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ABSTRACT  22 

Background: The effective reproduction number (Re) serves as a metric of population-wide, time-varying disease 23 

spread. During the COVID-19 pandemic, Re was primarily estimated from clinical surveillance data streams (Rcc), 24 

which have varied in quality and representativeness due to changes in testing volume, test-seeking behavior, and 25 

resource constraints. Deriving Re from alternative data sources such as wastewater could inform future public health 26 

responses.  27 

 28 

Objectives: We estimated county-aggregated, sewershed-restricted wastewater-based SARS-CoV-2 Re (Rww) from 29 

May 1, 2022 to April 30, 2023 for five counties in California of varying population sizes, clinical testing rates, 30 

demographics, proportions surveilled by wastewater, and sampling frequencies to validate the reliability of Rww as a 31 

real-time disease surveillance metric. 32 

 33 

Methods: We produced both instantaneous and cohort sewershed-restricted Re using smoothed and deconvolved 34 

wastewater concentrations. We then population-weighted and aggregated these sewershed-level estimates to arrive 35 

at county-level Re. Using mean absolute error (MAE), Spearman’s rank correlation (ρ), confusion matrix 36 

classification, and cross-correlation analyses, we compared the timing and trajectory of two Rww models to: (1) a 37 

publicly available, county-level ensemble of Rcc estimates, and (2) a county-aggregated, sewershed-restricted Rcc.   38 

 39 

Results: Both Rww models demonstrated high concordance with traditional Rcc estimates, as indicated by low mean 40 

absolute errors (MAE ≤ 0.09), significant positive Spearman correlation (Spearman ρ ≥ 0.66, p < 0.001), and high 41 

confusion matrix classification accuracy (≥ 0.81). The relative timings of Rww and Rcc were less clear, with cross-42 

correlation analyses suggesting strong associations for a wide range of temporal lags that varied by county and Rww 43 

model type. 44 

 45 

Discussion: This Re estimation methodology provides a generalizable, robust, and operationalizable framework for 46 

estimating county-level Rww. Our results support the additional use of Rww as an epidemiological tool for 47 

surveillance.  Based on this research, we produced publicly available Rww nowcasts for the California Communicable 48 

diseases Assessment Tool (https://calcat.covid19.ca.gov/cacovidmodels/). 49 

  50 
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INTRODUCTION 51 

 52 

The effective reproduction number (Re) of a disease represents the average number of secondary infections caused 53 

by a newly infectious individual within a population of both susceptible and immune hosts.1 An Re value greater than 54 

one suggests the number of new infections within a population will increase, while an Re value less than one 55 

indicates the number of new infections will decrease.2 In the context of SARS-CoV-2, Re commonly serves as a 56 

metric of population-wide disease spread under conditions of time-varying vaccination rates, immunity viral variant 57 

evolution, health protective behavior modifications, and other response measures.2 Importantly, monitoring Re can 58 

inform public health policy decisions (e.g., travel restrictions, school closures, mask requirements).3–6   59 

 60 

In the first years of the COVID-19 pandemic, Re was estimated from clinical surveillance data streams such as 61 

confirmed case counts (i.e., “case-based” Re). However, the quality and representativeness of clinical data are not 62 

always consistent through time and space. Ongoing changes in testing capacity, access, eligibility, test-seeking 63 

behavior and reporting may bias case-based Re estimates; for example, a simulation study mimicking alterations to 64 

testing practices found that increasing or decreasing the proportion of detected cases over- or under-estimated Re, 65 

respectively.7 Delays and administrative noise in case reporting (e.g., lagged processing speed for weekend data) are 66 

also common issues for traditional Re estimation tools.8 Deriving Re from alternative data sources will be an 67 

important means of informing response to the future public health impact of COVID-19 and bolstering nowcasting 68 

efforts.  69 

 70 

The COVID-19 pandemic highlighted wastewater surveillance as a timely and accurate monitoring tool reflecting 71 

community-wide disease transmission.9,10 Wastewater surveillance measures the amount of SARS-CoV-2 viral RNA 72 

shed into wastewater by infected individuals. It circumvents limitations of traditional clinical SARS-CoV-2 73 

surveillance in important ways. First, it captures both asymptomatic and symptomatic infections.11 Second, 74 

wastewater surveillance is not as impacted by heterogeneous, time- and space-varying testing-related factors.12–16 75 

Third, wastewater surveillance data is usually available within days, overcoming case reporting delays.12–16 For 76 

these reasons, using wastewater surveillance could improve the accuracy and reliability of Re estimates while also 77 

compensating for data delays from traditional sources. In addition, given that wastewater surveillance measures viral 78 

RNA concentrations at the level of a single wastewater treatment plant’s catchment area (sewershed), it could be 79 

used to estimate real-time Re  in finite geographies that may lack robust case reporting.  80 

 81 

Existing methods of wastewater-based Re (denoted as Rww in this study, following notation by Huisman et al.17) 82 

estimation include SEIR-like compartmental models,18 branching process-inspired models,17,19,20 and artificial neural 83 

networks.21 Despite using different underlying mathematical approaches, these methods have consistently revealed 84 

high concordance between Rww and conventional case-based Re estimates (denoted as Rcc in this study, following 85 

notation by Huisman et al.17). In some circumstances, Rww even highlights outbreak dynamics not captured by Rcc 86 

alone; for example, Nadeau et al.20 demonstrated that, compared to Rcc, Rww better reflected the impact of COVID-19 87 

interventions on influenza transmission. Notably, these studies have typically examined Rww at the scale of an 88 

individual sewershed. However, a single county may contain multiple treatment plants representing distinct 89 

communities, and sewersheds do not typically map to municipal boundaries. Moreover, public health policies are 90 

often enacted on a county or regional level. Deriving county-level Rww estimates that integrate data from multiple 91 

sewersheds would therefore provide a more comprehensive view of community transmission dynamics at a 92 

geographic scale relevant for public health policymaking.  93 

 94 

In this study, we provide proof-of-concept estimation of county-aggregated, sewershed-restricted Rww for the state of 95 

California from May 1, 2022 to April 30, 2023. We compare the timing and trajectory of two Rww models to: (1) a 96 

publicly available, county-level ensemble of Rcc estimates, and (2) a county-aggregated, sewershed-restricted Rcc for 97 

SARS-CoV-2 (though it is important to note that Rww and Rcc are both measuring an unobservable quantity, Re, the 98 

“true” underlying parameter). To evaluate generalizability of our estimation procedure across distinct populations, 99 

we present results for five counties with varying sizes, clinical testing rates, demographics, proportions surveilled by 100 

wastewater, and sampling frequencies. 101 

102 
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METHODS 103 

Re Estimation Overall Approach 104 

 105 

To produce Rww estimates, we relied on the Re derivation frameworks developed by Cori et al.1 and Wallinga & 106 

Teunis22 (hereafter denoted as instantaneous or cohort Re, respectively). These two modeling approaches, 107 

traditionally applied on case data, have been well characterized and broadly used in public health for real-time Rcc 108 

estimation.8  109 

 110 

We compared the timing and trajectory of these two Rww models to the following: (1) county-level Rcc ensembles 111 

sourced from the California Communicable diseases Assessment Tool, CalCAT 112 

(https://calcat.covid19.ca.gov/cacovidmodels/) (hereafter denoted as the CalCAT ensemble); and (2) Rcc estimates 113 

produced by applying Cori et al.1 and Wallinga & Teunis22 to sewershed-restricted case data (hereafter denoted as 114 

sewershed-restricted Rcc). Comparing Rww results to the CalCAT ensemble allows us to validate the robustness and 115 

reliability of Rww as a real-time disease surveillance metric for public health. Additionally, comparing Rww results to 116 

sewershed-restricted Rcc offers two potential advantages. First, sewershed-restricted Rcc represents the same 117 

populations within a given county as Rww, while the CalCAT ensemble relies on county-wide data sources. Second, 118 

sewershed-restricted Rcc can be indexed by time of infection. In contrast, the CalCAT ensemble integrates different 119 

models with varying Re estimation procedures, meaning its estimates cannot be easily indexed by time of infection. 120 

