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Abstract

Spinal Cord Injury (SCI) presents a significant challenge in rehabilitation
medicine, with recovery outcomes varying widely among individuals. Machine
learning (ML) is a promising approach to enhance the prediction of recovery
trajectories, but its integration into clinical practice requires a thorough under-
standing of its efficacy and applicability. We systematically reviewed the current
literature on data-driven models of SCI recovery prediction. The included studies
were evaluated based on a range of criteria assessing the approach, implemen-
tation, input data preferences, and the clinical outcomes aimed to forecast. We
observe a tendency to utilize routinely acquired data, such as International
Standards for Neurological Classification of SCI (ISNCSCI), imaging, and demo-
graphics, for the prediction of functional outcomes derived from the Spinal Cord
Independence Measure (SCIM) III and Functional Independence Measure (FIM)
scores with a focus on motor ability. Although there has been an increasing inter-
est in data-driven studies over time, traditional machine learning architectures,
such as linear regression and tree-based approaches, remained the overwhelmingly
popular choices for implementation. This implies ample opportunities for explor-
ing architectures addressing the challenges of predicting SCI recovery, including
techniques for learning from limited longitudinal data, improving generalizabil-
ity, and enhancing reproducibility. We conclude with a perspective, highlighting
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possible future directions for data-driven SCI recovery prediction and drawing
parallels to other application fields in terms of diverse data types (imaging, tabu-
lar, sequential, multimodal), data challenges (limited, missing, longitudinal data),
and algorithmic needs (causal inference, robustness).

Introduction

Spinal Cord Injury (SCI) is a complex condition that presents a significant challenge
in medical rehabilitation, as it involves a range of physiological response cascades.
Beyond the initial physical trauma (e.g. comprising fractures and axonal disruption),
the physiological and mechanical damage to spinal tissues triggers neuronal excitotox-
icity and increases reactive oxygen concentrations and glutamate levels [1], resulting
in neurological dysfunction [2]. As a result, the clinical presentation exhibits extensive
heterogeneity in terms of motor abilities (e.g. walking, grasping), sensory function, and
various aspects of functionality, including sexual, bowel, and bladder functions. Given
the substantial heterogeneity in terms of injury characteristics, clinical presentation,
and recovery of bodily functions [3], predicting outcomes at the individual level is chal-
lenging. Achieving accurate recovery prediction is, however, essential for establishing
realistic expectations among patients and their families regarding long-term progno-
sis [4]. Moreover, accurate and reliable outcome prediction is crucial for designing and
implementing effective clinical trials.

Given the increasing availability of large SCI databases [5–11], it is a logical step to
consider data-driven models for recovery prediction. Based on parameterization, these
models allow for the establishment of a connection between (multi-modal) input data
and outcomes to facilitate predictions. However, it is essential to carefully choose the
right model architecture in light of available training data, sample sizes, and clinical
questions of interest. For successful clinical deployment, a model must satisfy stringent
expectations regarding robustness, generalizability, interpretability, and reproducibil-
ity, in addition to meeting performance criteria. Robustness refers to the ability to
preserve performance despite conditions such as noisy data and distribution shifts. In
general, this requires learning relevant relationships between input data and output
labels, rather than overfitting the model to the training data. Generalizability conveys
that the method has a high sample size-to-complexity ratio and is externally validated
meaning that it performs well on new data, from the same and other origins. In the
clinical application context, tracing the prediction’s underlying process is essential to
building trust in the model and validating that the decision process is well-founded.
Interpretability and explainability analysis facilitate this [12]. Finally, the research
and implementation should also be reproducible, meaning that the methods, data
processing, and input and output data are transparent and readily usable by others.

This review aims to provide a comprehensive overview of the current state of
data-driven applications in the context of SCI recovery prediction. We begin by sys-
tematically exploring the diverse landscape within this field, summarizing the various
types of input data, outcomes, prediction models, and evaluation methods reported.
Transitioning from discussing the status quo and state-of-the-art in the SCI field today,
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we provide a perspective regarding promising future directions and inherent challenges.
In particular, we stress examples and parallels drawn from other data science appli-
cations in healthcare and discuss how concepts and architectural designs from these
domains could be adapted for SCI-related tasks.

Methods

Search strategy

We conducted a systematic search across three major bibliographic databases:
PubMed, Scopus, and Web of Science. Included in our search were studies published
from the inception of these databases up to October 2nd, 2023 (search date). Our
search strategy comprised a carefully constructed query for: (“machine learning” OR
“statistical model” OR “artificial intelligence” OR “deep learning” OR “decision tree”
OR “random forest” OR “prediction rule” OR “prediction model”) AND (“spinal cord
injury” OR “spinal cord lesion”) AND (recovery OR prognosis OR prediction OR
outcome). Our search was not restricted by language. Additionally, manual searching
was also performed, reviewing reference lists of relevant articles and comprehensive
reviews.

Inclusion and exclusion criteria

We included peer-reviewed articles focusing on predicting recovery in human adults
following acute SCI. Our definition of ”recovery” entails predicting motor, sensory,
functional, or other clinically important outcomes at a later stage from the acute injury
phase. No specific restrictions were imposed regarding the longitudinal timeframe for
inclusion. We excluded articles involving pediatric patients or non-human subjects,
and those related to non-traumatic or non-ischemic spinal cord injury. Additionally,
studies predicting associated or secondary conditions post-injury (e.g. pressure ulcers,
surgery-related complications) and those focusing on non-recovery outcomes (like sur-
vival, hospital stay length) or investigative treatment effects were excluded. Duplicate
studies, abstracts, systematic reviews, meta-analyses, case studies, and validation stud-
ies of models already included in this review were also not considered. Reasons for
exclusion of studies were defined according to the hierarchy in Table S1.

Selection process

We assessed the suitability for inclusion by reviewing titles and abstracts, followed
by full-text. This assessment was independently conducted by two reviewers (MT and
SH). Conflicting opinions regarding study inclusion or exclusion were settled on a
case-by-case basis by mutual discussion with additional investigators (CJ, SB).

Data extraction

Two independent reviewers (MT, SH) performed the data extraction, which was ini-
tiated with the systematic retrieval of bibliographic information such as authorship
details, publication years, publication titles, and Digital Object Identifiers (DOI).
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Fig. 1 Flowchart representing the search strategy, retained studies, and exclusion contributions.
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From full texts, we gathered detailed data including: (i) the types of prediction
models, (ii) outcomes, (iii) input data, (iv) information about the model architec-
ture(s), implementation, and training, and (v) model performance and metrics used
for evaluation.

Qualitative assessment

We evaluated the quality of the included studies based on different criteria spanning
five categories: Clinical Significance, Reproducibility, Generalizability, Machine Learn-
ing Quality, and Machine Learning Performance. Each category received a rating from
0 (poor quality) to 5 (high quality) to indicate the quality of the study for the relevant
criterion.

To evaluate the Clinical Significance of the included studies, we assigned a score
of 5 to papers that clearly outlined the clinical problem addressed, employed perti-
nent outcome measures, and emphasized clinical impact. Conversely, studies lacking a
clear motivation for the clinical application of the presented approach, such as purely
computational studies, were assigned a score of 0.

