method to estimate uncertainty surrounding the 

progression patterns of identified subtypes. 

Furthermore, to ascertain the optimal number of preclinical-T2DM subtypes, we employed a ten-fold 

cross-validation approach, ranging from 1 to 5 subtypes. Performance evaluation was conducted using 

the Cross-Validation Information Criterion (CVIC) 11,77. The CVIC is a metric used to evaluate the fit of 

a model while penalizing the model’s complexity, ensuring that the model with the optimal balance of 

simplicity and accuracy is selected. We observed that compared to the 2-subtype model, the models with 

3-5 subtypes show less than a 2% improvement in CVIC (Supplementary Fig. 1). Considering the 

2-subtype model for its optimal balance of simplicity and explanatory power, we chose to interpret the 

findings based on the 2-subtype model.  

Phenotypic associations between preclinical-T2DM subtypes and outcomes 

We examined the phenotypic associations between preclinical-T2DM subtypes and a various range of 

health outcomes. Our analysis included a broad spectrum of phenotypic measures, consisting of organ 

structure and function of brain and heart, diseases including brain, cardiac, and renal disorders, as well 

as other related disorders, cognitive functions, metabolic and proteomic profiles.  

For brain structure and function, we analysed 587 image-derived phenotypes (IDPs) extracted from 
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T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as outlined by 

Guo et al 78. Image protocols and pre-processing pipelines of the brain MRIs were sourced from the 

UKB in an online document (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). Data of 

Brain IDPs were available for 1134 preclinical-T2DM subjects, with 520 for S1, and 614 for S2, 

respectively. Specifically, the 587 IDPs consist of 203 cortical measurements from the FreeSurfer tool 79 

based on the Desikan-Killiany atlas 80, 24 subcortical measurements extracted by the FIRST tool 81, and 

the FreeSurfer tool 81 based on automatic subcortical segmentation 82, along with 360 IDPs of white 

matter connections derived from two complementary analyses: tract-based spatial statistics 83 based on 

the International Consortium of Brain Mapping (ICBM) DTI-81 atlas 84, and probabilistic tractography 
85.  

Cardiac and aortic functions were evaluated using 82 imaging traits for left ventricle (LV), left atrium 

(LA), right ventricle (RV), right atrium (RA), aorta (Ao), ascending aorta , and descending aorta, 

obtained from recently developed pipelines for cardiac and aortic MRI 74,86,87. The CMR traits were 

available for 855 preclinical-T2DM subjects with 380 subjects for S1, and 475 subjects for S2, 

respectively. 

The prevalence of various disorders was identified using ICD-10 codes and self-reported non-cancer 

diagnoses from the UKB, as detailed in Supplementary Table 3. Additionally, cognitive function was 

assessed across several aspects provided by UKB, including numeric memory, symbol digit substitution, 

reaction time, fluid intelligence and reasoning, prospective memory, and trail making (Supplementary 

Table 4). Moreover, the correspondent proteomic and metabolic data at baseline for the studied cohort 

were obtained from UKB, including 1463 proteomic biomarkers, and 251 metabolic indictors 

(Supplementary Data 7-8). 

To assess the phenotypic associations, we employed univariate regression analyses to determine the 

impacts of different preclinical-T2DM subtypes compared to the control group on organ structural and 

functional variables as well as cognitive functions. Covariates including sex, age, smoking status, 

alcohol drinking status, income level, and education attainment were adjusted to control for potential 

confounding effects. Furthermore, the odds ratios (ORs) for the incidence of various diseases across the 

two preclinical-T2DM subtypes were calculated to measure the relative risk conferred by each subtype. 

The statistical significance of differences observed between the subtypes and control groups regarding 

disease occurrence was evaluated using the t-test. Moreover, we explored the difference in the 

proteomic and metabolomic profiles between the two preclinical-T2DM subtypes and healthy controls. 

For the proteomic and metabolic data, Student’s t-test with equal variance was applied in the differential 

analysis between the two groups. Additionally, one-way ANOVA with equal variance was utilized for 

the differential analysis encompassing all three groups. Significant associations were identified based on 

a false discovery rate (FDR) threshold of 5%, which was adjusted for multiple testing using the 

Benjamini-Hochberg procedure.  