Therefore, comparing Rww and sewershed-restricted Rcc allows us to contextualize the former’s timing with respect 121 

to conventional case-based approaches.  122 

 123 

We first conducted our Rww estimation process using wastewater data. We subsequently repeated the estimation 124 

procedure on sewershed-restricted case data to produce Rcc (Figure 2). County-level CalCAT ensemble estimates are 125 

publicly available and were not further processed. Our analysis period spanned one year (May 1, 2022 to April 30, 126 

2023). 127 

 128 

Re Estimation Process 129 

 130 

STEP 0: Raw Data Sources 131 

 132 

Wastewater Sampling 133 

 134 

Wastewater samples included in the study were collected during the analysis period using two different methods of 135 

sample processing, as described below (Table 1). Samples were collected from 14 sewersheds in five California 136 

counties at a frequency of three to seven times per week (Table 1). Samples from eight sites (San Francisco 137 

Southeast, San Francisco Oceanside, Sacramento, Palo Alto, San Jose, Sunnyvale, Gilroy/Morgan Hill, and Davis) 138 

were processed according to Method 1. Samples from six sites (Modesto, Merced, Turlock, Esparto, Winters, and 139 

Woodland) were processed according to Method 2 from May 1, 2022 to November 30, 2022 and according to 140 

Method 1 from December 1, 2022 until April 30, 2023 (Tables 1 and S1). Method 2 was designed to closely follow 141 

the protocol of Method 1, with sample processing and laboratory analyses performed at a different laboratory.  142 

 143 

Method 1, Sample Processing 144 

 145 

Protocols developed for Method 1 were designed and reported according to the Environmental Microbiology 146 

Minimum Information (EMMI) guidelines, as described in Borchardt et al.23 For samples processed via Method 1, 147 

50 milliliters of wastewater settled solids were collected three to seven times per week from the primary clarifier or 148 

from influent using an Imhoff cone,24,25 transferred at 4°C and processed immediately upon receipt at the lab. The 149 

methods used to measure the N gene via digital droplet RT-PCR, including thorough descriptions of the extraction 150 

and PCR negative and positive controls, process control recovery, QA/QC elements, thresholding methods, and 151 

relevant EMMI guideline reporting, have been described in detail in the Supplemental Materials and in a previously 152 

published data descriptor.26 153 

 154 

Briefly, wastewater settled solids were dewatered with centrifugation and added to DNA/RNA Shield (Zymo 155 

Research Corporation, Irvine, CA) at a concentration of 75 mg/ml to minimize inhibition. Nucleic acids were 156 
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extracted and quantified by a digital droplet RT-PCR assay (dd-RT-PCR) targeting the N gene of SARS-CoV-2.26 157 

More detailed methods can be found in the Supplemental Materials. 158 

 159 

Method 2, Sample Processing 160 

 161 

For samples processed via Method 2, the collection procedure of wastewater solids varied by site (Table 1). For 162 

Modesto, grab samples of settled solids from a primary clarifier were collected (similar to Method 1). For Esparto, 163 

Turlock, and Woodland, composite samples of influent wastewater were collected, and for Winters, composite 164 

samples of raw wastewater were collected from a pump station (Table 1). For sites collecting liquid wastewater 165 

samples, solids were obtained by settling the samples in a glass beaker for a minimum of 30 minutes. These settled 166 

solids were then processed according to the same protocol described for primary settled solids.27 For all sites, 167 

samples were collected three to five times per week and transferred at 4°C to the laboratory. Settled solids were 168 

dewatered, diluted in DNA/RNA Shield (Zymo Research Corporation, Irvine, CA), extracted, and quantified by dd-169 

RT-PCR. Minor differences in the processing of dewatered solids, extraction, and dd-RT-PCR assays between 170 

Methods 1 and 2 are described in Kadonsky et al.27 A comparative interlaboratory analysis of wastewater samples 171 

collected from sewersheds in Davis city of Yolo county suggests that data obtained using Methods 1 and 2 are 172 

comparable.27 173 

 174 

In this analysis, we used raw, unadjusted wastewater data in units of copies of SARS-CoV-2 RNA per gram of 175 

wastewater solids. 176 

County Selection 177 

For this analysis, we estimated Rww for five California counties: Sacramento, San Francisco, Santa Clara, Stanislaus, 178 

and Yolo. We selected counties using similar laboratory methodologies that have one or more site(s) with long 179 

wastewater sampling histories (multiple years of available data). Inter-method comparisons of wastewater-derived 180 

SARS-CoV-2 concentrations can be highly complex, as quantification is dependent on several unique features of a 181 

processing pipeline (e.g., sample type (liquid vs. solids), extraction method and efficiency, assay target selection, 182 

quantity of extraction replicates and PCR replicates, laboratory equipment, etc.28 Although six of our sites 183 

underwent laboratory changes and all sites underwent minor changes in methodology during the study period, we 184 

sought to avoid some of the complications of inter-method data comparability by including only sites processing 185 

settled solids (either grab samples from a primary clarifier or solids settled out from a composite wastewater sample) 186 

and only sites using the same assay target for SARS-CoV-2 (see Supplemental Methods). 187 

Wastewater monitoring tends to be more robust in urban locations for reasons such as larger population coverage, 188 

proximity to laboratories, and greater plant staffing and resources, resulting in inequitable coverage for rural 189 

communities.29 Therefore, we included counties from both urban (San Francisco, Palo Alto, and Sacramento) and 190 

rural areas (Stanislaus and Yolo) (Figures 1 and S1).   191 

We define “coverage” as the proportion of a county’s population that resides within sewersheds that are monitored 192 

with wastewater surveillance. Amongst California counties, coverage varies widely, ranging from as low as 10% to 193 

as high as 100%. Rww estimates produced for counties with low coverage may be subject to selection bias, as they 194 

only account for infections in small subpopulations of the county that are sampled via wastewater monitoring 195 

programs. Such Rww estimates may consequently follow a trajectory that does not accurately reflect county-wide 196 

infection and transmission dynamics. Due to this concern, we chose counties with at least 50% coverage. 197 

Sewershed-Restricted Case Data 198 

 199 

Sewershed shapefiles were generated in collaboration with each of the wastewater treatment plants selected for this 200 

analysis. PCR-confirmed COVID-19 case counts reported to the California Department of Public Health (CDPH) 201 

were linked with each sewershed using methods described previously.30 Cases were counted as a function of episode 202 

date (earliest of date received, date of diagnosis, date of symptom onset, date of death, or date of specimen 203 

collection). The California Health and Human Services (CHHS) Committee for the Protection of Human Subjects 204 

(CPHS) determined that use of this data is exempt from review under their criteria.  205 

 206 

CalCAT Ensemble 207 

 208 
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As part of the COVID-19 Response, CDPH developed a Re nowcast ensemble publicly available on CalCAT 209 