Reproducibility refers to the ability to replicate the findings of a study by following
the outlined methods as well as using the provided data and code. Ideally, a study
provides clear input and output variables, a description of variable coding for input
(binary, categorical, or numerical) and output (binary or multi-class classification,
or regression), and an overview of the employed model architecture in addition to
details regarding its implementation. Both model code (e.g. as a public repository) and
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supporting data should be available for external applications. We subtracted scoring
points for any missing information.

Understanding the extent to which findings and data-driven models can be gen-
eralized across different patient populations, injury severities, or clinical settings is
key to examining the potential for clinical deployment. Thus, we assessed the Gen-
eralizability of the selected studies as follows: a score of 5 was assigned if the risk
of overfitting to training data was explicitly addressed. This was considered accom-
plished through either external validation or by performing a clean data split (with
no apparent information leakage) between the training and test set. To achieve an
optimal score, we further considered the model complexity with respect to the sample
size, and if the utilized data were multi-institutional. We scored 0 when the model was
deemed susceptible to overfitting.

Under the umbrella of Machine Learning Quality, aspects regarding model architec-
ture, training, and evaluation choices were assessed. We assigned a Machine Learning
Quality score of 5 to papers that comprehensively reported their entire training
pipeline, addressed issues of overfitting and imbalanced data, included strategies for
feature selection (where appropriate), and chose relevant evaluation metrics. Ideally,
a benchmark of different architectures was performed. We scored a 0 if none of the
above criteria were met.

Machine Learning Performance quantifies how well a model accomplishes the task
it was designed for. Given the strong effect of the Machine Learning Quality on
the Performance, we fixed the Machine Learning Quality score as the upper limit
for the performance score. Excellent performance was quantified as an accuracy (or
ROCAUC) exceeding 90% or a correlation coefficient of 0.8 while accounting for pos-
sible class imbalance. We assigned a score of 0 to articles when the prediction quality
was not assessed or did not exceed random prediction. Intermediate scores were given
depending on the ratio between excellent and achieved performance.

Statistical analysis

Based on the above scoring metrics, we summarize the included studies by the evalu-
ation criteria using boxplots. Moreover, we identified groups of studies by hierarchical
clustering. Clustering was performed such that the cophenetic distance (the height of
the dendrogram at the point where the two points are first joined together), between
two observations is minimal, with a maximum of 6 flat clusters. The Python library
SciPy [13] with the function fcluster in the subpackage cluster.hierarchy was
used to generate the clusters and the hierarchical linkage was generated using linkage

from the same subpackage.

Results

Study selection

Figure 1 shows a Consort diagram leading to the final set of included studies. Our
search identified 973 studies, after the removal of 318 duplicates, 655 article abstracts
were screened, resulting in the exclusion of 572 articles. The subsequent review of
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83 full-text articles resulted in the exclusion of 19 more articles. Finally, 64 studies
met our inclusion criteria. Moreover, one article was added outside of the literature
search through the references in one of the included papers (a validation study was
exchanged for the study where the method was first suggested), and one article was
added manually, resulting in 66 manuscripts [14–79] .

Study characteristics

An overview of the extracted information from all included studies is available in
supplementary Table S2.

Input and output data

A range of input and output data types were addressed in the covered studies as shown
in Table 1 and Table 2. Patient demographics and injury severity, as measured by the
American Spinal Injury Association (ASIA) Impairment Scale (AIS), were identified
as primary input factors in 56 (85%) and 47 (71%) papers, respectively.

These data types were followed by the neurological level of injury (NLI, 51.5%);
subsets of the ISNCSCI (e.g. pin prick scores, or selected myomotes, 31.8%); and the
sum scores for upper extremity (UEMS), lower extremity (LEMS), or total motor
scores (TMS) in 17 papers (25.8%).

Imaging data was also a popular input, appearing in 16 papers. “Imaging data”
here refers to relevant modalities (e.g. MRI), but also extracted information from
images, such as Brain and Spinal Injury Center (BASIC) scores [80]. Only two papers
used algorithmic methods to process images rather than pre-extracted image features.
Functional input data types included the Functional Independence Measure (FIM,
18.2%), Manual Muscle Tests (MRC, 7.6%), and the Graded Redefined Assessment of
Strength, Sensibility, and Prehension (GRASSP, 3.0%).

Eight studies used molecular or hematological information such as blood markers
[22] or proteomic analysis of cerebrospinal fluid (CSF) [71].

The specific endpoints addressed covered a variety of scenarios as shown in Table
2. Primarily, functional and neurological outcomes were predicted. The summarized
functional endpoints consist of Spinal Cord Independence Measure (SCIM) III [81]
(15.2%), 6-minute walk test [82] (16.7%), Functional Independence Measure (FIM) [83]
(13.6%), Prehension Performance [84] (1.5%), bladder function (e.g. [81]) (4.6%), and
bowel function (e.g. [81]) (3.1%). 34 out of 66 studies predicted neurological outputs,
such as AIS grade conversion (31.8%), composite motor scores (LEMS, UEMS or
TMS, 7.6%), 2-motor level improvement on the cervical myotomes on either left or
right side [46] (1.5%), Percent Deficit Improvement [28] (PDI, 1.5%), which quantifies
neurological recovery as the percentage improvement in motor, pin, and touch scores
relative to the maximum possible improvement from the baseline to the endpoint score,
and pin prick (1.5%) [66].

Moreover, the timing of the data acquisition and prediction endpoints relative to
the time of injury were recorded (Table 3). Multiple studies (34) with clearly defined
time points since injury considered input data at a maximum of 56 days (i.e. 8 weeks)
after injury. One study used input data from between 3 weeks and 3 months [68]. In
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Category Input Data types N of Papers %

Neurological

AIS 47 71.2%
NLI 34 51.5%
ISNCSCI 21 31.8%
UEMS/LEMS/TMS 17 25.8%
VAC/DAP 1 1.5%
Pin prick 9 13.6%

Functional
FIM 12 18.2%
MRC 5 7.6%
GRASSP/MP 2 3.0%

Imaging
MRI features 12 18.2%
MRI images 4 6.1%

Other
Demographics 56 84.8%
Comorbidities 14 21.2%
CSF/Blood 8 12.1%

Table 1 Overview of Input data types. Note that multiple labels can be assigned to one study. NLI:
Neurological Level of Injury. AIS: American Spinal Injury Association Impairment Scale. ISNCSCI:
International Standards for Neurological Classification of SCI. UEMS: Upper Extremity Motor Score.
LEMS: Lower Extremity Motor Score. TMS: Total Motor Score. VAC: Voluntary Anal Contraction. DAP:
Deep Anal Pressure. FIM: Functional independence motor score. MRC: Manual Muscle Test. GRASSP:
Graded and Redefined Assessment of Strength, Sensibility and Prehension. MP: Motor Point mapping.

the remaining studies, the specific timing of input data acquisition was either unclear
(22 studies) or not reported (9 studies). For outcomes, 21 out of 42 studies with
reported time points predicted at up to 1 year post-injury. Among these, 12 studies
reported 6 months as their prediction time, and 3 studies used an evaluation at 3
months post-injury.

