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Abstract

We present a novel dynamic model designed to depict Cholera outbreaks within a
two-population framework featuring two environmental reservoirs. The model is de-
signed to emulate the impact of segregation or integration between two populations on
the transmission of the disease and infections throughout the entire community, both
with and without non-medicinal interventions. This is achieved by allowing infectious
individuals to interact with the reservoir of the alternate population at different levels
of suppression, in addition to their regular interaction with their own reservoir.

We find out that increased suppression of cross community interaction reduces the
number of infections in the overall population as well as in the population with less con-
tamination and contact. Additionally, we predict significant delays in the occurrence of
peak infections, affording public health authorities crucial time for intervention. Low-
ering cross-immunity interactions also leads to a decrease in bacterial concentrations
in environmental reservoirs. Finally, we demonstrate that non-medicinal interventions,
including sanitation and water purification, would significantly reduce and delay infec-
tions, providing a valuable time frame for implementing additional medicinal measures.

keywords— Cholera; SIR; Mathematical Modelling; Epidemiology.

1 Introduction

Cholera is a bacterial infection caused by the Vibrio cholerae bacterium, and it is primarily trans-

mitted through contaminated water and food. Cholera epidemics can be dangerous and potentially

life-threatening, especially in areas with inadequate sanitation and limited access to clean water

[1]. The severity of cholera epidemics depends on various factors, including the local infrastructure,

healthcare system, and the ability to implement effective public health measures. Scientists have

approximated that annually, there are between 1.3 and 4.0 million instances of cholera, resulting in

21,000 to 143,000 fatalities globally attributable to the disease [2].
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It has a long and impactful history, with documented cases dating back centuries [3, 4]. The

first cholera pandemic emerged in the early 19th century, originating in the Indian subcontinent

and spreading globally through trade routes and military movements. The causative agent, Vibrio

cholerae, was identified by the pioneering work of John Snow in the mid-1800s, who linked the

disease to contaminated water sources. Subsequent pandemics occurred in waves, affecting diverse

regions and populations. Advances in understanding the bacterium, improvements in sanitation,

and the development of oral rehydration therapy have contributed to better managing and con-

trolling cholera. Despite these efforts, outbreaks continue to pose challenges, particularly in areas

with inadequate access to clean water and sanitation. Cholera remains a significant public health

concern, underscoring the ongoing importance of global efforts to prevent, detect, and respond to

this infectious disease [5, 6, 7, 8].

The disease manifests with distinct symptoms, primarily characterized by severe diarrhea and

vomiting. This intense loss of fluids can lead to dehydration, a critical aspect of the disease. In-

dividuals may also experience nausea and abdominal cramps. In severe cases, cholera can progress

rapidly, causing extreme thirst, lethargy, and a rapid heart rate. Without prompt and adequate

re-hydration, the symptoms can escalate, potentially leading to shock and, in the absence of proper

medical intervention, even death. The severity of symptoms can vary, and some infected individuals

may exhibit milder or asymptomatic cases, contributing to the challenge of detecting and containing

the disease in affected populations.

Cholera has the potential to rapidly spread in regions characterized by inadequate sanitation,

crowded living conditions, and poor hygiene practices, primarily due to contamination of water

sources. The symptoms, including severe diarrhea and vomiting, can swiftly lead to dehydration

and, without timely re-hydration, pose a fatal threat, especially to vulnerable populations such

as young children and the elderly. Beyond the individual health implications, cholera outbreaks

significantly impact communities, causing social and economic disruptions by straining healthcare

systems, overwhelming medical facilities, and contributing to elevated mortality rates. The disease’s

prevention and effective management hinge on enhancing surveillance systems, ensuring access to

clean water, proper sanitation facilities, and timely medical care, with oral re-hydration therapy

playing a crucial role in saving lives [9]. While cholera is commonly associated with developing

countries and poor sanitation, it can also emerge in areas affected by natural disasters or conflicts,

and the risk of global spread persists, especially with increased international travel.