(https://calcat.covid19.ca.gov/cacovidmodels/). This nowcast is a smoothed median ensemble of both internally 210 

generated and externally contributed models. Median ensembles tend to outperform individual models, as has been 211 

demonstrated during the COVID-19 pandemic.31,32 Smoothing ensures that the ensemble is robust to outliers, 212 

dampening noise in the median nowcast. The models are predominantly case-based, though some additionally or 213 

instead use test positivity, hospitalizations, intensive care unit census, and/or deaths as an input (Table S2).  214 

 215 

The CalCAT ensemble is produced on county, region, and state levels. In this study, we strictly use county-level 216 

CalCAT ensemble estimates. The ensemble is retroactively updated for the dates through the present day, based on 217 

latest estimates from contributing models. The number and cadence of daily contributor models to the ensemble may 218 

vary across time and geographies.  219 

 220 

The CalCAT ensemble continues to serve as a real-time disease dynamics monitoring tool informing state 221 

policymakers on the speed and strength of SARS-CoV-2 transmission and burden.  222 

 223 

STEP 1: Data transformation  224 

 225 

Input time series data streams for sewershed-level Re estimation (i.e., case counts and wastewater viral 226 

concentrations) were transformed using distinct approaches to minimize noisiness for each data stream (Figure 2). 227 

Case counts were LOESS smoothed using the R package estimateR. Raw wastewater concentrations were spline 228 

smoothed using the R package npreg.33 To fit sewershed-specific smoothing splines, we spaced knots by seven days 229 

over the course of the full analysis period. We selected optimal smoothing parameters unique to each sewershed 230 

using ordinary cross validation. Smoothed wastewater concentrations were subsequently square root-transformed. 231 

Root transformation produced Rww estimates that were more comparable in absolute terms to Rcc, as raw wastewater 232 

concentrations (which can be as high as 106 copies/gram) are often much greater in magnitude and variability than 233 

traditional case counts.  234 

 235 

STEP 2: Produce sewershed-level Re 236 

 237 

Both instantaneous and cohort Re models required a time series input of incidence data indexed by date of infection 238 

as well as an estimate of the generation time (i.e., the time interval between infections of an infector and their 239 

infectee(s)).1,34 Sewershed-restricted case counts were indexed by episode date, while wastewater concentrations 240 

were indexed by date of shedding into wastewater. We re-indexed these data streams to date of infection using 241 

deconvolution with input-specific delay distributions. For case data, we derived a delay distribution using the 242 

California COVID-19 case registry. As is typical of observational line list data, date of infection was unknown, and 243 

date of symptom onset was not available for many cases, in large part due to the presence of mild or asymptomatic 244 

infections and reporting practices. Since episode date in the line list was most representative of the date of nucleic 245 

acid amplification test (NAAT) result, we approximated episode date as the date of NAAT result. Next, we 246 

deconvolved from date of NAAT result to date of infection using two delay distributions: (1) an estimate of the 247 

incubation period, based on Aguila-Mejia et al.,35 and (2) the delay from symptom onset to NAAT result, based on 248 

the line list (Table 2). For wastewater, we used the infection to shedding distribution reported by Huisman et al. 249 

(Table 2).17 This distribution was optimized for San Jose, California, and reflects the profile of SARS-CoV-2 RNA 250 

viral shedding by an infected individual during the days post-infection. We used the R package estimateR to perform 251 

deconvolution through a variant of the Richardson-Lucy expectation-maximization algorithm.36 252 

 253 

We also used the estimateR package to produce Re values derived from the Cori et al.1 method (hereon referred to as 254 

instantaneous Rww). estimateR implements a wrapper around the Cori et al.1 approach and enables repeated Re 255 

estimation on a user-defined number of bootstrap samples built from the input data time series.36 The distribution of 256 

bootstrapped Re estimates is then used to produce 95% confidence intervals.36 We generated 1000 bootstrap samples 257 

for our study for each location estimate. To produce Re values derived from the Wallinga and Teunis method 258 

(hereon referred to as cohort Rww), we used the R package R0.37 We applied an adjustment for right-censorship to 259 

obtain accurate Re estimates at the end of the time series.34,38 With the R0 package, we ran 1000 multinomial 260 

simulations at each time step to compute 95% confidence intervals.37 Both the instantaneous and cohort models 261 

exhibit noise in initial Re estimates (i.e., extreme spikes). To account for this, we trimmed the first week of estimates 262 

for each sewershed-level Re. For both models, we utilized the generation time reported by Manica et al. (Table 2).39 263 

 264 
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STEP 3: Produce county-level Re via population weighting 265 

 266 

Sewershed-restricted Rww and Rcc estimates were weighted by population and subsequently aggregated to produce 267 

county-level Re. The aggregation approach is described in Equation [1], where Rww,i represents Rww of sewershed i, 268 

Popi represents the population size serviced by sewershed i, and n represents the total number of sewersheds 269 

enrolled in wastewater monitoring within the relevant county. This aggregation approach ensures sewersheds 270 

corresponding to larger or smaller populations have proportional influence on and representation in the county-level 271 

Rww estimate.  272 

 273 

County-level Re �
∑ ����,�� ����	
�
���

∑ 
�����
�
���

               [1] 274 

 275 

Sewershed population sizes should be considered approximate, as they are estimated by wastewater utilities using 276 

unique and non-standardized methodologies. 277 

 278 

For Yolo county’s Rcc, we modified our aggregation approach to accommodate low case counts in sewershed-279 

restricted boundaries. The minimum number of cumulative infections prior to Re estimation recommended by Cori et 280 

al. is 12.1,36 In certain Yolo sites (Esparto and Winters), the minimum number of cumulative infections prior to Re 281 

estimation on May 1, 2022 (the analysis period start date) was below this threshold. Such low input case counts 282 

generated unreliable Rcc estimates with extreme sensitivity to small shifts in case incidence. To address this, we 283 

combined case counts across all Yolo sites and input this single time series into our Re estimation procedure.  284 

 285 

Only sewersheds with wastewater data available for a given date were included in the county-aggregated Re estimate 286 

for that date. While most sewersheds in our analysis sampled wastewater for the full study period, San Francisco 287 

Southeast began sampling on May 20, 2022. As a result, county-aggregated Rww for San Francisco only includes San 288 

Francisco Oceanside for the first 19 days of the study period.  289 

 290 

We derived confidence intervals for county-level Rww and Rcc as population-weighted ensembles of sewershed-level 291 

confidence intervals. For each date, we assumed that a sewershed’s Re (Rww or Rcc) point estimate served as the mean 292 

of a normal (or Gaussian) distribution with 95% confidence intervals matching those estimated for each sewershed. 293 

Under this simplifying assumption, we then linearly interpolated the means and variances of sewershed-level normal 294 

distributions within a county to produce a combined normal distribution; confidence intervals of this resultant 295 

distribution were used for county-level Rww and Rcc. This method of linear interpolation of Gaussian distributions has 296 

been shown to reduce the error coverage for ensemble estimates.40,41 Uncertainty estimation for the CalCAT 297 

ensemble was not feasible, as contributing models did not all report confidence intervals.  298 

 299 

Comparison of Re trajectories 300 

 301 

To evaluate Rww  and Rcc concordance in magnitude and direction, we calculated the mean absolute error (MAE) and 302 

Spearman’s rank correlation (ρ). For Rww  versus sewershed-restricted Rcc, identical Re models (instantaneous or 303 

cohort) were compared. 304 

 305 

CalCAT ensemble values provide real-time, ongoing Rcc estimates with relevance for statewide public health 306 

response, while sewershed-restricted Rcc values provide comparative controls for our particular study. Additional 307 

analyses characterizing the directional concordance between Rww  and the CalCAT ensemble would provide greater 308 

evidence of the former’s potential real-time public health utility. To that end, we produced multi-class confusion 309 

matrices relating Rww  to the CalCAT ensemble. Based on magnitude, Re values were grouped into transmission 310 

strength categories for the state of California (<0.7, 0.7-0.9, 0.9-1.1, 1.1-1.3, >1.3, which represent a sharp decrease, 311 

decrease, stability, increase, and sharp increase in Re, respectively). When predicted Rww  values and reference 312 

