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Abstract

In 2022, the US Centers for Disease Control and Prevention commissioned the Na-
tional Academies of Sciences, Engineering, and Medicine to assess the role of community-
level wastewater-based disease surveillance (WDS) beyond COVID-19. WDS is recog-
nized as a promising mechanism for promptly identifying infectious diseases, includ-
ing COVID-19 and other novel pathogens. An important conclusion drawn from this
initiative is that it is crucial to maintain equity and expand access to maximize the
advantages of WDS for marginalized communities. To address this need, we propose
an optimization framework that focuses on the strategic allocation of wastewater mon-
itoring resources at the wastewater treatment plant level. The framework’s purpose is
to obtain a balanced spatial distribution, inclusive population coverage, and efficient
representation of vulnerable communities in allocating resources for WDS. This study
offers an opportunity to improve wastewater surveillance by tailoring location selec-
tion strategies to address specific priorities, improving decision-making in public health
responses.

1 Introduction

Wastewater-based disease surveillance (WDS) is a rapidly evolving field that involves the
measurement of health-related biomarkers excreted by individuals into sewer systems. WDS
data offers real-time estimation of public health indicators and early warning of community
disease outbreaks. Initially used to monitor poliovirus and detect pharmaceuticals and illicit
drugs [1, 2], its utility greatly expanded during the Coronavirus Disease 19 (COVID-19)
pandemic [3]. Widespread implementation of WDS during the pandemic proved to be a cost-
effective method to monitor the dynamics of Sars Coronavirus 2 (SARS-CoV-2) community
spread [4].
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To enhance the nation’s ability to monitor SARS-CoV-2 effectively, the US Centers for
Disease Control and Prevention (CDC) established the National Wastewater Surveillance
System (NWSS) in September 2020. The NWSS expanded to encompass 1,154 testing sites
nationwide as of March 2024. These sites collect samples from wastewater systems serving
approximately 128 million people across the United States [5]. A critical factor behind the
success of WDS is the widespread coverage of municipal wastewater collection systems, which
link approximately eighty percent of households across the United States [6]. The NWSS is
consolidating disparate local initiatives into a resilient and enduring national surveillance
network.

WDS data can aid public health mitigation strategies by providing critical insights into
the prevalence of COVID-19 within a community [5]. However, additional research is still
needed to effectively implement WDS programs [7, 8, 9, 10]. A WDS program must possess
sufficient spatial and temporal resolution to offer timely and dependable detection and alerts
regarding disease outbreaks. Sampling sites are predominantly selected from wastewater
treatment plants (WWTPs) or sewer maintenance holes, contingent on factors such as the size
and demographics of the target population, the level of risk in the area, and the laboratory’s
resources and capabilities.

Temporal and spatial resolution should undergo regular reassessment to ensure the sys-
tem can detect significant changes with an adequate lead time to inform public health action
effectively. The current distribution of sampling sites within the NWSS primarily comprises
localities, tribes, and states that volunteered to participate during the pandemic emergency.
This distribution might not accurately reflect the diverse demographic and geographic char-
acteristics essential for establishing a comprehensive national network [11]. Furthermore, it
may lack equity, optimal actionability, and long-term sustainability [12].

Several recent studies proposed optimal algorithms for selecting sewer monitoring sites to
detect infectious diseases or hotspots at a catchment level [13, 14, 15, 16]. These algorithms
aim to maximize the sensitivity of pathogen detection in the sewer network by considering
factors like shedding, loss, decay, transport, and the population of the infectious agent.
They utilize graph theory and optimization algorithms to identify hotspots and zero-patient
locations within a sewer network. These algorithms are often complex and computationally
intensive, which may limit their applicability to large-scale or national-level WDS programs.

In this study, we introduce an optimization framework designed to strategically allocate
WDS resources at the WWTP level to guide a WDS program. The framework takes into
account a range of factors that may influence the effectiveness and efficiency of WDS. These
include spatial distribution, population coverage, the presence of vulnerable communities,
population density, and variability in wastewater signals. The optimization objective is to
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maximize a weighted combination of these factors while minimizing the total number of
WWTPs actively monitoring wastewater. We address this challenge as an integer optimiza-
tion problem and utilize the simulated annealing (SA) algorithm for an efficient solution. We
assess various scenarios by adjusting the weightings for each factor to optimize the config-
urations of WWTPs in the WDS system. The primary objective is to minimize the total
number of WWTPs actively involved in WDS.

This approach optimizes resource allocation in WDS by offering tailored location selection
strategies that effectively address specific priorities and scenarios. By streamlining WDS
efforts and reducing the number of WWTPs collecting samples, we can expand WDS to new
communities, especially those at high risk, thereby broadening the scope of our efforts. This
not only enhances the efficiency and cost-effectiveness of WDS but also ensures equitable
support for informed decision-making across all communities.