Moreover, six studies reported their prediction time to be > 1 year and two of these
studies predicted outcomes at multiple times, ∼1st year, ∼2nd year, or ∼5th year [52,
64]. Similar to input data, several studies (n=17) did not specify exact time stamps,
but defined categories such as: “at discharge”, or the number of training sessions [54].
Seven studies did not report their prediction time, impeding reproducibility.

Prediction model architecture choices

The included studies encompass various computational architectures, ranging from
traditional statistical models to advanced designs incorporating model ensembles and
deep learning frameworks. Linear and logistic regression are recurrent choices (50.7%),
leveraging their interpretability and user-friendly implementation. Tree-based models
and ensembles, including random forest or extreme gradient boosting (XGBoost), were
also popular (29%). This showcases the flexibility of tree-based structures to capture
complex relationships within the data while being easily implementable given estab-
lished libraries (e.g. using scikit-learn library [85]). Deep learning techniques such as
neural networks were reported (9%) but the deliberate motivation for the choice of
more complex architectures was rarely reported. Figure 2C summarizes the distribu-
tion of the different model architectures over the time of publication. We observed a
trend toward alternatives to linear models in recent years.
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Category Output Data types N of Papers %

Neurological

AIS 21 31.8%
ISNCSCI 5 7.6%
UEMS/LEMS/TMS 5 7.6%
Contracture* 2 3.0%
Pain type 1 1.5%

Functional

Walking 11 16.7%
SCIM III 10 15.2%
FIM 9 13.6%
Bowel/Bladder 5 7.6%
Prehension 1 1.5%

Other
Discharge destination 1 1.5%
Bone healing** 2 3.0%
Unspecified*** 2 3.0%

Table 2 Overview of output data types. Note that multiple labels can be assigned to one study. SCIM
III: Spinal Cord Independence Measure.
*Contracture: Spasticty and Contracture.
**Bone hearling: Odontoid fracture nonunion, Bone Mineral Density and Bone Mineral Content.
*** Unspecified: E.g. Soft tissues, Short Form 12-Questionnaire Health Survey.

Prediction Time N papers

> 1 year 6
∼1 year 21
∼6 months 12
∼3 months 3
Unspecific 17
Not reported 7

Inputs N papers

< 72 h 6
< 31 days 19
< 56 days 9
3 weeks - 3 months 1
Unspecific 22
Not reported 9

Table 3 Summary of the time points for included input data and
evaluation endpoints. Unspecific input time: admission time, acute
phase, baseline, and rehab admission. Unspecific output time: at
discharge (unknown if this refers to the primary care or
rehabilitation facility), after 36 training sessions (unknown absolute
time since injury), rehabilitation discharge (unknown absolute time
since injury).

In line with the focus on computational architectures comprising limited param-
eterization, the majority (74.2%) of studies were conducted in small patient cohorts
of less than 500 subjects. Despite the large heterogeneity expected in SCI patients,
few studies [15, 33, 42, 62] used larger sample sizes beyond 2000 subjects. It is worth
noting the study by Kapoor D., et al. [33], comprising 20790 individuals. It bench-
marked different machine learning models (ridge classifier, support vector machine,
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elastic net, logistic regression, ensemble model, convolutional neural network, random
forest, and naive Bayes) on data from the National Spinal Cord Injury Statistical
Center (NSCISC) database to predict AIS scores at hospital discharge.

Qualitative assessment of studies

We summarize the qualitative results obtained from scoring different aspects relevant
to a data-driven analysis in Figure 3; individual scores are provided in Table S4.

We observe that the majority of papers scored consistently high in clinical signifi-
cance (median 4.5, minimum 3.5 (excluding three outliers), Figure 3A). The outliers,
scoring 0.5, 3 and 3 [19, 37, 40], were computationally focused but lacked a clear
definition of the clinical problem they were addressing.

A total of 83% of the papers achieved a Reproducibility score of at most 3.5
(Figure 3A). Higher scores (> 3.5) were predominantly related to making the data
available (on request) (n=11) and/or the code base available (n=4). Three percent of
the studies did not provide access to code and had unclear definitions of the model
inputs and outcomes, resulting in a reproducibility score below 2.5.

For the other evaluation criteria (Generalizability, ML Quality, and Performance),
we observed varied results across the included articles, with a median score of 3 in
all categories, reflecting a broad range of scores (Figure 3A). Many studies (n = 34)
addressed the problem of generalization by either external validation or performing a
clean train-test data split.

Figure 3B groups all 66 studies using hierarchical clustering. Except for one study
[40] that failed to meet both Clinical Significance and model Reproducibility (cluster
6) and one study that had great Clinical Significance and Reproducubility but lower
grades in the rest of the categories (cluster 3), our clustering revealed four sets of
comparable study designs: i) those achieving adequate (score above 3) ratings across all
criteria (n=26, cluster 5), ii) those yielding intermediate (≈ 3) model Generalizability,
ML Quality and ML Performance (n = 20, cluster 4), iii) those failing to address the
latter three criteria (n = 16, Generalizability, ML Quality and ML Performance below
1, cluster 1), and iv) studies of poor generalizability and ML quality but having good
Reproducibility (cluster 2).

Regarding the longitudinal development across publication years (Figure 3C-E), we
did not observe a clear trend of quality improvement despite the noticeable increase in
the number of publications focusing on applying data-driven approaches to SCI-related
prediction tasks (Figure 3D).
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Fig. 2 Overview of the models, inputs, outcomes, and number of patients used in the selected
papers. A) Input features. Demographic data was used in almost all papers. AIS grade, neuro-
logical level of injury (NLI), and neurological assessment data were common. Note that each study
could utilize multiple outcomes and input features. B) Outcomes. AIS grade was the most com-
mon outcome followed by walking ability, FIM, and SCIM III. “Bone healing” refers to bone density
and nonunion odontoid fractures. Additionally, “Bowel/Bladder” covers bowel management, blad-
der recovery, urinary continence, and urodynamic risk factors for upper urinary tract damage. C)
Number of publications per year. The outer plot shows the increase in publications regarding
recovery prediction models in SCI as well as the distribution of model classes. Linear and tree-based
models are the most common models. D) Sample size of analyzed cohorts. While some papers
featured large patient cohorts ranging from 2,000 to 20,000 patients, the majority of papers exam-
ined smaller patient populations. Abbreviations: AIS; ASIA Impairment Scale, CSF; Cerebrospinal
fluid, FIM; Functional Independence Measure, GRASSP; Graded Redefined Assessment of Strength,
Sensation, and Prehension, ISNCSCI; International Standards for Neurological Classification of SCI,
MP; motor point, MRC; Medical Research Council manual muscle testing, MRI; magnetic reso-
nance imaging, NLI; neurological level of injury, SCIM III; Spinal Cord Independence Measure III,
UEMS/LEMS/TMS; upper extremity motor score/lower extremity motor score/total motor score.
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Discussion