CalCAT ensemble values belong to the same category, the confusion matrix marks it an instance of agreement (in 313 

this context, CalCAT ensemble values are treated as the source of truth, or actuals). The total frequency of 314 

agreement instances for each Re category are then visualized by the confusion matrix.  315 

 316 

We reported the resulting sensitivity, specificity, positive predictive values (PPV), and negative predictive values 317 

(NPV) for each Re category. Sensitivity and specificity reflected the fraction of CalCAT ensemble observations 318 
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which were correctly classified by Rww for each Re category. PPV and NPV reflected the proportion of matching and 319 

non-matching classifications for Rww predictions for each Re category. Here, for a given Re category, “true positives” 320 

indicate reference observations correctly classified by Rww as belonging to the category, and “true negatives” indicate 321 

reference observations correctly classified by Rww  as not belonging to the category. We also reported the overall 322 

accuracy, which summarizes across all Re categories. The overall accuracy sums the number of Re predictions 323 

correctly classified by Rww and divides that sum by the total number of observations in the time series. These five 324 

metrics do not include the categories Re < 0.7 and Re > 1.3 as they had no values during the study period.  325 

 326 

We used the R package caret to generate all confusion matrices and corresponding performance metrics.42 327 

 328 

Comparison of Re  temporalities 329 

 330 

We performed cross-correlation between Rww and Rcc to identify temporal lags in the former that may be useful 331 

predictors of the latter. Cross-correlations were performed for a lag value range of -20 to 20 days (negative lag 332 

values: Rww temporally precedes Rcc; positive lag values: Rcc temporally precedes Rww ; lag value of zero: Rww  is not 333 

temporally shifted with respect to Rcc).   334 



 

 

8 

 

RESULTS 335 

 336 

We produced two SARS-CoV-2 Rww models for five California counties. We then compared the timing, magnitude, 337 

and directionality of Rww to the CalCAT ensemble and sewershed-restricted Rcc. All results for San Francisco, Santa 338 

Clara, and Yolo counties are included in the main text; numerical results for Sacramento and Stanislaus counties are 339 

included in the main text and graphical results are in the Supplemental Material.  340 

Comparison of Re trajectories 341 

 342 

Rww tracks closely with Rcc over time and geography (Figures 3, S2, and S4). Quantitatively, we found high 343 

correspondence between Rww and Rcc trajectories for all counties across three analyses: mean absolute error (MAE), 344 

Spearman’s rank correlation, and confusion matrix classification.  345 

 346 

Mean Absolute Error Analysis 347 

When compared against Rcc for the entire analysis period, Rww had a low average MAE (MAE ≤ 0.09, Table 3). For 348 

both instantaneous and cohort Rww models, MAE values relating Rww to CalCAT ensemble estimates were lower 349 

(MAE ≤ 0.07) than MAE values relating Rww to sewershed-restricted Rcc estimates (MAE ≤ 0.09). MAE values 350 

relating Rww to CalCAT ensemble estimates were lower for instantaneous Rww (MAE ≤ .05), while MAE values 351 

relating Rww to sewershed-restricted Rcc estimates were lower for cohort Rww (MAE ≤ 0.06). These results were 352 

consistent across all five counties.  353 

 354 

Spearman’s Rank Correlation Analysis 355 

Over the entire analysis period, Rww estimates were strongly, positively, and significantly correlated with Rcc 356 

estimates for all five counties (Spearman ρ ≥ 0.62, p < 0.001) (Table 3). For instantaneous Rww, strength of 357 

correlation between Rww and CalCAT ensemble estimates was higher (Spearman ρ ≥ 0.78, p < 0.001) than the 358 

strength of correlation between Rww and sewershed-restricted Rcc estimates (Spearman ρ ≥ 0.66, p < 0.001) in four of 359 

five counties. For cohort Rww, strength of correlation between Rww and the CalCAT ensemble (Spearman ρ ≥ 0.62, p 360 

< 0.001) did not show a clear pattern in relation to the strength of correlation between Rww and sewershed-restricted 361 

Rcc estimates (Spearman ρ ≥ 0.66, p < 0.001). Strength of correlation between Rww and the CalCAT ensemble 362 

estimates was higher across all counties for the instantaneous Rww model (Spearman ρ ≥ 0.78, p < 0.001). The 363 

strength of correlation between Rww and sewershed-restricted Rcc estimates was generally higher for the cohort Rww 364 

approach (Spearman ρ ≥ 0.62, p < 0.001), with the exceptions of Sacramento and Yolo counties (for which 365 

instantaneous Rww demonstrated slightly higher strength of correlation).  366 

 367 

Confusion Matrix Analysis 368 

We performed confusion matrix classification analysis, stratified by county and Rww modeling approach, to further 369 

characterize the directional concordance between Rww  and the CalCAT ensemble  (Figures 4 and S3).  370 

  371 

The overall classification accuracy of both Rww models was consistently high (≥ 0.79) across all counties; the sole 372 

exception to this pattern was Stanislaus, which had a slightly lower overall accuracy for its Rww models (≥ 0.64) 373 

(Tables 4 and 5). Overall accuracy for the cohort Rww model was lower as compared to instantaneous Rww for all 374 

counties. For all counties and Rww approaches, the total frequency of agreement instances was greatest for the 0.9 to 375 

1.1 Re (stable) range (Figures 4 and S3).  376 

 377 

Across all counties, both Rww models generally demonstrated the greatest sensitivity and PPV for Re estimates with 378 

magnitudes between 0.9 and 1.1 (sensitivity = 0.78-0.99 and 0.70-0.99; PPV = 0.89-0.97 and 0.77-0.95 for 379 

instantaneous and cohort, respectively). For all Re classifications, sensitivity and PPV varied by geography and Rww 380 

model type. Interestingly, for Re estimates between 0.7 and 0.9, the PPV of cohort Rww was incalculable (San 381 

Francisco and Yolo) or 0 (Sacramento and Santa Clara) for all counties except Stanislaus (PPV = 0.48). An 382 

incalculable PPV indicates there were no Rww predictions within this range; a PPV of 0 indicates Rww never estimated 383 

Re between 0.7 and 0.9 when the CalCAT ensemble did. However, it is important to caveat that there were few (< 384 

20) eligible observations in this category for all counties except Stanislaus. 385 

 386 

For Re estimates between 0.7 and 0.9 or 1.1 and 1.3, all misclassified Re (i.e., Re estimates categorized differently by 387 

the CalCAT ensemble versus Rww) were estimated to be in the 0.9 to 1.1 range by both Rww models. Consistent with 388 

this finding, both Rww models demonstrated the lowest specificity and NPV for the 0.9 to 1.1 category across all 389 
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counties (specificity = 0.48-0.86 and 0.17-0.56; NPV = 0.51-0.85 and 0.31-0.67 for instantaneous and cohort, 390 

respectively). For Re estimates between 0.7 and 0.9 or 1.1 and 1.3, the specificity and NPV remained greater than 391 