2 Data description

We built the analytical framework using publicly accessible data in California, USA. We ob-
tained data from the California Department of Public Health (CDPH) for 84 WWTPs that
have been monitored for SARS-CoV-2 [17]. We include the following variables in our analysis:
1)Geographic coordinates, which include longitude and latitude of each WWTP based on its
zip code location, as reported in [17]; this geo-location data is utilized to potentially reduce
the selection of WWTPs close to each other, promoting a more geographically dispersed dis-
tribution, 2) Population served, representing the estimated number of individuals served by
each sampling site; the incorporation of this term in our analysis prioritizes WWTPs that
serve larger populations [17], 3) Population density measures individuals per square mile for
each city where a WWTP is located [18]; we use population density data to prioritize areas
with high population density, which may be more susceptible to disease transmission, 4)
Social Vulnerability Index, which uses 16 US census variables in a relative measure of a popu-
lation’s risk during a public health due to external stressors on health such as socioeconomic
status and demographic factors [19]. We incorporate the social vulnerability index (SVI)
at a county level to ensure the representation of vulnerable populations in the optimization
problem. This factor is essential, particularly in regions with insufficient infrastructure and
limited resources, which tend to be disproportionately affected during pandemics.

SARS-CoV-2 RNA concentrations. We analyzed wastewater concentration data from
19 of the 84 WWTPs that monitored wastewater in California between March 21, 2022,
and May 21, 2023. We selected this period because it corresponds with the availability of
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published protocols for sampling, analysis, and data processing, as outlined in the Supple-
mentary Material (SM). Wastewater data were obtained from CPDH and WastewaterSCAN
[17, 20]. The concentration of SARS-CoV-2 RNA measured in each wastewater sample was
normalized by the concentration of pepper mild mottle virus (PMMoV) RNA measured in the
same sample. PMMoV is a fecal indicator and laboratory process control that is commonly
measured alongside SARS-CoV-2 to help mitigate noise arising from analytical processes,
population size, and wastewater flow variations. Normalization results in the dimensionless
metric N/PMMoV, which we refer to as the normalized wastewater concentration.

Based on this normalized wastewater concentration data, we construct a dissimilarity
matrix that measures the difference between the wastewater signals of different WWTPs
based on their patterns, such as trends, peaks, and variations.

Figure 1A illustrates the spatial distribution of 84 WWTPs monitoring for SARS-CoV-2,
along with the population they serve and SVI at the county level. The subset of 19 WWTPs
utilized in the optimization problem involving the factor of signal dissimilarity is illustrated
in Figure 4A.

3 Methods

This study aims to inform WDS planning in California by considering spatial distributions
of WWTPs, population coverage, representation of vulnerable populations, and dissimilar-
ity between wastewater signals. We normalize the factors to a common scale to facilitate
comparisons, and we assign weights to the factors to demonstrate a range of strategies for
balancing their relative importance. We then maximize the weighted combinations of factors
while satisfying pre-defined constraints to minimize the number of WWTPs. This approach
acknowledges practical considerations and constraints associated with wastewater monitoring
capabilities.

3.1 Optimization problem formulation

Let I = {1, . . . , n} represent the set of WWTPs to be optimized. The objective function,
denoted as f(x), seeks to maximize a weighted combination of various factors:

f(x) = wP S

∑
i∈I PSixi

SP S

+ wP D

∑
i∈I PDi · xi

SP D

+ wdist

∑
i∈I

∑
j∈I dist(i, j)xixj

Sdist

+ wsvi

∑
i∈I SV I(i)xi

SSV I

+ wdiss

∑
i∈I

∑
j∈I diss(i, j)xixj

Sdiss

(1)
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where x = (x1, . . . , xn) and xi is a binary variable indicating if plant i is selected (xi = 1)
or not (xi = 0). The terms PSi, PDi, dist(i, j), SV I(i), and diss(i, j) correspond to the
population served by plant i, city’s population density associated with plant i, the distance
between plant i and plant j, SVI of the county associated with plant i, and dissimilarity
between WWTP signals, respectively.

The variables SP S = ∑
i∈I PSi, SP D = ∑

i∈I PDi, Sdist = ∑
i∈I

∑
j∈I dist(i, j), SSV I =∑

i∈I SV I(i), and Sdiss = ∑
i∈I

∑
j∈I diss(i, j) represent the total values of the corresponding

terms over all plants. These sums facilitate normalization for comparison and the introduc-
tion of weights. The weights wP S, wP D, wdist, wSV I , and wdiss assigned to each term in
the objective function determine the importance given to the respective factors during the
optimization process. To ensure balance, the sum of weights is constrained to be equal to 1:
wP S + wP D + wdist + wSV I + wdiss = 1.

The optimization problem is subject to the constraint that the total number of selected
plants should be equal to a predefined number k (i.e., ∑i∈I xi = k). This constraint plays
a critical role in maintaining the efficiency and effectiveness of the WDS system, especially
when dealing with resource limitations. The goal of the optimization problem is to select a
subset of k WWTPs that effectively balance multiple factors mentioned above.