Our literature review identified 66 studies addressing the topic of data-driven predic-
tion of recovery after traumatic SCI. These studies employed a range of computational
models including linear regression, tree-based models, and neural networks. The choice
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Fig. 3 Overview of the grading of clinical relevance and machine learning categories of the included
articles. A) Scoring performance overview stratified by the five assessment categories. Scores
between 0 to 5 with intervals of 0.5 are possible. The boxplot illustrates the median (light blue
line) and quartile ranges. The whiskers extend to the farthest data point within 1.5x of the relevant
interquartile range. Individual scores are shown with jitter. B) Heatmap overview of the scores
achieved by each study (row) subject to hierarchical clustering as visualized by the dendrogram.
The hierarchy is flattened into 6 clusters indicated by color. C-E) Visualization of scores as a
function of time for the generalizability (C), machine learning quality (D), and machine learning
performance (E)
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of model architectures appeared largely influenced by data constraints and the need for
reproducible and interpretable implementations inherent in standard machine learn-
ing models. Still, a recent trend toward more complex approaches is observed. Data
availability also strongly influenced the choice of input features and outcome variables.
Predominantly, easily accessible data such as patient demographics and neurological
assessments were favored in prediction models. Studies incorporating imaging, func-
tional (e.g. walking ability), molecular, or hematological data as input features were
less common. The most commonly used outcomes were AIS grades, walking ability, or
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SCIM III. Despite the acknowledged importance of sexual, bowel, and bladder func-
tions for individuals living with SCI [86], these endpoints are understudied, likely due
to the lack of available data on these specific aspects. Whereas data on sexual function
is particularly limited, bladder and bowel functions are part of the SCIM III assess-
ment. The SCIM III is frequently assessed as part of SCI clinical trials [87–90] and
observational cohorts [5–7, 81].

A striking observation was the notable variability and frequently inadequate preci-
sion in defining and reporting time points for input features (up to approximately 56
days) and outcome variables (typically around 1 year). The choice of outcome time-
point (≈ 1 year) is clinically reasonable, considering the limited remaining recovery
potential beyond this timeframe [91].

However, our evaluation also highlights the necessity for improved reporting prac-
tices to enhance reproducibility and applicability. In recent decades, the field has
established several large-scale observational data registries (e.g. EMSCI, RHSCIR)
that address these gaps.

The qualitative assessment revealed consistently high Clinical significance scores
across all articles, indicating that SCI recovery prediction is driven by clinical
application, facilitated by close collaboration between clinical data providers and com-
putational researchers. In contrast, the Reproducibility was observed to be relatively
low, leaving ample room for improvement. Specifically, while input, output, and chosen
models were reported, the provision of code — which is essential for study reproducibil-
ity — was rare, yet indispensable upon the publication of data-driven models [92]. We
also observed substantial variability in the scoring of Generalizability. In general, the
importance of Generalizability is acknowledged in the field, however, its implementa-
tion is often suboptimal. While employing an external validation set would be ideal,
adopting a rigorous train-test split can serve as an initial step toward more genuinely
externally validated approaches.

In summary, there is a noticeable surge in interest in data-driven SCI recovery
predictions, which has inspired a range of promising predictive studies of high clinical
relevance. As this field evolves, it is crucial to effectively utilize and report data-
driven prediction models to maximize their potential for clinical deployment. Based
on our quality assessment, there is room for improvement in terms of reporting and
defining outcome variables, as well as ensuring reproducibility and generalizability of
the employed models. In the following, we outline possible future directions and key
challenges, mention parallels to other clinical applications regarding data types, and
outline aspects of promising model architectures and training regimes.

Future directions and key challenges of data-driven recovery
prediction

Data availability and diversity remain a limitation for data-driven predictions of SCI
recovery. Data-efficient training strategies and optimal use of the available data address
this challenge. Missing and incomplete data, particularly in a longitudinal context, is
common in biomedical data science. In the SCI field, missing data predominantly arise
due to patient transfers between treatment and rehabilitation facilities, comorbidities,
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and patient compliance with elaborate assessment protocols such as SCIM and ISNC-
SCI [93]. It is widely accepted to rely on complete-case analysis rather than imputed
data [93–95]. Carefully applied imputation could, however, increase the pool of training
samples and lead to more robust predictions. Bourguignon et al. provide a compre-
hensive evaluation of diverse imputation strategies in the SCI domain to achieve this
[93]. Importantly, depending on the target data type and clinical context, different
imputation strategies should be applied (e.g. ordinal imputation [96], last observa-
tion carried forward [97], or multiple imputation [98]). In addition to maximizing data
usage, strategies from limited data learning, such as auxiliary task learning (training
for a subtask that is indirectly linked to the objective of interest) [99], self-supervision
(contrasting sample subgroups) [100] and data augmentation can be harnessed.

Traditional data augmentation aims to enhance the performance through various
transformations, such as geometric transformations and color space augmentations in
imaging [101], aiming to increase the diversity and quantity of the data. Augmenting
datasets with limited labels using semi-supervised [102] and active learning [103] could
further improve model performance through strategic data labeling and the incorpo-
ration of unlabeled datasets [104, 105]. Moreover, data from an external domain might
prove useful in settings with limited data. Transfer learning is a compelling strategy
that leverages a large dataset from a source domain to (pre-)fit model weights, lead-
ing to improved performance upon the target domain upon model refinement. This
approach has previously proven successful in related applications such as neurodegen-
erative disorders [106]. While general data sets are useful, data that are related to the
target task (e.g. same data type, same anatomical context) would be preferable [107].
While ISNCSCI data may be unique, parallels for spinal imaging and (multi-) omics
data in SCI-related tasks may be readily accessible.

A common limitation to increasing sample size may be data privacy concerns
restricting large-scale data centralization. Federated learning represents an alternative
way of collaborative and privacy-preserving multisource data digestion [108]. This is
especially relevant in scenarios where direct data sharing among institutions is imprac-
tical [109]. In the SCI recovery prediction field, techniques for limited data learning
combined with a federated learning framework hold the potential to maximize the
usage of any data available. This would allow exploration of advanced architectures,
beyond the current standard linear and tree-based approaches.

Currently, prediction models are predominantly based on readily available data
types (ISNCSCI assessments, image features, demographics). Using underexploited
data types like omics and images could improve model predictions. Although the col-
lection and curation of these data types may be challenging, they hold the potential to
uncover a deeper biomedical understanding of the physiological processes underpinning
SCI recovery in addition to identifying predictive biomarkers. Similarly, combinations
of more established data types with imaging and molecular characterization of CSF or
blood could be considered. Multi-modal learning that harnesses diverse molecular data
alongside clinical information could offer nuanced insight into patient recovery trajec-
tories [110]. Independent of the specific data types, innovative architectures like graph
neural networks (GNNs) [111], attention mechanisms [112], and transformers [113]
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could pave the way for next-generation modeling of spinal structures and patient recov-
ery patterns. These architectures have previously been shown to effectively interpret
complex data structures and longitudinal settings [114–116].