0.86 and 0.90, respectively, across all counties for both Rww models. We observed inter- and intra- county- and 392 

model-dependent variability in relative magnitudes of the four reported metrics (sensitivity, specificity, PPV, NPV) 393 

across Re  classifications.  394 

 395 

Comparison of Re  temporalities 396 

 397 

We calculated cross-correlation with a maximum lag of 20 days between Rww and Rcc to numerically evaluate 398 

temporal alignment. Across all counties and Rww-Rcc pairings, cross-correlation coefficients ranged from 0.65 to 0.93 399 

(CalCAT ensemble: 0.72-0.93 and 0.69-0.89; sewershed-restricted Rcc: 0.65-0.87 and 0.67-0.89 for instantaneous 400 

and cohort Rww, respectively). We report the range of time lags for cross-correlation coefficients within 0.05 of the 401 

maximum observed correlation value (Table 6, Figures S5 and S6). The reported range of time lags were wide and 402 

variable across counties, Rcc sources (CalCAT ensemble versus sewershed-restricted), and Rww models 403 

(instantaneous versus cohort). Importantly, though, nearly all ranges included a lead time of 0 days, when Rww  was 404 

not temporally shifted with respect to Rcc  (the two exceptions to this were: (1) instantaneous Rww with respect to 405 

sewershed-restricted Rcc for Stanislaus county, and (2) cohort Rww with respect to the CalCAT ensemble for 406 

Sacramento county); this is consistent with our previous observations of high concordance between non-time-shifted 407 

Rww and Rcc (Figures 3 and S2, Table 3).  408 

 409 

Within each county, the size and bounds (i.e., minimum and maximum) of the reported range of time lags with 410 

respect to sewershed-restricted Rcc was broadly similar between both Rww models; this was not true for the range of 411 

time lags with respect to the CalCAT ensemble, which differs between Rww models (boundaries of ranges with 412 

respect to the CalCAT ensemble: -3 to +10 days and -4 to +10 days of lag for instantaneous and cohort, respectively; 413 

boundaries of ranges with respect to the CalCAT ensemble: -8 to +3 days and -16 to +1 days of lag for instantaneous 414 

and cohort, respectively). 415 

  416 
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DISCUSSION 417 

 418 

We estimated instantaneous and cohort wastewater-based SARS-CoV-2 effective reproduction numbers for five 419 

California counties from May 1, 2022 to April 30, 2023. Across counties with varying population characteristics 420 

(e.g., demographics, sizes, clinical testing rates) and wastewater surveillance (e.g., sampling frequency, coverage), 421 

both instantaneous and cohort Rww models demonstrated high correspondence with traditional Rcc models based on 422 

sewershed-restricted and county-wide case data. Correspondence was indicated by low average MAE, significant 423 

positive Spearman correlation, and high classification accuracy of Rww with respect to Rcc  for the entire study period 424 

(Table 3, Figure 4). These findings align with existing studies on Rww estimation, which consistently reveal high 425 

concordance between Rww and Rcc estimates across geographies and time.17,20,21 Rww  concordance with the county-426 

level CalCAT ensemble was generally greater than with sewershed-restricted Rcc (Table 3).   427 

 428 

Our work did not yield clear conclusions on the relative timing of Rww and Rcc. Cross correlative analyses suggested 429 

strong associations ranging from a lead time of -16 days to a lag time of +10 days, depending on county, Rcc source 430 

(CalCAT ensemble versus sewershed-restricted), and Rww model type (Table 6). These findings align mixed results 431 

in previous studies assessing the temporal alignment between wastewater and clinical surveillance data43–46; several 432 

factors, such as clinical data completeness, SARS-CoV-2 variant predominance, sewershed location, and population 433 

immunity, may influence the strength of wastewater as a leading indicator of disease incidence. 434 

Similar SARS-CoV-2 Rww estimation pipelines are described in Huisman et al.,17 Amman et al.,19 and the publicly 435 

available “COVID-19 R estimation for California” dashboard by Worden et al. (https://ca-covid-r.info/). Both 436 

published studies produce sewershed-level instantaneous Rww, while the dashboard produces county-level cohort 437 

Rww. All methods share a general pipeline schema: wastewater time series data is first processed and subsequently 438 

fed into an Re model. However, the methods differ in their strategies for data transformation, deconvolution 439 

(including selection of infection to shedding delay distributions), and county aggregation. For data transformation, 440 

our method is most similar to Amman et al.,19 as both implement a spline approach to smooth wastewater data. For 441 

deconvolution, our method is most similar to Huisman et al.,17 as both implement a variant of the Richardson-Lucy 442 

expectation-maximization algorithm. For county aggregation, our method differs from that of the “COVID-19 R 443 

estimation for California” dashboard (https://ca-covid-r.info/): we perform population weighting of sewershed-level 444 

Rww, while the dashboard uses non-population-weighted, county-aggregated input wastewater data to estimate Rww. 445 

We chose population-weighting to ensure sewersheds corresponding to larger or smaller populations have 446 

proportional influence on and representation in the county-level Rww estimate. We opted for aggregating sewershed-447 

restricted Rww instead of sewershed-restricted raw RNA concentrations because the latter are not necessarily 448 

comparable between sewersheds due to environmental conditions and wastewater attributes. 449 

There are several limitations to our study. First and most importantly, to validate Rww we treated Rcc as the gold 450 

standard Re metric. However, both clinical and wastewater data streams have their respective strengths and 451 

limitations. Clinical data streams are influenced by heterogeneous, time- and space-varying testing-related factors, 452 

ultimately capturing only a subset of infections. Wastewater data streams, while independent of some of the biases 453 

impacting clinical surveillance, require accurate characterization of the fecal shedding load distribution in order to 454 

be interpreted; the temporal dynamics of fecal shedding and its relationship to variant, immunity status, or disease 455 

severity, continue to be an ongoing area of investigation.47–49 Given this uncertainty surrounding fecal shedding, 456 

pooled viral concentrations in wastewater are difficult to directly translate into unique infection or transmission 457 

events. Consequently, Rww may not truly represent the average number of secondary cases caused by a newly 458 

infectious individual. Instead, it may be more indicative of other disease characteristics such as infectiousness (since 459 

highest shedding tends to occur when someone is most infectious). This is in contrast to traditional Rcc estimates, 460 

which use discrete units of disease burden (e.g., case counts) in conjunction with generation time or serial interval 461 

distributions to directly reconstruct and quantify transmission events. Ultimately, these limitations suggest that both 462 

clinical and wastewater data streams are imperfect proxies for COVID-19 disease dynamics; together though, both 463 

sources could potentially offer a more comprehensive picture of transmission dynamics and infection risk. While the 464 

present study frames Rcc as a gold-standard metric, Rcc and Rww should instead be considered as two complementary 465 

Re metrics informed by synergistic data sources. 466 

Second, county-level Rww is based on sewershed-restricted wastewater data. Such data only reflects the shedding 467 

patterns and disease conditions of wastewater-surveilled communities and may not be generalizable to the entire 468 

county population. This has important implications for the utility of Rww in the context of public health policies, such 469 

as health mandates, which are often applied at the county level. Any county-level policies informed by Rww would be 470 
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tied to a transmission indicator that can only account for the sewershed-surveilled subset of the infected population. 471 

This is especially relevant for the state of California, where most counties (especially those in rural areas) have 472 

<50% of the county population surveilled by wastewater.  Given that our study focuses on counties with >50% 473 

coverage, our findings on the agreement between county-aggregated, sewershed-level Rww and county-level CalCAT 474 

ensemble Rcc may not translate to communities with lower programmatic wastewater surveillance. In addition, the 475 

wastewater-surveilled subset may demonstrate unique behaviors that are not representative of the entire county, 476 

potentially biasing Rww.  477 

Third, wastewater data is susceptible to location- or time-specific environmental conditions. Wastewater samples are 478 

relatively small volumes of wastewater collected from millions of gallons of organic and inorganic materials flowing 479 

through a treatment plant; as such, factors like rainfall, industrial input, temperature, and sewage travel time can 480 

impact measured SARS-CoV-2 RNA concentrations. This may weaken Rww –Rcc  concordance in specific counties.  481 