3.2 Computing a dissimilarity matrix using wavelets

Epidemiological studies often involve analyzing time series data to extract valuable insights
and patterns across different scales. However, epidemiological processes are typically not sta-
tionary, implying that their statistical properties vary over time. Hence, a global timescale
decomposition, where the entire time series is treated uniformly, may not be suitable for
studying epidemiological processes [21]. Wavelet analysis is a suitable method for investi-
gating non-stationary time series data, as it performs a local timescale decomposition of the
signal [22]. Additionally, it allows us to measure the associations between two or more time
series at any frequency band and time window, allowing us to detect synchrony, phase, and
coherence patterns [21, 23]. It has been applied to various human infectious diseases, such
as measles, influenza, leishmaniasis, and dengue [23, 24, 25, 26].

3.2.1 Dissimilarity matrix

We apply the discrete wavelet transform (DWT) to the SARS-CoV-2 concentration time series
data using the Daubechies 4 wavelet family. Decomposing the data into four levels (L = 4),
this process yields coefficients at different scales and positions. At each level (l), we obtain
approximation coefficients (cAl) and detail coefficients (cDl), both of length N/(2l), where N
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is the length of the wastewater time series. cAl contains information about the overall signal
trend, while cDl contains high-frequency information or details, l = 1, ..., L. These wavelet
coefficients capture the characteristics of the signal at different scales and positions in both
the time and frequency domains. We use these coefficients, excluding detail coefficients at
the first two levels, to compute a dissimilarity matrix that measures how different the time
series are based on their wavelet coefficients; see details in SM.

We used the correlation distance as the dissimilarity measure. The correlation distance
between u and v is defined as 1 − (u−ū)·(v−v̄)

∥(u−ū)∥2∥(v−v̄)∥2
, where ū is the mean of the elements of u

and x · y is the dot product of x and y. A low correlation distance (high positive correlation)
indicates a low dissimilarity, and vice versa. Other distance measures, such as the Euclidean
distance, may not be suitable for time series with different scales or magnitudes since it
only considers the absolute difference between two vectors. Time series with similar patterns
but distinct scales could yield high dissimilarity with Euclidean distance, while correlation
distance would give a low dissimilarity. Therefore, correlation distance may be better for
comparing time series with different scales or magnitudes.

We use the PyWavelets library in Python to perform the DWT, and subsequently compute
the correlation distance matrix using the scikit-learn library. This matrix is denoted as
diss(·, ·) in our optimization function. Refer to Figure 3 for a visual representation of the
computed correlation distance matrix.

The primary concept behind using wavelet coefficients to compare signals is to emphasize
the patterns and relative changes in the data across different scales. Wavelet coefficients
are relative measures that describe the variations in the data at different scales, regardless
of the absolute magnitude of the data. These coefficients are normalized in the sense that
they quantify the relative importance of different frequency components in the data. When
comparing wavelet coefficients from two-time series, we are essentially comparing how their
frequency content and patterns vary across scales, which makes it possible to identify sim-
ilarities or differences in their underlying structures, even if the original magnitudes of the
series are different.

3.2.2 Simulated annealing

Optimal location problems are solved through exact methods or heuristic approaches, de-
pending on the problem’s size and complexity [27]. Exact methods find the global optimum
but are only feasible for small problems. Heuristic approaches aim to find good-quality solu-
tions within a limited amount of computation time or space [28]. We use the SA algorithm,
a heuristic approach that has proven effective in solving complex combinatorial optimization
problems [29].
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SA is inspired by the annealing process in metallurgy, where a metal is heated quickly to
a high “temperature” (a parameter) and then gradually cooled to a more ordered state. By
gradually cooling down, SA facilitates effective exploration of the solution space and finds
an optimal solution that meets our objectives. The “temperature” parameter in SA controls
the balance between exploration (searching for new solutions) and exploitation (improving
existing solutions). This algorithm reduces the risk of falling into local minima common
to iterative improvement methods, as unlike the latter, it accepts solutions that worsen the
objective function [28].

Let I = {1, . . . , n} denote the set of WWTPs to be optimized. Algorithm S1 in SM
delineates the steps for maximizing the objective function f(x), given in Equation(1), using
SA, while ensuring that the total number of selected plants equals k < n. To initialize the
candidate solution x0, we randomly select k distinct numbers from I, forming a set of indices
denoted as Ik. The entries of x0 are set to 1 if their corresponding indices are in Ik, and
0 otherwise. For generating a new candidate solution xnew, we replace a randomly chosen
number from Ik with a new random number from I−Ik (i.e., the set of elements in I but not in
Ik). Following the guidelines outlined in [30], we adapt the “temperature” based on whether
we have accepted 10× n solutions or generated 100× n candidate solutions. In the reported
results, we fix Tmax = 105 (maximum temperature), Tmin = 10−7 (minimum temperature),
and α = 0.1 (cooling schedule parameter). Then, we compute the energy in both the current
and the new candidate solutions: E = f(x0) and Enew = f(xnew), respectively. Then, we
calculate the change in energy, ∆E = E − Enew. If ∆E < 0, indicating an improvement, we
accept the new solution xnew. Otherwise, we generate a random number r from a uniform
distribution U(0, 1). If r < e−∆E/T , where T is the current temperature, we accept xnew;
otherwise, we reject it.