As models become more intricate, interpretability and explainability become more
critical. Model transparency is essential for their acceptance as clinical decision sup-
port [12, 117, 118]. This is addressed in the topic of causal inference which enables
tracing the prediction formulation [119]. The development of a data-driven predic-
tion pipeline involves several critical steps including data collection, preprocessing,
hyperparameter tuning, and model evaluation, ideally in collaboration with clinical
experts. Automating (part of) this pipeline could accelerate the development and val-
idation of solutions. AutoML (Automated Machine Learning) [120] is one example of
such a streamlined pipeline, simplifying model deployment by automating tasks such
as model selection and tuning, making it easier and faster to integrate with clinical
applications.

In our current review, none of the included studies effectively accounted for the
time dependence of SCI recovery beyond the input data and output label inclusion
brackets. SCI recovery is a process. The longitudinal character of available SCI data
may hold information regarding the specific recovery trajectory, implying that data
from repeated assessments should be considered [121]. Going even further in temporal
data resolution, sensor data from technologies such as wearables [122] and exoskeletons
[123] are available for real-time monitoring of SCI patients. As data-driven models
have previously been used to recognize physical activity in patients with SCI [124, 125],
these could further enhance recovery prediction.

Finally, to ensure optimal training and objective performance evaluation, the SCI
community needs to agree on standards regarding recovery prediction performance
evaluation and endpoints of interest. In this review, we saw a variety of tasks associ-
ated with SCI recovery. While ISNCSCI composite scores, AIS grade conversion, and
SCIM items are widely applied, the clinical relevance, objectivity, and prediction suit-
ability need to be assessed. Ceiling and flooring effects [31], as well as co-linearity of
contributing sub-scores, are common limitations in this context [126]. To enhance the
understanding and accuracy of SCI recovery evaluations, it is crucial to account for
the predominantly non-decreasing nature of patient recovery trajectories (i.e. patients
generally exhibit improvement over time). Furthermore, when assessing ordinal scale
labels like SCIM or AIS grades, metrics and loss functions suitable for these data types
(i.e. ordinal) should be the standard [127]. Stringent data splits are equally impor-
tant. To demonstrate model generalizability and clinical relevance, even given small
sample sizes, (leave-one-out) cross-validation [128] and external test sets are key. In
summary, we propose that by embracing state-of-the-art developments in machine
learning, beyond standard architectures and training regimes, new insights into spinal
cord injury can be discovered. This will pave the way towards robust and clinically
relevant predictions.
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Conclusion

Data-driven approaches from the realm of machine and deep learning hold promise
to improve the prediction of recovery outcomes in SCI. The use of a variety of data
types and implementation architectures reflects the growing trend in the SCI research
community to harness these approaches in a clinical context. However, accomplish-
ing clinical translation requires careful consideration of model validity, causality, and
practical deployability, in addition to growing and maintaining increasingly detailed
databases. Currently, data-driven SCI recovery prediction models often rely on stan-
dard architectures applied to comparably small sample sizes. This motivates further
investigation of modern training paradigms and architectures that embrace the chal-
lenges in SCI recovery, such as limited data and model robustness. Data-driven
predictions have the potential to inform rehabilitation strategies, enhance the design
of clinical trials, and consequently, enhance the overall quality of life for individuals
affected by SCI.
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Curt, A.: Wearable sensors in ambulatory individuals with a spinal cord injury:
From energy expenditure estimation to activity recommendations. Frontiers in
Neurology 10 (2019) https://doi.org/10.3389/fneur.2019.01092

[123] Esquenazi, A., Talaty, M., Packel, A., Saulino, M.: The rewalk powered exoskele-
ton to restore ambulatory function to individuals with thoracic-level motor-
complete spinal cord injury. American Journal of Physical Medicine & Rehabil-
itation 91(11), 911 (2012) https://doi.org/10.1097/PHM.0b013e318269d9a3

[124] Alhammad, N., Al-Dossari, H.: Recognizing physical activities for spinal cord
injury rehabilitation using wearable sensors. Sensors 21(1616), 5479 (2021)
https://doi.org/10.3390/s21165479

[125] Sok, P., Xiao, T., Azeze, Y., Jayaraman, A., Albert, M.V.: Activity recognition
for incomplete spinal cord injury subjects using hidden markov models. IEEE
Sensors Journal 18(15), 6369–6374 (2018) https://doi.org/10.1109/JSEN.2018.
2845749

[126] Graves, D.E., Frankiewicz, R.G., Donovan, W.H.: Construct validity and dimen-
sional structure of the asia motor scale. Journal of Spinal Cord Medicine 29(1),
39–45 (2006) https://doi.org/10.1080/10790268.2006.11753855

[127] Gutierrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro,
F., Hervas-Martinez, C.: Ordinal regression methods: Survey and experimental
study. IEEE Transactions on Knowledge and Data Engineering 28(1), 127–146
(2016) https://doi.org/10.1109/TKDE.2015.2457911

[128] Wong, T.-T.: Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation. Pattern Recognition 48(9), 2839–2846 (2015)
https://doi.org/10.1016/j.patcog.2015.03.009

xxix

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2024. ; https://doi.org/10.1101/2024.05.03.24306807doi: medRxiv preprint 

https://doi.org/10.1609/aaai.v29i1.9590
https://doi.org/10.1609/aaai.v29i1.9590
https://doi.org/10.3389/fneur.2019.01092
https://doi.org/10.1097/PHM.0b013e318269d9a3
https://doi.org/10.3390/s21165479
https://doi.org/10.1109/JSEN.2018.2845749
https://doi.org/10.1109/JSEN.2018.2845749
https://doi.org/10.1080/10790268.2006.11753855
https://doi.org/10.1109/TKDE.2015.2457911
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1101/2024.05.03.24306807
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary

Order of labeling for study exclusion:

Item Description
1 Review, collection or commentary
2 Non-human
3 Not traumatic (or ischemic) spinal cord injury, such as stroke, degenerative (e.g. myelopa-

thy), pediatric
4 No prediction model or validation study of a previously described model (including linear

regression models fitted to new data but excluding linear regression models with param-
eters from a previous paper.)

5 No recovery prediction
6 Different outcome measure

Table S1 Description of hierarchical exclusion criteria.
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Author Dataset name Number
of
patients

Models Code pub-
licly avail-
able

Outcome Input Evaluation Prediction

1 Raju,
P.R.S.S.V., et
al.

Cancer Imaging
Archive for MRI
data

72 Correlated Graph model,
KNN, SVM, RNN,
Convolutional neural
network ∗

- Other Imaging Statistical Signif-
icance Metrics,
Other Metrics

Accuracy 99%

2 Ariji, Y., et
al.

Japan Single
Center Study
for Spinal Cord
Injury Database
(JSSCI-DB)

137 Linear regression - Functional (SCIM
III)

Functional,
Demographics,
Neurological

Predictive
Accuracy Metrics

R-Squared 0.83

3 Torres-Esṕın,
A., et al.

- 118 Linear Regression Yes Neurological (AIS) Neurological,
Functional,
Patient
Demographics

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

Accuracy 73% ,
0.82 %, 0.81%

4 Sizheng, Z., et
al.

Different Japanese
hospitals

249 XGBoost, Linear
regression∗

Yes Functional (SCIM
III)

Imaging, Neurolog-
ical

Predictive
Accuracy metrics

MAE 3.01

5 Kapoor, D., et
al.

National Spinal
Cord Injury Sta-
tistical Center
(NSCISC)

20790 Random forest, SVM,
Naive Bayes, Convolu-
tional neural network,
Ridge classifier, Elastic

net, Ensemble model ∗

Yes Neurological (AIS) Neurological Predictive Accu-
racy Metrics,
Other Metrics

Accuracy 74%

6 Øhrn, A., et
al.