There are also key limitations within our Rww estimation process. For all five counties in our study, we assume the 482 

experimentally inferred, optimized infection to shedding distribution for San Jose described by Huisman et al.17 This 483 

distribution maximized Rww-Rcc agreement for a single treatment plant studied by Huisman et al.,17 and is therefore 484 

not reflective of the highly variable fecal shedding profile amongst individuals and populations. This upstream 485 

assumption in our pipeline impacts the number of inferred infections per day from wastewater, ultimately 486 

influencing Rww estimates. Similarly, specific decisions were made in the estimation process related to smoothing 487 

(e.g., methodology), trimming (e.g., width or window), and deconvolution (e.g., choice of incubation period, 488 

generation time) which may influence downstream results. 489 

Lastly, it is important to consider practical limitations relevant for operationalization of our methods. Firstly, our 490 

study is a retrospective analysis using readily available historical surveillance data that has been updated post hoc as 491 

more accurate information was reported. This contrasts with real-time or emergency conditions, when both Rcc  and 492 

Rww can only rely on data available at a given time. As such, real-time operationalization of the Rww estimation 493 

procedure outlined in this study may require additional data pre-processing, nowcasting, and forecasting steps in the 494 

absence of current data. Secondly, counties were selected for this pilot analysis to prioritize similar laboratorial 495 

methodologies, long-term sampling histories, high population coverage by wastewater surveillance, and 496 

representation of diverse (rural and urban) demographics. Such historically comprehensive, consistently measured, 497 

and frequently sampled wastewater data is not available for all sewersheds, counties, or regions. Therefore, the 498 

performance of the Rww estimation process presented here may vary considerably when applied to other jurisdictions 499 

in California and may not be generalizable. In the future, investigating Rww estimation in a larger suite of counties 500 

and regions will be essential to comprehensively understanding the utility of our method in a wide range of 501 

scenarios. Another future extension includes identifying the minimum wastewater county coverage and sampling 502 

frequency required for high Rww-Rcc concordance, which would increase county representation (building upon initial 503 

work done by Huisman et al. 2022 for San Jose). Finally, methodological differences can impact measured 504 

wastewater concentrations, which in turn can complicates comparability between sites. While we selected 505 

sewersheds using similar laboratory methods for this study, some differences still remained in how wastewater 506 

solids were collected, processed, or quantified. We do not have conclusive evidence on the impact of even minor 507 

differences in laboratory methodologies on downstream Rww estimation. Moreover, best practices for combining 508 

wastewater data across multiple methods and laboratories (either over time for a single site, or for distinct sites 509 

within a single county) remain an area of ongoing and future research. 510 

 511 

We estimated county-level Rww, which we demonstrated tracks closely with robust traditional case-based Rcc 512 

estimates. Our results support the future use of Rww as an additional epidemiological tool with public health 513 

relevance in the context of disease dynamics monitoring. Moreover, our study provides a generalizable, robust, and 514 

operationalizable framework for estimating county-level Rww. On the basis of this research, we produced publicly 515 

available SARS-CoV-2 Rww nowcasts for the CalCAT dashboard (https://calcat.covid19.ca.gov/cacovidmodels/), 516 

advancing COVID-19 transmission monitoring for the state of California. This study and the described approach can 517 

inform other jurisdictions’ construction and implementation of sewershed- and county-level Rww estimation 518 

pipelines. In the future, the described estimation procedure could be applied to other pathogens with available 519 

wastewater and case surveillance data (e.g., respiratory syncytial virus [RSV], influenza).  520 

  521 
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TABLES 688 

 689 

Table 1. Population and sampling characteristics of counties and wastewater treatment plants included in the 690 

analyses.  691 

County Wastewater 
Treatment 
Plant 

Monitoring 
Lab 

Population 
Served by 
WW 
Treatment 
Plant 

County 
Population 
Size 

Coverage Median 
Weekly 
County 
Testing Rate 
(per 100,000) 

WW Sample 
Type 

Median WW 
Weekly 
Sampling 
Frequency 

Total WW 
Samples  

Sacramento Sacramento Method 1 1,480,000 1,570,000 0.94 1,160 Primary settled 
solids 

7 366 

San Francisco San Francisco 
Southeast 

Method 1 750,000 890,000 1 2,040 Primary settled 
solids 

7 340 

 San Francisco 
Oceanside 

Method 1 250,000 890,000 1 2,040 Primary settled 
solids 

7 354 

Santa Clara Palo Alto Method 1 236,000 1,970,000 1 2,175 Primary settled 
solids 

7 366 

 Gilroy/Morgan 
Hill 

Method 1 110,338 1,970,000 1 2,175 Primary settled 
solids  

7 366 

 San Jose Method 1 1,500,000 1,970,000 1 2,175 Primary settled 
solids  

7 366 

 Sunnyvale Method 1 153,000 1,970,000 1 2,175 Primary settled 
solids  

7 362 

Stanislaus Modesto Method 2: 
May 1 – Nov 
30, 2022 
Method 1: Dec 
1, 2022 – May 
1, 2023 

230,000 550,000 0.57 1,090 Primary settled 
solids  

Method 2: 4 
Method 1: 3 

198 

 Turlock Method 2: 
May 1 – Nov 
30, 2022 
Method 1: Dec 
1, 2022 – May 
1, 2023 

86,000 550,000 0.57 1,090 Solids settled 
from 24-hour 
time-weighted 
composite 
influent 

Method 2: 4 
Method 1: 3 

198 
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 692 

Note: Counties and wastewater treatment plants included in this study were selected based on consistency in 693 

laboratory methodology (Methods 1 and 2 both process wastewater settled solids and utilized laboratory protocols 694 

designed to be similar), high (>50%) coverage (proportion of the county’s population that reside within sewersheds 695 

contributing to wastewater monitoring data), and representation of diverse demographics (urban and rural). Samples 696 

from six sites (Modesto, Merced, Turlock, Esparto, Winters, and Woodland) were processed via Method 2 for the 697 

first part of the study period, followed by Method 1 for the remaining part of the study period. Abbreviations: WW, 698 

wastewater 699 

 700 

  701 

Yolo Davis Method 1 70,717 220,000 0.63 2,230 Primary settled 
solids 

7 298 

 Esparto Method 2: 
May 1 – Nov 
30, 2022 
Method 1: Dec 
1, 2022 – May 
1, 2023 

3,272 220,000 0.63 2,230 Solids settled 
from 24-hour 
time-weighted 
composite 
influent  

Method 2: 4 
Method 1: 3 

186 

 Winters Method 2: 
May 1 – Nov 
30, 2022 
Method 1: Dec 
1, 2022 – May 
1, 2023 

7,285 220,000 0.63 2,230 Solids settled 
from raw, 
composite 
wastewater 
from pump 
station 

Method 2: 4 
Method 1: 3 

184 

 Woodland Method 2: 
May 1 – Nov 
30, 2022 
Method 1: Dec 
1, 2022 – May 
1, 2023 

59,000 220,000 0.63 2,230 Solids settled 
from 24-hour 
time-weighted 
composite 
influent 

Method 2: 4 
Method 1: 3 

196 
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Table 2. Key distribution parameters used in sewershed-level Re estimation pipeline. 702 