4 Results

We developed a flexible framework that can be used to evaluate resource planning scenarios,
tailored to address specific challenges and priorities within a WDS system. We consider
two overarching scenarios: 1) a disease-agnostic approach that considers only geographic
and population attributes in resource allocation, and 2) a disease-informed approach that
additionally considers dissimilarities in the dynamics of wastewater-derived COVID-19 data.
The first scenario facilitates the prioritization of vulnerable populations using the SVI, while
the second further facilitates the prioritization of unique wastewater signal contributions to
the WDS dataset. In each scenario, we reduced the number of WWTPs from baseline by
40%. We explore three configurations within each scenario that align with potential system
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priorities, achieved by assigning varying weights to the parameters of the objective function.
Sustainable, efficient, and equitable allocation of WDS resources is essential for the continued
effectiveness of surveillance efforts in the long term. Our framework offers a strategy and tool
for public health officials and policymakers involved in wastewater-based disease surveillance
and resource allocation.

Scenario 1: Disease-agnostic optimization approach

In Scenario 1, we integrated data on the location and population served by 84 WWTPs in
California as the baseline condition, with city-level population density and the county-level
SVI associated with each facility. We assigned a weight of zero to the normalized wastewater
concentration dissimilarity term in the optimization function, representing scenarios for which
disease dynamics are not considered in site selection. Reducing the number of plants by 40%
resulted in a total of 50 remaining WWTPs in each solution. We explored three configurations
of weight combinations to gain an understanding of how weights influence the solution:
– Scenario 1A: Prioritizing SVI (wSV I = 1, wP S = wP D = wdist = wdiss = 0). This
scenario prioritizes plants with high SVI, aiming to improve representation in areas with
increased social vulnerabilities. The optimization solution (see Figure 1B) prioritizes the
selection of plants situated in areas with higher SVI scores, which tend to correspond to
communities that experienced disproportionate impacts from COVID-19.
– Scenario 1B: Prioritizing population served (wP S = 1, wP D = wdist = wSV I = wdiss =
0). Prioritizing population served directs attention to ensuring that surveillance efforts are
concentrated in areas where a larger number of people reside (wP S = 1) (see Figure 1C).
– Scenario 1C: A balanced approach (wP S = wP D = wdist = wSV I = wdiss = 0.25, wdiss =
0). This scenario seeks an optimal solution that balances multiple factors equally (see Figure
1D).

Findings in Figure 1 underscore key insights essential for determining the allocation of
disease surveillance resources. In the scenario prioritizing SVI, numerous plants in Califor-
nia’s Central Coast region are omitted (Figure 1B). However, plants in the Central Valley
and South Interior regions are retained, which aligns with the high SVI scores observed in
those areas. This highlights a potential trade-off: while prioritizing SVI helps address vulner-
able communities, it might lead to gaps in geographic coverage. In the scenario prioritizing
population served (Figure 1C), two plants in the North region, one in the South Coast, and
several in the Central region of California are eliminated. Communities represented by some
of these plants correspond to regions in California that experienced a significant burden dur-
ing the COVID-19 pandemic. The removal of these plants could have important implications
for public health and environmental equity, particularly in communities that already have
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limited access to healthcare and socioeconomic disparities. The allocation of WWTPs guided
by a balanced set of priorities, as described in Figure 1D, seems to provide reasonable results
despite the significant downsizing of plants.

Figure 1: A. Geographic distribution of WWTPs across California monitoring SARS-CoV-2,
with emphasis on the population served and SVI at the county level. Optimal solutions
assuming a 40% reduction of active plants and different scenarios: B. Prioritizing SVI, C.
Prioritizing Population Served, and D. Balanced approach.

Figure 2 describes the distribution of SVI, population served, and density among all 84
WWTPs included in this scenario. As expected, scenarios prioritizing specific factors such
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as SVI and population served display higher values and less variability in these variables
compared to all plants. Interestingly, a balanced approach consistently results in the selec-
tion of WWTPs with similar distributions for the population served and density while also
representing communities with higher SVI scores. Notably, the two plants that ceased data
collection consistently appear as optimal solutions in multiple scenarios. One plant, located
in the Central Valley, emerged as an optimal solution across all scenarios, while the other,
located in a Southern County of CA, was optimal in the SVI and balanced priority scenarios.

Figure 2: Distribution of the SVI, population served, and population density for all WWTPs
that have WDS for SARS-CoV-2 in California (All), and for the optimal WWTPs found in
each scenario: prioritizing SVI (P.SVI), prioritizing population served (P.PS), and a balanced
approach (Balanced). Outliers were excluded from the boxplot for improved visualization;
see Figure S.5 in SM for a plot including outliers.