GWAS on preclinical-T2DM subtypes 

We conducted genome-wide association studies (GWAS) using genotyped and imputed data from the 

UKB on both subtypes of preclinical-T2DM. Genome-wide genotyping data was performed on all UKB 

participants using the UK Biobank Axiom Array, followed by imputation using the Haplotype 

Reference Consortium and UK10K as reference panels (GRCh37 assembly) 88. The analyses were 
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stratified into two comparative sets: S1 (n = 9,402) vs controls (n = 20,305) and S2 (n = 10,903) vs the 

same control group (n = 20,305). Before conducting GWAS analyses, stringent quality control measures 

were implemented. Specifically, samples exhibiting a missingness rate greater than 0.05, minor allele 

frequency (MAF) less than 0.01, or deviation from Hardy-Weinberg Equilibrium (HWE) with a p-value 

less than 1.0E-06 were excluded from the analyses. The GWAS analyses were performed using the 

PLINK software (version 1.90 beta, https://www.cog-genomics.org/plink/, with adjustments for 

covariates including sex, age, smoking status, alcohol drinking status, income level, education 

attainment, and the first ten principal components to address potential population stratification effects. 

The genome-wide significance threshold was set at 5.0E-08. We employed the Functional Mapping and 

Annotation (FUMA) 89 platform (https://fuma.ctglab.nl/) with default settings to identify and annotate 

lead SNPs and corresponding genes, within a slide window size of 500 kilobases (kb) of the significant 

loci. The 1000 Genomes Project Phase 3 European (1KGp3 EUR) panel were employed as the reference 

dataset. SNPs with the smallest association p-values were selected as the lead SNPs, and genes residing 

within the boundaries of each region were allocated for each of the identified risk loci. 

Genetic correlation and colocalization between preclinical-T2DM subtypes and outcomes 

To evaluate the genetic associations between preclinical-T2DM subtypes and outcomes, we employed 

two genetic analysis techniques: genetic correlation and colocalization analysis, utilizing publicly 

available GWAS results primarily obtained from FinnGen database (https://www.finngen.fi/), 

Psychiatric Genomics Consortium (PGC, https://med.unc.edu/pgc/download-results) and GWAS 

Catalog (https://www.ebi.ac.uk/gwas/). Detailed information on the GWAS studies and results for the 

outcomes utilized for this analysis can be found in Supplementary Table 7. Firstly, we utilized linkage 

disequilibrium score regression (LDSC, https://github.com/bulik/ldsc) 90 to measure the genetic 

correlation between the T2DM subtypes and outcomes. Only high-quality SNPs documented in the 

HapMap3 dataset were utilized for estimation, with the LD score derived from the 1KGp3 EUR panel 

employed for LDSC analysis.  

Furthermore, to determine whether the preclinical-T2DM subtypes share a common causal variant with 

the outcomes, we conducted colocalization analysis using the R package “coloc” 

(https://chr1swallace.github.io/coloc/index.html) 91–93. This method employs Bayesian statistics to 

estimate the posterior probabilities of five distinct hypotheses concerning the relationship between the 

association signals at a shared locus: PPH0 (No association with either trait), H1 (Association with the 

first trait only), PPH2 (Association with the second trait only), PPH3 (Associations with both traits, but 

with different causal variants), and PPH4 (Association with both traits due to the same causal variant). 
Colocalization was performed using with default priors (prior probability of initial trait association is 

1.0E-04, prior probability of shared causal variant across two traits is 1.0E-05). In accordance with 

established conventions 94, variants with a posterior probability of PPH4 > 0.75 were considered as 

colocalized variants (indicating shared causal variants) for preclinical-T2DM subtypes and outcomes. 