 703 

Note: Estimation of instantaneous and cohort sewershed-level Re requires a user-specified generation time 704 

distribution. Estimation also requires a time series input of incidence data indexed by date of infection. To index 705 

both raw sewershed-restricted case counts and wastewater viral concentrations by date of infection, we performed 706 

deconvolution. For cases, we deconvolved using two delay distributions. For wastewater, we deconvolved using a 707 

single delay distribution optimized for San Jose, California. Abbreviations: NAAT, nucleic acid amplification test,  708 

Re, effective reproduction number; Rww, sewershed-restricted, wastewater-based effective reproduction number; Rcc, 709 

case-based effective reproduction number; SD, standard deviation.  710 

 711 

  712 

Distribution Purpose Relevant Re Distribution Type  Mean (SD) Distribution 
Parameters 

Source 

Generation time Sewershed-restricted Re estimation from 
input time series 

Rww ; 
sewershed-
restricted Rcc 

Gamma 6.84 (4.48) Shape: 2.33 
Scale: 2.93 

Manica et al.39 

Infection to shedding Deconvolution of wastewater concentrations  Rww Gamma 5 (0.5) Shape: 100 
Scale: 0.05 

Huisman et al.17 

Incubation period Deconvolution of sewershed-restricted case 
counts  

sewershed-
restricted Rcc 

Lognormal 3.1 (2.6) Meanlog: 0.87 
Sdlog: 0.73 

Aguila-Mejia et al.35 

Onset to NAAT 
result  

Deconvolution of sewershed-restricted case 
counts  

sewershed-
restricted Rcc 

Lognormal 3.35 (2.84) Meanlog: 0.94 
Sdlog: 0.73 

CA cases line list 
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Table 3. Comparative analyses of county-level Rww and Rcc trajectories using mean absolute error and 713 

Spearman’s rank correlation.  714 

 715 

Note: By calculating mean absolute errors and Spearman’s rank correlations, we compared the magnitude and 716 

direction of instantaneous and cohort Rww models to two types of Rcc estimates: (1) a publicly available ensemble of 717 

county-wide Rcc estimates (“CalCAT ensemble”), and (2) a county-aggregated, sewershed-restricted Rcc. Reported p-718 

values correspond to Spearman’s rank correlation, ρ (Rww compared against Rcc). Abbreviations: Rww, sewershed-719 

restricted, wastewater-based effective reproduction number; Rcc, case-based effective reproduction number; MAE, 720 

mean absolute error; ρ (rho), Spearman’s rank correlation coefficient. 721 

 722 

  723 

County Type of Rcc estimate MAE,  
Instantaneous 
Rww 

MAE, 
Cohort Rww 

Spearman’s ρ,  
Instantaneous 
Rww 

ρ p-value,  
Instantaneous 
Rww 

Spearman’s ρ, 
Cohort Rww 

ρ p-value,  
Cohort Rww 

Sacramento Sewershed-restricted cases  0.082 0.072 0.719 3.20E-59 0.712 8.80E-58 
 CalCAT ensemble  0.042 0.052 0.775 3.10E-74 0.621 2.30E-40 
San Francisco Sewershed-restricted cases  0.077 0.071 0.726 5.30E-61 0.754 3.10E-68 
 CalCAT ensemble  0.025 0.031 0.936 3.80E-167 0.866 2.50E-111 
Santa Clara Sewershed-restricted cases  0.064 0.059 0.800 1.20E-82 0.823 5.50E-91 
 CalCAT ensemble 0.028 0.043 0.843 9.10E-100 0.668 1.70E-48 
Stanislaus Sewershed-restricted cases  0.087 0.066 0.779 1.30E-75 0.873 1.60E-115 
 CalCAT ensemble  0.052 0.065 0.775 2.20E-74 0.662 2.50E-47 
Yolo Sewershed-restricted cases  0.081 0.073 0.657 2.10E-46 0.658 1.30E-46 
 CalCAT ensemble  0.016 0.019 0.891 3.20E-126 0.884 1.10E-121 
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Table 4. Summary metrics from multi-class confusion matrix analysis evaluating agreement between 724 

instantaneous Rww and the CalCAT ensemble. 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

Note: We produced multi-class confusion matrices relating instantaneous Rww to the CalCAT ensemble (real-time, 742 

ongoing Rcc estimates with relevance for statewide public health). Re values were classified into transmission 743 

strength categories based on magnitude (<0.7-0.9, 0.9-1.1, 1.1-1.3, >1.3, which represent a strong decrease, 744 

decrease, stability, increase, and strong increase in transmission, respectively). The resulting sensitivity, specificity, 745 

positive predictive and negative predictive values for each Re category are reported. The overall accuracy for each 746 

county-level Rww is also reported. We did not report two Re categories (< 0.7, >1.3), which had no observations 747 

during the study period. aAll gray boxes indicate values identical to the closest, previous non-zero entry within the 748 

same column. bNA entries correspond to Re categories with zero Rww predictions during the study period. Re , 749 

effective reproduction number; PPV, Positive Predictive Value; NPV, Negative Predictive Value. 750 

 751 

  752 

County Re 
Classification 

Overall 
Accuracy 

Sensitivity 
 

Specificity PPV 
 

NPV 
 

Sacramento 0.7-0.9 0.87 0.73 0.89 0.17 0.99 
 0.9-1.1 a 0.87 0.84 0.97 0.51 
 1.1-1.3  0.87 0.99 0.94 0.98 
San Francisco 0.7-0.9 0.89 0.32 0.99 0.75 0.96 
 0.9-1.1  0.93 0.64 0.95 0.57 
 1.1-1.3  0.86 0.94 0.53 0.99 
Santa Clara 0.7-0.9 0.90 0.75 0.95 0.32 0.99 
 0.9-1.1  0.90 0.86 0.97 0.63 
 1.1-1.3  0.89 0.97 0.79 0.98 
Stanislaus 0.7-0.9 0.76 0.95 0.94 0.73 0.99 
 0.9-1.1  0.78 0.79 0.89 0.63 
 1.1-1.3  0.52 0.88 0.46 0.9 
Yolo 0.7-0.9 0.96 0 1 bNA 0.98 
 0.9-1.1  0.99 0.48 0.97 0.85 
 1.1-1.3  0.65 0.99 0.85 0.98 
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Table 5. Summary metrics from multi-class confusion matrix analysis evaluating agreement between cohort 753 

Rww and the CalCAT ensemble. 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

Note: We produced multi-class confusion matrices relating instantaneous Rww to the CalCAT ensemble (real-time, 771 

ongoing Rcc estimates with relevance for statewide public health). Re values were classified into transmission 772 

strength categories based on magnitude (<0.7-0.9, 0.9-1.1, 1.1-1.3, >1.3, which represent a strong decrease, 773 

decrease, stability, increase, and strong increase in Re, respectively). The resulting sensitivity, specificity, positive 774 

predictive and negative predictive values for each Re category are reported. The overall accuracy for each county-775 

level Rww is also reported. We did not report two Re categories (< 0.7, >1.3), which had no observations during the 776 

study period. aAll gray boxes indicate values identical to the closest, previous non-zero entry within the same 777 

column. bNA entries correspond to Re categories with zero Rww values during the study period. Re , effective 778 

reproduction number; PPV, Positive Predictive Value; NPV, Negative Predictive Value. 779 