Scenario 2: Disease-informed optimization approach

Scenario 2 represents a planning scenario in which the dynamics of the community disease
trends are considered alongside geographic and population factors in the selection of sampling
sites. We include a dissimilarity term that takes into account the differences between nor-
malized wastewater concentrations, giving preference to those with distinct signal patterns.
We consider 19 WWTPs as a baseline in the scenario with a wastewater signal dissimilarity
term in the optimization problem in Equation (1).The dissimilarity matrix, which represents
the correlation distance between discrete wavelet transforms of normalized SARS-CoV-2
wastewater concentrations, is illustrated in Figure 3. By incorporating dissimilarity term in
the objective function, our goal is to present the results of the optimization problem and
demonstrate the impact of this addition.
– Scenario 2A: Prioritizing disease signal dissimilarity (wdiss = 1, wP S = wP D =
wdist = wSV I = 0). This scenario emphasizes dissimilarity between WDS signals, aiming to
optimize the representation of unique signal patterns across WWTPs (see Figure 4A).
– Scenario 2B: Equal factors (wP S = wP D = wdist = wSV I = wdiss = 0.2). This scenario
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seeks an optimal solution that weights multiple factors equally (see Figure 4B).
– Scenario 2C: A balanced approach for SVI and disease signal dissimilarity
(wSV I = wdiss = 0.35, wP S = wP D = wdist = 0.1). In this scenario, we emphasize both
the SVI and dissimilarity metrics, while also taking into account population density, spatial
distances, and population served (see Figure 4C).

Prioritizing dissimilarities in our optimization process can improve our capacity for early
detection, response, and tailored interventions. Figure 4 illustrates the WWTPs selected
in the optimization problem prioritizing WW signal dissimilarity (Figure 4B), initially with
19 plants (Figure 4A). Subsequently, it showcases the plants that remained after adopting
an equal factors approach (Figure 4C) and a balanced approach for SVI and disease signal
dissimilarity (Figure 4D).

Figure S.4 in SM displays the dissimilarity matrix for each optimal solution and scenario.
In this particular scenario, prioritizing the dissimilarity term means that we are placing
emphasis on highlighting the distinctions between the selected WWTPs with regard to their
wastewater signal characteristics.

Figure 3: Dissimilarity matrix depicting wavelet coefficients for 19 WWTPs. Alongside
the matrix, dendrograms illustrate hierarchical clustering, showcasing how WWTPs group
together based on similarities in wavelet coefficient.
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Figure 4: Optimal solutions obtained assuming signal dissimilarity and 19 initial WWTPs.
Each priority scenario assumes a goal of a 40% reduction in the number of plants included
in the optimization problem. A. Initial Plants. B. Prioritizing disease signal dissimilarity.
C. Equal factors. D. A balanced approach for SVI and disease signal dissimilarity.

5 Discussion

In this paper, we present an optimization framework to evaluate scenarios for the selection of
WWTPs for wastewater-based disease surveillance. Our analysis in California revealed that
prioritizing social vulnerability in defining the optimization problem enables more equitable
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integration of communities with a history of significant COVID-19 burden when planning
the allocation of resources for WDS. These findings can inform public health surveillance
efforts, particularly as WDS is adapted to help manage infectious diseases beyond COVID-
19, including for influenza and respiratory syncytial virus. By focusing on areas with higher
vulnerability, which are often characterized by limited resources and greater health dispari-
ties, resources for surveillance efforts can be allocated more effectively. This strategy helps
ensure that communities with elevated risks of infection and severe symptoms receive greater
attention and support in disease monitoring and response.

Our findings make a significant contribution to the current literature by bringing to light
the complexities of optimizing WDS resource allocation. We demonstrate how prioritizing
key factors in the optimization process could influence planning decisions for resource distri-
butions. Our results also highlight how different communities offer unique contributions to
a WDS program. For instance, we observed that two WWTPs within the sampling frame
ceased WDS data collection during the study period, yet these two facilities were consis-
tently retained in most of our optimization scenarios. Our framework offers a mechanism
to evaluate the significance of WDS program changes in the context of seeking equitable
representation and cost efficiencies. We recommend ongoing evaluation of site distributions
to maintain fair and inclusive coverage. Greater investments in community engagement and
partnership-building programs can support marginalized communities and guarantee they
have a say in decision-making processes related to WDS.

Actively addressing equity in WDS planning and resource allocation is crucial to strength-
ening pandemic preparedness. One solution is to adopt a more comprehensive strategy that
gives priority to vulnerable communities in the distribution of monitoring resources. This
could entail re-evaluating the standards used to choose monitoring sites to ensure sufficient
coverage of regions with elevated social vulnerability. Our approach is optimized from the
84 WWTPs that have had WDS due to data availability. The scenarios examined in this
study serve as valuable entry points, offering initial insights into potential WWTP configu-
rations, but there are over 200 WWTPs in California that could be further evaluated in the
future. The framework can also be extended to other states and countries to guide resource
allocation for WDS. It can be customized and adjusted to ensure that surveillance efforts are
fair, efficient, and in line with the changing requirements of diverse communities, ultimately
enhancing our collective capacity to detect and mitigate public health risks on a global level.

While this framework provides valuable insights and serves as a basis for decision-making,
we recognize several limitations and needs for further improvement. First, achieving more
practical and context-specific outcomes will require accounting for decision-maker preferences
and constraints in future refinements. For instance, budget limitations, workforce availabil-
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ity, and infrastructure capacity can be incorporated to inform proposed solutions. Second,
reliability and accuracy of the optimization model are reliant on the quality and availability
of data pertaining to population distribution, social vulnerability, historical disease burden,
and other related variables. Enhancing data transparency and accessibility can empower
communities to participate actively in WDS efforts and advocate for their requirements.