Mendelian Randomization analyses  

To further explore the causal relationship between preclinical-T2DM subtypes and outcomes, we 

conducted two-sample Mendelian Randomization (MR) analyses using the R package “TwoSampleMR” 

(https://mrcieu.github.io/TwoSampleMR/). SNPs that met the significance threshold (p < 5.0 × 10-8) 

were selected as candidate instrumental variables (IVs). Next, independent SNPs were chosen from 



26 

 

GWAS summary data of the preclinical-T2DM subtypes utilizing the clump function in Plink. These 

selected SNPs were clumped at an r2 = 0.1 within a 1000 kb window size, employing the LD score panel 

of 1KGp3 EUR to adjust for linkage disequilibrium and reduce interference. Furthermore, SNPs 

strongly associated with confounders (p < 5.0E-08) that might affect the pathway between subtype and 

outcome causation were excluded. We considered five potential confounders: smoking status, alcohol 

drinking status, income level, educational attainment, and BMI. Additionally, to enhance the robustness 

of the genetic instruments, we assessed the F-statistic to measure the statistical power of the IVs and 

removed weak instruments with F-statistic < 10. Consequently, this IV selection process resulted in 2 

IVs for S1 and 18 IVs for S2. 

For S1, we performed MR analyses using the inverse variance weighted (IVW) method due to the 

limited availability of only 2 IVs. For S2, we employed four additional MR methods: MR Egger, 

MR-RAPS, weighted median, and weighted mode. This aimed to enhance the reliability of the results, as 

IVW results might be biased in the presence of horizontal pleiotropy in any of the SNPs. We regarded 

significant findings as those surpassing the threshold adjusted using Benjamini-Hochberg procedure to 

control the FDR at the 5% level (FDR-corrected p-value < 0.05). Furthermore, we assessed the potential 

presence of horizontal pleiotropy, which could compromise the validity of the MR findings. We 

conducted MR-Egger intercept test to detect the presence of horizontal pleiotropy for MR findings for 

S2 with three or more IVs available. A p-value greater than 0.05 indicates nonsignificant presence of 

horizontal pleiotropy. 

Prediction analyses 

To evaluate the predictive power of these subtypes for disease progression, we examined the efficacy 

and applicability of preclinical-T2DM subtypes as predictive clinical indicators for various diseases as 

outcomes. Firstly, we analysed survival curves for different diseases across the subtypes to assess the 

rate of disease progression associated with each subtype. Individuals not diagnosed with the disease by 

the end of the observation period were considered as censoring. The censoring date was set at the latest 

access date (May 31, 2023) for the UK Biobank data. We utilized the log-rank test to assess differences 

in survival distributions between each subtype and the control group as the reference. Secondly, we 

employed Cox regression models to estimate hazard ratios (HRs) for the onset of each of diseases, 

comparing the two subtypes. 

We further investigated whether incorporating subtype information could enhance disease prediction. 

Cox regression models were utilized, integrating different subtype information as predictors. A baseline 

model was first established using 18 clinical biomarkers, with subsequent integration of different 

subtypes to assess their impact on predictive accuracy. To validate the robustness of our findings, we 

employed a ten-fold cross-validation method. The dataset was equally divided into ten parts, with nine 

parts used as the training set and the remaining part used as the test set in each validation cycle. The 

concordance index (C-index) was utilized as the primary metric to evaluate the predictive performance 

of the models. The C-index measures the predictive accuracy of the model in terms of its ability to 

correctly rank the survival times of subjects, with higher values indicating better predictive accuracy. 

Data availability 

The data used and generated in this study are provided in the Supplementary Data. The phenotypic, 

genotypic, proteomic, metabolic data used in the study that supports subtype and stage modelling and 
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association analyses were obtained from the UK Biobank under application number 89757. Access to 

the UK Biobank data is available to all researchers with approval 

(https://www.ukbiobank.ac.uk/enable-your-research/register). All GWAS data for the outcomes used in 

this study are publicly available from FinnGen database (https://www.finngen.fi/), Psychiatric 

Genomics Consortium (PGC, https://med.unc.edu/pgc/download-results) and GWAS Catalog 

(https://www.ebi.ac.uk/gwas/). Statistic details of the GWAS datasets and download links for all the 

datasets are available in Supplementary Table 7. 
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