 780 

  781 

County Re 
Classification 

Overall 
Accuracy 

Sensitivity 
 

Specificity PPV 
 

NPV 
 

Sacramento 0.7-0.9 0.79 0 0.87 0 0.97 
 0.9-1.1 a 0.84 0.46 0.91 0.31 
 1.1-1.3  0.59 0.98 0.82 0.95 
San Francisco 0.7-0.9 0.85 0 1 bNA 0.95 
 0.9-1.1  0.93 0.28 0.9 0.38 
 1.1-1.3  0.46 0.94 0.38 0.95 
Santa Clara 0.7-0.9 0.82 0 0.95 0 0.97 
 0.9-1.1  0.89 0.46 0.89 0.44 
 1.1-1.3  0.57 0.95 0.63 0.94 
Stanislaus 0.7-0.9 0.64 0.54 0.89 0.48 0.91 
 0.9-1.1  0.70 0.56 0.77 0.47 
 1.1-1.3  0.5 0.86 0.41 0.9 
Yolo 0.7-0.9 0.94 0 1 NA 0.98 
 0.9-1.1  0.99 0.17 0.95 0.67 
 1.1-1.3  0.24 0.99 0.67 0.96 
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Table 6. Comparison of Re temporality via cross correlations. 782 

County Rcc Lag (Days), 
Instantaneous Rww 

Lag (Days), 
Cohort Rww 

CC, 
Instantaneous Rww 

CC, 
Cohort Rww 

Sacramento Sewershed-restricted cases [-3, 4] [-4, 3] [0.65, 0.7] [0.67, 0.72] 
 CalCAT ensemble  [-8, 2] [-15, -4] [0.72, 0.77] [0.69, 0.73] 
San Francisco Sewershed-restricted cases [0, 8] [0, 10] [0.73, 0.77] [0.76, 0.80] 
 CalCAT ensemble  [-4, 2] [-11, 0] [0.87, 0.92] [0.84, 0.89] 
Santa Clara Sewershed-restricted cases [-2, 3] [-3, 4] [0.84, 0.87] [0.84, 0.89] 
 CalCAT ensemble  [-8, 1] [-16, -6] [0.84, 0.88] [0.8, 0.84] 
Stanislaus Sewershed-restricted cases [4, 10] [-1, 7] [0.72, 0.76] [0.81, 0.85] 
 CalCAT ensemble  [-6, 2] [-15, -6] [0.73, 0.76] [0.78, 0.83] 
Yolo Sewershed-restricted cases [-2, 9] [-2, 10] [0.68, 0.73] [0.68, 0.73] 
 CalCAT ensemble [-5, 3] [-9, 1] [0.88, 0.93] [0.84, 0.89] 

 783 

Note: Using cross-correlation analysis with a maximum lag of 20 days, we investigated temporal alignment of Rww 784 

(cohort or instantaneous) and Rcc. Rcc included either the CalCAT ensemble – a publicly available ensemble of 785 

county-wide Rcc estimates – or county-aggregated, sewershed-restricted Rcc estimates. We report the range of time 786 

lags for cross-correlation coefficients within 0.05 of the maximum observed correlation value. We also include the 787 

range of cross-correlation coefficients within 0.05 of the maximum observed correlation value. Negative lag values 788 

indicate Rww temporally precedes Rcc; positive lag values indicate Rcc temporally precedes Rww ; lag values of zero 789 

indicate no temporal shift of Rww  with respect to Rcc. Rww, sewershed-restricted, wastewater-based effective 790 

reproduction number; Rcc, case-based effective reproduction number; CC, cross-correlation coefficient 791 
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FIGURE CAPTIONS 792 

 793 

Figure 1. Map of sewersheds included in analysis.  794 

The geographical boundaries of sewersheds (a wastewater treatment plant’s catchment area) selected for the present 795 

study are highlighted in blue. Each sewershed’s respective county is outlined in black. Three of the five studied 796 

counties (San Francisco, Santa Clara, and Yolo) are illustrated; maps of the remaining counties (Sacramento and 797 

Stanislaus) are included in the Supplemental Material.  798 

 799 

Figure 2. Stepwise process of county-aggregated, sewershed-restricted Re estimation for a single location. 800 

Using San Francisco as an example, we demonstrate our stepwise pipeline for estimating county-aggregated, 801 

sewershed-restricted Re. Each column represents a single wastewater treatment plant within the county. The left 802 

column corresponds to San Francisco Oceanside, which surveils 28% of the total county population; the right 803 

column corresponds to San Francisco Southeast, which surveils 84% of the total county population. Detailed axes 804 

are excluded for this generic, representation of the Re estimation process. (A) The pipeline begins with raw, 805 

sewershed-restricted time series data; in our study, input data includes case counts (pink) and wastewater viral 806 

concentrations (blue). (B) In Step 1, raw time series data are transformed: case counts are LOESS smoothed, while 807 

wastewater concentrations are spline smoothed and root transformed. Transformed data are subsequently 808 

deconvolved, shifting both time series’ backwards temporally such that observations are indexed by date of 809 

infection. (C) In Step 2, the methods of Cori et al.1 and Wallinga and Teunis22 are applied on the modified time 810 

series data streams to produce instantaneous and cohort sewershed-level Re estimates. (D) Finally, in Step 4, 811 

sewershed-level Re estimates are population-weighted and aggregated to yield county-level Re estimates. Note: WW, 812 

wastewater surveillance data; Re , effective reproduction number; Model, Re modeling approach (instantaneous or 813 

cohort). 814 

 815 

Figure 3. Time series of county-aggregated, sewershed-restricted Re for Santa Clara, San Francisco, and Yolo. 816 

Between May 1, 2022 and April 30, 2023, three county-level Re time series are compared: (top, black) the CalCAT 817 

ensemble – a publicly available ensemble of county-wide Rcc estimates; (middle, pink) county-aggregated, 818 

sewershed-restricted Rcc; and (bottom, blue) Rww. Both Rww and sewershed-restricted Rcc were calculated using the Re 819 

estimation pipeline piloted in this study. Solid pink or blue lines indicate instantaneous Re, while dashed pink or blue 820 

lines indicate cohort Re. 95% confidence intervals for each Re type (instantaneous or cohort) are depicted. Results for 821 

three of five studied counties (San Francisco, Santa Clara, and Yolo) are included; results for the remaining counties 822 

(Sacramento and Stanislaus) are included in the Supplemental Material. Note: Rww, sewershed-restricted, 823 

wastewater-based effective reproduction number; Rcc, case-based effective reproduction number. 824 

 825 

Figure 4. Frequency of agreement between Rww  and the CalCAT ensemble for Santa Clara, San Francisco 826 

and Yolo. 827 

Based on magnitude, Re values were classified into transmission strength categories (<0.7-0.9, 0.9-1.1, 1.1-1.3, >1.3, 828 

which represent a strong decrease, decrease, stability, increase, and strong increase in Re, respectively). Frequency of 829 

agreement between Rww and the CalCAT ensemble (i.e., instances when predicted Rww values and reference CalCAT 830 

ensemble values belong to the same Re category) are visualized by the confusion matrix. The right column illustrates 831 

results for cohort Rww, and the left for instantaneous Rww. Each row represents a single county. The counter diagonals 832 

(top right to bottom left) of each matrix represents true positives. Off-diagonal values indicate instances of 833 

disagreement between Rww model predictions and the CalCAT ensemble. Two Re categories (Re < 0.7, Re >1.3) with 834 

no Re values during the study period were excluded. Results for three of five studied counties (San Francisco, Santa 835 

Clara, and Yolo) are included; results for the remaining counties (Sacramento and Stanislaus) are included in the 836 

Supplemental Material. Note: Rww, sewershed-restricted, wastewater-based effective reproduction number; 837 

Instantaneous, instantaneous Rww; Cohort, cohort Rww. 838 

 839 