Finally, integrating spatial and temporal dynamics into upcoming optimization models
could provide significant improvements to the modeling framework. The distribution of pop-
ulation and disease burden may vary spatially and temporally, requiring dynamic modeling
approaches to account for these fluctuations accurately. Furthermore, ethical considerations
and other equity concerns should also be factored into the optimization process to guar-
antee a fair and unbiased allocation of disease surveillance resources [31, 32]. To this end,
it is essential to establish clear guidelines and criteria that prioritize the needs of under-
served and marginalized communities. This may involve conducting thorough assessments of
socio-economic factors, healthcare access, and vulnerable indices to identify areas with the
greatest need for surveillance resources. Moreover, stakeholder engagement and community
involvement are crucial components of ensuring equity in resource allocation. By actively
seeking input from affected communities, local leaders, and advocacy groups, decision-makers
can gain valuable insights into the specific challenges and priorities of different population
groups.
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S1 Comparative analysis of wastewater data using dis-8

crete wavelet transform9

S1.1 Wavelet decomposition10

The wavelet transform decomposes non-stationary time series into a time-frequency domain,11

allowing interpretation of temporal variability. It analyzes signals at multiple resolutions12

and scales, using basis functions called wavelets. Wavelets are mathematical functions used13

to decompose data into different frequencies and scales. The continuous wavelet transform14

(CWT) is given by the following equation:15

F (x) = 1√
ξ

∫
x(t) · ψ∗

(
t− τ
ξ

)
(2)
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where F (x) is the wavelet transform for the signal x(t) as a function of time, ξ is the scale16

parameter, τ is the time parameter, and ψ is the mother wavelet or the basis function with17

∗ denoting the complex conjugate.18

The CWT is computationally expensive, but the discrete wavelet transform (DWT) offers19

efficiency. DWT uses sub-band coding, which is a technique of dividing the signal into20

frequency bands or sub-bands, and then sampling each sub-band at a lower rate. The DWT21

achieves this by passing the signal through a series of high-pass and low-pass filters, which22

produce detail and approximation coefficients, respectively. The approximation coefficients23

estimate the rough features of the original data, while the detail coefficients capture frequent24

movements, such as sudden changes or spikes, that might be hidden in the original data due25

to trends or seasonal fluctuations. The DWT facilitates multi-resolution representations of26

signals, aiding pattern detection algorithms by revealing structures at various time scales.27

S1.2 Comparative analysis28

In this paper, we used data from two sources, the California Department of Public Health29

(CPDH) and WastewaterSCAN (WWSCAN) [17, 20], each of which implemented different30

sampling and laboratory analytical protocols to measure the concentration of SARS-CoV-231

RNA (N gene) and PMMoV (Tables S.2-S.3). The CDPH laboratory analyzed raw wastew-32

ater from composite influent samples, with concentrations of each gene target reported as33

genome copies per volume of wastewater. The WWSCAN laboratory analyzed dewatered34

settled solids from composite influent samples or, more often, dewatered solids from primary35

clarifier sludge, with concentrations of each gene target reported as genomic copies per mass36

of dry sludge. Trends in normalized wastewater concentrations (N/PMMoV, a dimensionless37

metric) obtained by the two methods have been extensively validated against trends COVID-38

19 clinical data. However, the magnitudes of the normalized wastewater concentrations differ39

between the procedures. Distinct laboratory procedures can also introduce differing noise,40

biases, or variations into the data, which may manifest as rapid fluctuations or high-frequency41

components.42

A primary challenge thus lies in directly comparing wastewater signals acquired by dif-43

ferent methods due to the inherent biases introduced by different laboratory procedures. To44

help mitigate these biases, we employed a wavelet transform, which extracts patterns and45

features from the data to compare and analyze the wastewater signals more robustly. Specif-46

ically, we decompose the data into multiple low-frequency and high-frequency components,47

allowing us to focus independently on high-frequency details. We hypothesize that variations48

in high-frequency components may arise from differences in laboratory methodologies rather49

than fluctuations in disease dynamics. We conduct an exploratory analysis to investigate the50

21

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2024. ; https://doi.org/10.1101/2024.05.02.24306777doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.02.24306777
http://creativecommons.org/licenses/by-nc/4.0/


success of a wavelet transformation in distinguishing patterns related to disease dynamics51

rather than features specific to the laboratory methods.52

We analyzed normalized wastewater concentration data collected from the city of Davis53

between May 7, 2022, and September 28, 2022, by two different laboratories applying highly54

similar methods (referred to as Lab 1 and Lab 2). For a detailed description of this data,55

please refer to [33]. We used the normalized wastewater concentration of SARS-CoV-2 RNA56

detected in each wastewater sample for the two laboratories. We employed the discrete57

wavelet transformation utilizing the Daubechies 4 wavelet family to decompose the data into58

multiple levels. During this process, coefficients at different scales and positions are generated.59

At each level (l), we obtain two sets of coefficients: approximation coefficients (cAl), repre-60

senting low-frequency components) and detail coefficients (cDl), representing high-frequency61

components). Both cAl and cDl have a length of N/2l. cAl captures information about the62

overall trend of the signal, while cDl contains high-frequency details, l = 1, . . . L.63