Spinal Cord Injury
Model System
Database (SCIMS)

1138 Rough Sets, Logis-
tic regression, Neural
Network∗

- Functional (Walk-
ing)

Demographics,
Neurological

Discrimination
Metrics, Statisti-
cal Significance
Metrics

ROC 91.4

7 Chou, A., et
al.

Transforming
Research and Clin-
ical Knowledge for
Spinal Cord Injury
(TRACK-SCI)
program

74 Regularized Logistic
Regression, Decision
Trees∗

- Neurological (AIS) Neurological,
Patient Demo-
graphics,
Other

Discrimination
Metrics, Other
Metrics

AUC 0.68, AUC
0.67

8 Shimizu, T.,
et al.

- 135 CatBoost, LightGBM,
XGBoost∗

- Neurological (AIS) Neurological,
Imaging

Predictive
Accuracy Metrics,

Accuracy 84%

9 Inoue, T., et
al.

Sendai Med-
ical Center’s
Department of
Neurosurgery
database,

165 XGBoost, Logistic
regression, Decision
Trees∗

- Neurological (AIS) Neurological,
Imaging

- Accuracy 81%

10 Leister, I., et
al.

Different German
and Austrian Hos-
pitals

415 Binary Logistic regres-
sion, XGBoost∗

- Bone healing
(Odontoid fracture
nonunion)

Discrimination
Metrics, Statisti-
cal Significance
Metrics

AUC 0.71, AUC
0.68

11 Yang, F., et
al.

Beijing hospital 1231 Random Forest,
HH0 - Random Forest,
XGBoost, SVM,
Bayesian Ridge∗

- Functional (FIM) Functional, Neu-
rological , Patient
Demographics

Predictive
Accuracy Metrics

RMSE 0.13, RMSE
0.11

12 Smith, A.C.,
et al.

National Spinal
Cord Injury Model
Systems (SCIMS)

623 Regression analysis - Functional (Walk-
ing)

Neurological Predictive
Accuracy Metrics

Accuracy 81%

13 Skinnider,
M.A. et al.

- 131 Ensemble model - Neurological (AIS,
UEMS/LEM-
S/TMS)

Neurological,
Patient demo-
graphics,
Other

Predictive
Accuracy metrics

AUC 0.91

14 Belliveau, T.,
et al.

National Spinal
Cord Injury Model
Systems (SCIMS)

3142 Logistic regression,
Neural Network∗

- Functional (Walk-
ing and FIM)

Neurological,
Patient Demo-
graphics,
Functional

Discrimination
Metrics, Predictive
Accuracy Metrics

AUC 0.86 - 0.90

15 Hug, A., et al. EMSCI 444 Logistic regression - Neurological (AIS) Neurological,
Patient Demo-
graphics,
Other

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

AUC 0.90

16 van Midden-
dorp, Joost
J., et al.

EMSCI 640 Logistic regression - Functional Functional, Demo-
graphics

Predictive
Accuracy Metrics

AUC 0.97

17 Javeed, S., et
al.

Spinal Cord Injury
Model System
Database (SCIMS)

940 Logistic regression - Functional (FIM) Patient demo-
graphics,
Neurological,
Functional

Predictive
Accuracy Metrics

AUC 0.90

18 Pavese, C., et
al.

EMSCI 1250 Logistic Regression - Functional
(Bowel/Bladder)

Demographics,
Neurological

Discrimination
Metrics, Dis-
crimination
Metrics, Predic-
tive Accuracy
Metrics, Statisti-
cal Significance
Metrics

ROC 0.81

19 Chen, Si, et
al.

Hospital of
Southwest Med-
ical University,
Chengdu 363 Hos-
pital of Southwest
Medical University

193 Logistic regression,
Nomogram

- Neurological (AIS) Neurological,
Imaging, Patient
Demographics

Discrimination
Metrics

C-index 0.89

20 Yan, X., et al. - 475 Logistic regression,
Nomogram∗

- Neurological (JOA
score)

Patient Demo-
graphics,
Neurological, JOA
score, Imaging

Predictive Accu-
racy Metrics,
Statistical Signif-
icance Metrics,
Other Metrics

AUC 0.82

21 Rowland, T.,
et al.

Spinal Cord Injury
Model System
Database (SCIMS)

5626 Logistic regression,
Multilayer perceptron,
Rough sets∗

- Functional (Walk-
ing)

Patient Demo-
graphics,
Neurological,
Other

Discrimination
Metrics

ROC 0.91, ROC
0.91, ROC 0.89

22 Kalyani, P., et
al.

- 165 XGBoost, Logistic
Regression, Decision
trees∗

- Neurological (AIS) Patient Demo-
graphics,
Neurological,
Imaging

Predictive Accu-
racy Metrics,
Discrimination
Metrics

AUC 0.81

23 Mills, P.B., et
al.

Vancouver site of
the national Rick
Hansen SCI Reg-
istry (RHSCIR)

350 Logistic Regression - Neurological
(Contracture/S-
pasticity)

Patient demo-
graphics,
Neurological

Predictive
Accuracy Metrics

AUC 0.85

24 Harrington,
G.M.B., et al.

Internal hospital
dataset

417 Linear Regression,
Generalized Linear
models with elastic net
penalization∗

- Functional (SCIM
III), Neurological
(AIS)

Neurological,
Patient Demo-
graphics, Other
(blood markers)

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

RMSE 11-18

25 Zariffa, J., et
al.

- 129 Random forest - Functional
(Prehension
Performance)

Neurological,
Functional

Statistical Signifi-
cance Metrics

Spearman’s p 0.84

26 Kato, C., et
al.

- 210 Linear Regression,
Decision Trees, Sup-
port Vector Machines,
Neural Network∗

- Functional (SCIM) Patient Demo-
graphics,
Functional,
Neurological

Predictive Accu-
racy Metrics,
Statistical Signif-
icance Metrics,
Other Metrics

RMSE 10-12/100

27 HeidarAbadi,
et al.,

- 253 Neural Network - Neurological (Type
of pain)

McGill Pain Ques-
tionnaire

Predictive
Accuracy Metrics

Accuracy 91%

28 Bykowski,
E.A. et al.,

- 7 Dimensionality
reduction

- Functional (SCIM
III)

Other (Serum
metabolites)

Predictive
Accuracy Metrics

Accuracy 99%

29 Tanadini,
G.L., et al.

EMSCI 122 Decision trees - Neurological
(ISNCSCI)

Demographics,
Neurological

Predictive
Accuracy Metrics

RMSE 10.36

30 Tomioka, Y.,
et al.

- 31 Logarithmic model - Functional (SCIM
III)

Demographics Statistical Signif-
icance Metrics,
Other Metrics

-

31 DeVries, Z., et
al.

RHSCIR database 862 Logistic regression, K-
means clustering∗

- Functional (FIM) Demographics Statistical
Significance Met-
rics, Predictive
Accuracy Metrics

Accuracy 0.87

32 Hupp, M., et
al.

EMSCI 224 Logistic regression - Functional (SCIM
III)

Neurological,
Demographics

Discrimination
Metrics, Predictive
Accuracy Metrics

AUC 0.94
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33 El Sammak,
et al.