We utilized the PyWavelets library for the wavelet decomposition, specifically the pywt.wavedec64

function. We employed the pywt.dwt_max_level to determine the appropriate decomposi-65

tion level function. The pywt.wavedec function returns the coefficients (cA4, cD1, cD2, cD3, cD4).66

Figure S.1 shows the wavelet coefficients for the two-time series. We observed higher differ-67

ences between these two series in the detail coefficients cD2, cD3.68

Figure S.1: Wavelet Coefficients Comparison between Lab 1 and Lab 2 time series.
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We calculated the distance correlation between the data from the two labs using different69

data representations: original scale, wavelet coefficients (including all levels), and wavelet70

coefficients excluding detail coefficients at different levels. The results, as shown in Table71

S.1, indicate that the distance correlation is lower (indicating higher similarity) when we use72

their wavelet coefficients instead of the series in the original scale. We also observed that73

excluding detail coefficients at the first two levels further decreased the distance correlation,74

as these coefficients primarily capture changes in high frequencies within the data and may75

be associated with laboratory-specific methods.76

Table S.1: Distance correlation between Lab 1 and Lab 2.

Data Distance Correlation

Original Scale 0.1774
Wavelet Coefficients 0.0261
Wavelet Coefficients (Excluding cD1) 0.0271
Wavelet Coefficients (Excluding cD1, cD2) 0.0298

Furthermore, we reconstructed the time series from the wavelet coefficients, excluding77

coefficients at level 1, levels 1 and 2, and levels 1, 2, and 3. When we exclude detail coefficients78

at level 1 and at levels 1 and 2, the reconstructed signal closely aligns with the original series,79

with only small variations removed, Figure S.2. However, excluding detail coefficients at the80

third level results in a desynchronization of the reconstructed signal compared to the original81

scales, leading to a loss of information about the trend. This highlights the importance82

of preserving essential features while eliminating high-frequency components during signal83

reconstruction.84

Figure S.2: Reconstructed time series from wavelet coefficients excluding different levels.

Based on our findings, we chose to use wavelet coefficients, excluding detail coefficients at85
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levels 1 and 2, to construct the dissimilarity matrix with correlation distance. This approach86

helped us identify similarities between signals from different laboratories while minimizing87

the biases introduced by varying measurement methods. We will explore this hypothesis88

further in the future analysis to assess the variability in different frequencies and scales and89

its relation with different labs, procedures, temperature, and other variables.90

S2 Algorithm performance91

To validate the robustness of the algorithm, we executed it 100 times, consistently converging92

to the same solution in each run. This demonstrates the stability and reliability of the93

algorithm across multiple iterations. Figure S.3 illustrates the energy trajectories for these94

runs, providing a visual representation of the algorithm’s convergence consistency.95

Figure S.3: Evaluation of the optimization function is performed in each iteration of simulated
annealing. The traces correspond to 100 trajectories that were run to demonstrate their
performance.
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S3 Suplementary figures96

Figure S.4: Dissimilarity matrix for the optimal solution in each scenario. A. Prioritizing
disease signal dissimilarity. B. Equal factors. C. A balanced approach for SVI and disease
signal dissimilarity.

Figure S.5: Distribution of the SVI, population served, and population density for all
WWTPs that have WDS for SARS-CoV-2 in California (All), and for the optimal WWTPs
found in each scenario: prioritizing SVI (P.SVI), prioritizing population served (P.PS), and
a balanced approach (Balanced).
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S4 Simulated Annealing algorithm97

Algorithm 1 Simulated Annealing Algorithm
Input: Number of plants n, objective function f(x), positive integer k < n, maximum

temperature Tmax, minimum temperature Tmin, and cooling schedule parameter α
Output: Solution x ∈ {0, 1}n

1: Enumerate each plant from 1 to n and set I = {1, . . . , n}
2: Initialize x = (x1, . . . , xn) by randomly selecting k distinct numbers from I, forming a

set of indices denoted as Ik. Set

xi =

1, i ∈ Ik

0, i /∈ Ik

3: Compute E = f(x)
4: T ← Tmax

5: while T > Tmin do
6: A← 0 ▷ Number of accepted solutions
7: G← 0 ▷ Number of generated solutions
8: while A < 10× n and G < 100× n do
9: Randomly choose a element l from Ik ▷ Index (plant) to be replaced

10: Randomly choose a element m from I − Ik ▷ Index to be added
11: Set xnew = x with xl = 0 and xm = 1
12: Compute Enew = f(xnew)
13: Calculate ∆E = E − Enew

14: if ∆E < 0 then
15: x← xnew

16: E ← Enew

17: else
18: Generate r ∼ Uniform(0, 1)
19: if r < e−∆E/T then
20: x← xnew

21: E ← Enew

22: end if
23: end if
24: end while
25: T ← α · T
26: end while
27: return x 26
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S5 Wastewater methods description98

Wastewater data from March 21, 2022, to May 21, 2023, for WWTPs located in Oakland99

(Alameda), Martinez (Contra Costa), Merced (Merced), Elk Grove (Sacramento), Paso Rob-100

les (San Luis Obispo), Palo Alto (San Mateo), San Jose (Santa Clara), Modesto (Stanislaus),101

and Davis (Yolo) have been previously published in [34]. For the remaining WWTPs, we102

present an overview of the methods employed as reported by CDPH. Specifically, we refer to103

the lab identifiers listed in Table S.3 for the WWTPs described in Table S.2.104

County City POTWs Population
Served

Lab Id Data Source

Alameda* Oakland East Bay Municipal Utility District
Main Wastewater Treatment Plant

740,000 VLT WWSCAN

Contra Costa* Martinez Central Contra Costa Sanitary District
Wastewater Treatment Plant

487,300 VLT WWSCAN

Fresno Fresno Fresno/Clovis RWRF 650,000 DWRL CDPH
Kern Bakersfield City of Bakersfield Plant #2 168,750 DWRL CDPH
Lake Clearlake City of Clearlake 13,200 DWRL CDPH
Los Angeles Carson Joint Water Pollution Control Plant 3,500,000 VLT WWSCAN
Merced * Merced Merced Wastewater Treatment Plant 91,000 VLT, VLT1 WWSCAN
Orange Fountain Valley OC San (Orange County Sanitation

District) Reclamation Plant No. 1
1,800,000 DWRL CDPH

Sacramento* Elk Grove Sacramento Regional County Sanita-
tion District

1,480,000 VLT WWSCAN

San Bernardino San Bernardino Margaret H Chandler WWRF, San
Bernardino

325,000 DWRL CDPH

San Francisco San Francisco Oceanside Water Pollution Control
Plant

250,000 VLT WWSCAN

San Luis Obispo* Paso Robles City of Paso Robles Wastewater Treat-
ment Plant

31,037 VLT1 WWSCAN

San Mateo* Palo Alto Palo Alto Regional Water Quality Con-
trol Plant

236,000 VLT WWSCAN

San Mateo Redwood City Silicon Valley Clean Water 1992,000 VLT WWSCAN
Santa Clara Sunnyvale City of Sunnyvale Water Pollution

Control Plant
153000 VLT WWSCAN

Santa Clara* San Jose San Jose Santa Clara 1,500,000 VLT WWSCAN
Santa Clara Gilroy South County Regional Wastewater

Authority
110,338 VLT2 WWSCAN

Stanislaus* Modesto Modesto Wastewater Primary Treat-
ment Facility

230000 VLT, VLT1 WWSCAN

Yolo* Davis City of Davis Wastewater Treatment
Plant

68,000 VLT, VLT1 WWSCAN

Table S.2: Description of publicly owned treatment works (POTWs) included in this study.
Plants located in cities marked with an asterisk (*) indicate those for which wastewater data
during the study period have been published here [34]. Lab Id (DWLR; VLT, VLT1, VLT2)
corresponds to methods summarized in Table S.3
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Collection Method Processing Method Quantification Method Sample Quantification
Results

Lab Id

Sample
type

Sample
ma-
trix

Extr.
method

Rec
eff
target

Rec eff
spike

PCR
type

LOD
ref

Hum
frac
target

Hum
frac
target
ref

Quant
stan
type

Stan
ref

Inh
method

Num
no
target
con-
trol

Major
lab
method
desc

gene
tar-
get

PCR
gene
target
ref

grab primary
sludge

[35] bcov
vaccine

dewatered
solids

ddpcr (i) PPMoV [36] DNA (ii) (iii) more
than 3

N [37] VLT

grab primary
sludge

[35] bcov
vaccine

dewatered
solids

ddpcr [38] PPMoV [36] RNA (ii) none more
than 3

Verily
solids
method

N [39] VLT1

24-hr flow-
weighted
composite

raw
wastew-
ater

[35] bcov
vaccine

dewatered
solids

ddpcr (i) PPMoV [36] DNA (ii) (iii) more
than 3

N [37] VLT2

24-hr
time-
weighted
composite

raw
wastew-
ater

[40] bcov
vaccine

raw
sample

ddpcr [41] PMMoV [42] RNA [43] none 3 (iv) N1 [43] DWRL

Table S.3: Summary of different methods employed in the collection, processing, quantifica-
tion, and analysis of samples for the detection of viral pathogens in wastewater as reported
by CDPH [17]. Abbreviations: Extr. method - Extraction method; Rec eff - Recovery effi-
ciency; PCR - Polymerase Chain Reaction; LOD ref - Limit of detection reference; Hum frac
- Human fecal fraction; Quant stan type - Quantification standard type; Stan ref - Standard
reference; Inh method - Inhibition method; Lab - Laboratory; Major lab method desc - Ma-
jor laboratory method description. References are provided where applicable.(i) 3 droplets
as a minimum for a positive detection. (ii) Synthetic DNA oligo purchased from IDT. (iii)
Solutions titrated with varying concentrations of solids to identify a concentration at which
inhibition of the SARS-CoV-2 assays was minimized. (iv) This lab uses a lab method distinct
from other labs in this reporting jurisdiction.
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