NSCIMS 2515 Logistic regression - Functional
(Bowel/Bladder)

Neurological,
Demographics,
Functional

Predictive
Accuracy Metrics

AUC

34 Tee, J.W., et
al.

Vancouver
Rick Hansen
Spinal Cord
Injury Registry
(RHSCIR)

806 Chi-square Automatic
Interaction Detector
(CHAID) Decision Tree

- Neurological
(UEMS/LEM-
S/TMS)

Neurological Statistical Signifi-
cance Metrics

p-value <= 0.001

35 Imura, T., et
al.

Japan Rehabilita-
tion Database

310 Decision Trees - Functional (FIM) Functional, Demo-
graphics

Predictive
Accuracy Metrics

AUC 0.72

36 Hori, T., et al. Japan Rehabili-
tation Database
(JRD)

1282 Decision Trees - Neurological
(AIS), Functional
(FIM)

Neurological,
Functional,
Demographics

Statistical Signif-
icance Metrics,
Other Metrics

AUC 0.72

37 Facchinello,
Y., et al.

- 172 Linear regression, Deci-
sion Trees∗

- Functional (SCIM
III)

Demographics Predictive
Accuracy Metrics

R20.5

38 Kaminski, L.,
et al.

- 76 Linear regression - Functional (SCIM) Neurological,
Patient
Demographics

Predictive
Accuracy Metrics

R20.37

39 Diong, J., et
al.

- 92 Linear Regression - Neurological (Con-
tracture)

Demographics,
Neurological

Predictive
Accuracy Metrics

R20.31

40 Kato, et al. - 210 Decision Trees - Other (Discharge
destination)

Neurological,
Demographics,
Functional

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

AUC 0.832

41 Wilson, J.R.,
et al.

NACTN and
STASCIS
Protocols

696 Linear regression,
Logistic regression∗

- Functional (FIM) Imaging,
Demographics

Discrimination
Metrics

AUC 0.92

42 Pavese, C.,et
al.

EMSCI 1250 Logistic Regression - Functional
(Bowel/Bladder)

Demographics,
Neurological,
Functional

Discrimination
Metrics, Predic-
tive Accuracy
Metrics, Statisti-
cal Significance
Metrics

ROC 0.837

43 Venkatapathiraju,
P.R.S.S., et
al.

- - Deep kernel based
model

- Other (Soft
tissues)

MRI Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

Accuracy 75%

44 Winchester,
P., et al.

- 38 Linear regression - Functional (Walk-
ing)

Demographics Other Metrics -

45 Rigot, S.K., et
al.

Hospital internal
dataset

27 Random Forest - Functional (Walk-
ing)

Patient Demo-
graphics, Other,
LA

Predictive
Accuracy Metrics

Accuracy 70%

46 Okimatsu, S.,
et al.

- 215 Convolutional neural
network and Random
forest

- Neurological (AIS) Neurological,
Imaging,
Demographics

Discrimination
Metrics, Predic-
tive Accuracy
metrics, Statisti-
cal Significance
Metrics

Accuracy 71%

47 Birkhäuser,
V. et al.

EMSCI 97 Logistic Regression - Functional
(Bowel/Blad-
der/Urodynamic
risk factors)

Neurological,
Demographics,
Functional

Predictive
Accuracy met-
rics, Statistical
Significance
Metrics

AUC 0.79

48 Cathomen, A.
et al.

EMSCI 481 URP-CTREE Yes Functional (Walk-
ing)

Neurological,
Demographics

Statistical Signifi-
cance Metrics

-

49 Pfyffer, D., et
al.

EMSCI 70 URP-CTREE - Neurological
(AIS, UEM-
S/LEMS/TMS),
Functional(SCIM)

Neurological,
Imaging, Patient
Demographics

Statistical Signifi-
cance Metrics

p-value 0.001

50 Cathomen, A,
et al.

EMSCI 879 URP-CTREE Yes Functional (Walk-
ing)

Neurological,
Demographics

Statistical Signifi-
cance Metrics

p-value 0.01

51 Leidinger, A.,
et al.

- 284 Decision Trees - Neurological (AIS) Imaging, Neurolog-
ical, Demographics

Predictive
Accuracy metrics

Accuracy 34%

52 Mummaneni,
N., et al.

TRACK-SCI
(Transforming
Research and Clin-
ical Knowledge
in Spinal Cord
Injury)

24 Linear Regression - Neurological
(UEMS/LEM-
S/TMS)

Imaging, Patient
Demographics

Statistical Signifi-
cance Metrics

p-value 0.001

53 Warschausky,
S., et al.

Spinal Cord Injury
Model Systems
database

142 Linear regression - Functional (FIM) Functional,
Demographics,
Neurological

Only feature
importance

-

54 Ishida, Y., et
al.

Tsushimi Hospital
and Yamaguchi
Rosai Hospital

22 Logistic regression - Neurological (PDI) Neurological,
Imaging

Statistical Signifi-
cance Metrics

p-value 0.006

55 Kwon, S.Y., et
al.

- 38 Logistic Regression - Neurological (AIS) Neurological,
Demographics,
Other

Statistical Signifi-
cance Metrics

-

56 Zhao, J.L., et
al.

- 377 Logistic Regression - Neurological (AIS) Neurological,
Demographics,
Other

Predictive
Accuracy met-
rics, Statistical
Significance
Metrics

AUC 0.94

57 Ariji, Y., et
al.

Japan Single
Center study
for Spinal Cord
Injury Database
(JSSCI-DB)

80 Linear Regression - Neurological (AIS) Neurological,
VAC/DAP

Predictive
Accuracy metrics

AUC 0.87

58 Pavese, C., et
al.

EMSCI 142 Logistic Regression - Functional
(Bowel/Bladder)

Neurological Predictive
Accuracy met-
rics, Statistical
Significance
Metrics

AUC 0.780

59 Jean, S., et al. - 159 Linear regression - Neurological,
Functional
(Walking)

Neurological,
Patient
Demographics

Predictive
Accuracy Metrics

Accuracy 85%

60 Tee, J.W., et
al.

Institution’s spine
trauma registry
dataset

969 Logistic Regression - Functional (FIM/-
Glasgow Outcome
Scale)

Neurological,
Demographics,
Other

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

Accuracy 61%

61 Bersch, I., et
al.

- 220 Ordinal regression - Neurological
(ISNCSCI)

MP, Demographics Other Metrics -

62 Agarwal et al. - 74 Decision trees - Neurological (AIS) Demographics,
Neurological,
Other

Statistical Signifi-
cance Metrics

-

63 Brown, S.J.,
et al.

Midlands Centre
for Spinal Injuries
(MCSI)

82 Logistic Regression - Neurological (AIS,
Pin Prick)

Neurological,
Demographics,
Other

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

R20.81

64 Moghaddam,
A. et al.

BG Trauma Centre 30 Logistic Regression - Neurological (AIS) Neurological,
Demographics,
Other

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

Accuracy 97%

65 Bykowski,
E.A., et al.

- 6 Dimensionality Reduc-
tion

- Functional (SCIM
III)

Functional, Other
(Urinary metabo-
lites)

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

-

66 Varzi, D., et
al.

Queen Eliza-
beth National
Spinal Injury Unit
(QENSIU)

25 Linear Regression - Functional (Bone
healing/BM-
C/BMD)

Neurological,
Demographics,
Imaging

Predictive
Accuracy Met-
rics, Statistical
Significance
Metrics

R20.61

Table S2: Overview of the information retrieval from the systematic review. The order of articles
is the same as in the heatmap in Figure 3B.
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Metric Category Metrics

Discrimination Metrics ROCAUC (Receiver Operating Characteristic Area Under the
Curve)
AUPRC (Area Under the Precision-Recall Curve)
Sensitivity/Specificity
Positive/Negative Predictive Value
Positive/Negative Likelihood Ratio

Predictive Accuracy Metrics AUC (Area Under the Curve)
RMSE (Root Mean Squared Error) or MSE (Mean Squared
Error)
MAE (Mean Absolute Error)
Accuracy (Percent Error)
F1 Score
R-squared

Statistical Significance Metrics P-value
Statistical Tests (depends on the context and the statistical
test used)

Other Metrics Absolute/Relative Error
Correlation Coefficient
Odds Ratio
Concordance Index
Interpretability Analysis/Feature Importance
Linear Mixed Model
Pearson Correlation

Table S3 Evaluation metrics by category.
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Clinical
significance

Reproducibility Generalizability ML quality ML performance

1 Raju, P.R.S.S.V., et al. 0.5 0.5 1.5 3 2.5
2 Ariji, Y., et al. 4.5 4 3.5 4.5 4
3 Torres-Esṕın, A., et al. 3.5 4.5 3.5 4.5 4
4 Sizheng, Z., et al. 4.5 5 4 4 3.5
5 Kapoor, D., et al. 4.5 4.5 4.5 5 3
6 Øhrn, A., et al. 3 3 4 4.5 5
7 Chou, A., et al. 3 3 3 5 4
8 Shimizu, T., et al. 4.5 3 3.5 5 4
9 Inoue, T., et al. 4 3 3.5 5 4
10 Leister, I., et al. 3.5 3 4 5 3.5
11 Yang, F., et al. 4 3.5 4 5 3.5
12 Smith, A.C., et al. 4.5 3 5 3.5 3.5
13 Skinnider, M.A. et al. 5 4 5 4 4
14 Belliveau, T., et al. 4 3 5 5 4
15 Hug, A., et al. 3.5 3 4 3.5 4
16 van Middendorp, Joost J., et al. 4 3.5 5 4 4.5
17 Javeed, S., et al. 4 3 4.5 4 4.5
18 Pavese, C., et al. 4.5 3.5 4 4 4.5
19 Chen, Si, et al. 4.5 3 4.5 4 4
20 Yan, X., et al. 4.5 3 4 4 4
21 Rowland, T., et al. 4 3 4.5 4.5 4
22 Kalyani, P., et al. 4 3 4 4.5 4
23 Mills, P.B., et al. 4 3 4 4 4
24 Harrington, G.M.B., et al. 5 3 4 4.5 3.5
25 Zariffa, J., et al. 5 3 4 3.5 4
26 Kato, C., et al. 4.5 3 3.5 4 4
27 HeidarAbadi, et al., 4.5 3 3 4 4
28 Bykowski, E.A. et al. 4.5 4 2 2.5 2.5
29 Tanadini, G.L., et al. 5 3 1.5 2.5 3
30 Tomioka, Y., et al. 4.5 3.5 2 3 3.5
31 DeVries, Z., et al. 4 3 2.5 3 2.5
32 Hupp, M., et al. 4 3 2 2.5 3
33 El Sammak, et al. 4.5 3 2.5 2.5 3
34 Tee, J.W., et al. 4.5 3 4 2.5 1.5
35 Imura, T., et al. 4 4 4 3 3
36 Hori, T., et al. 4 3.5 4 2.5 3
37 Facchinello, Y., et al. 4.5 3 3.5 3 2.5
38 Kaminski, L., et al 4.5 3 3 2.5 2.5
39 Diong, J., et al. 4.5 3 3 2.5 2
40 Kato, et al. 4 3 3 3 3.5
41 Wilson, J.R., et al. 4.5 3 3.5 3 3.5
42 Pavese, C.,et al. 4.5 3 3.5 2.5 3
43 Venkatapathiraju, P.R.S.S., et al. 3.5 2 2.5 4.5 3
44 Winchester, P., et al. 4.5 3 2.5 3.5 4
45 Rigot, S.K., et al. 4 3 2 4 4
46 Okimatsu, S., et al. 4 3.5 3 4.5 3
47 Birkhäuser, V. et al. 4 3.5 3 3.5 3
48 Cathomen, A. et al. 5 5 3.5 2.5 1.5
49 Pfyffer, D., et al. 4 4.5 0.5 0.5 0.5
50 Cathomen, A, et al. 4.5 5 2.5 0 0
51 Leidinger, A., et al. 3.5 3 3 1.5 0
52 Mummaneni, N., et al. 5 2.5 1 0.5 0.5
53 Warschausky, S., et al. 4.5 3 1.5 1 0.5
54 Ishida, Y., et al. 5 3 2 1 0.5
55 Kwon, S.Y., et al. 5 3 2 1 1
56 Zhao, J.L., et al. 3.5 4 2 1 1
57 Ariji, Y., et al. 4 4 1.5 1.5 1.5
58 Pavese, C., et al. 4 3.5 2.5 2 2
59 Jean, S., et al. 4 3 2 2 2
60 Tee, J.W., et al. 4 3 2 2 2
61 Bersch, I., et al. 3.5 3 2.5 2 1.5
62 Agarwal et al. 4 3 2.5 1.5 1.5
63 Brown, S.J., et al. 5 3 2 2 2
64 Moghaddam, A. et al. 5 3 1.5 2 2
65 Bykowski, E.A., et al. 4.5 3 1.5 1.5 1.5
66 Varzi, D., et al. 5 3 1 1.5 1.5

Table S4: Grades of the studies in the systematic search on the scale 0-5 using the mean of two
scores (two raters). The order of articles is the same as in the heatmap in Figure 3B.
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