Mathematical modeling plays a crucial role in understanding and predicting the spread of in-

fectious diseases. By employing mathematical frameworks, researchers can simulate and analyze

the complex dynamics of disease transmission within populations. These models take into account

various factors such as population size, demographics, contact patterns, and the effectiveness of

interventions. They provide valuable insights into the potential trajectories of an outbreak, helping

public health officials make informed decisions about implementing control measures. Mathematical

models also allow for the exploration of different scenarios, enabling researchers to assess the impact

of interventions and identify strategies to mitigate the spread of the disease [10, 11]. Moreover,

these models contribute to our understanding of the underlying mechanisms driving epidemics, aid-

ing in the development of more effective public health strategies and interventions [12, 13, 14, 15].

The interdisciplinary nature of mathematical modeling in infectious disease research highlights its

significance in addressing global health challenges [16].

The transmission dynamics of infectious diseases have undergone comprehensive studies through
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the application of the Susceptible-Infectious-Recovered (SIR) compartmental model, initially intro-

duced by Kermack and McKendrick [17], and its subsequent refinements and adaptations. Over

the years, this model has been employed to analyze a spectrum of diseases, ranging from histor-

ical pandemics such as the Spanish flu to endemic illnesses like Cholera, Malaria, and Pneumo-

nia, as well as contemporary challenges like the seasonal flu and the ongoing COVID-19 pandemic

[18, 19, 20, 21, 22, 23, 24, 25, 26]. The versatility of these compartmental models has been demon-

strated in their ability to effectively simulate and predict the trajectories of disease spread, account-

ing for variables such as mitigation measures, sanitation practices, social distancing initiatives, and

vaccination campaigns. By leveraging these models, researchers and public health officials gain valu-

able insights into the potential impact of interventions, enabling more informed decision-making to

mitigate the consequences of infectious diseases [27, 28, 29, 30, 31].

The use of SIR compartmental models has proven to be invaluable in the field of cholera modeling,

providing a robust framework for understanding and predicting the dynamics of cholera outbreaks.

Cholera often leads to rapid and widespread transmission, making it crucial to develop effective

strategies for its control and prevention [32]. In the context of cholera, individuals in the susceptible

compartment are those who are at risk of contracting the disease, while infectious individuals have

been exposed to the bacterium and can transmit the infection. The recovered compartment includes

individuals who have either survived the infection and gained immunity or succumbed to the dis-

ease. This model captures the essential dynamics of cholera transmission, allowing researchers and

public health officials to estimate key parameters such as the basic reproduction number R0, which

represents the average number of secondary infections generated by a single infectious individual in

a completely susceptible population. The SIR model also helps in assessing the impact of interven-

tions such as vaccination, water sanitation measures, and improved hygiene practices on controlling

cholera outbreaks. By incorporating real-world data into the model, researchers can tailor inter-

ventions to specific settings and populations, ultimately contributing to more effective and targeted

cholera prevention strategies. Additionally, the SIR model’s adaptability allows for the exploration

of various scenarios and the identification of optimal control measures to mitigate the impact of

cholera on communities and prevent its further spread.

Extensive research exists on modeling cholera, incorporating an environmental reservoir that

typically signifies a community’s water source, housing the Vibrio Cholerae bacteria responsible for

infections in individuals within the community. Interactions with the reservoir result in individuals

shedding more bacteria into it through various mechanisms [33, 34, 35, 36, 37]. While some models

account for person-to-person transmission of the infection [38], this aspect remains a secondary

factor in disease dynamics compared to water and environmental contamination. The majority of

models in the literature concentrate on a singular population interacting with a sole reservoir, with

certain studies examining clusters of populations interacting with a shared reservoir [39, 40, 41].

In this study, we highlight a specific scenario that holds significant importance in certain con-

texts. Our primary focus is on a society consisting of two populations, each associated with distinct

environmental reservoirs that exhibit varying degrees of interaction. An illustrative example involves

a guest community coexisting with a host community, each possessing its own water resources and

experiencing different levels of segregation or integration. In a completely segregated society, the two

populations and their reservoirs operate independently, whereas in a fully integrated society, they

function as a unified entity. If a cholera infection spreads within one population, health authorities

must formulate policies to mitigate the disease and alleviate the burden on public health resources.
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We introduce a model with an underlying mathematical structure, incorporating a cross interaction

parameter, and conduct numerical simulations to assess the extent of the spread under different

scenarios of integration or segregation. Additionally, we examine the impact of implementing non-

medicinal interventions aimed at reducing the infection’s extent, comparing the outcomes with those

of the original case without interventions.

The manuscript is organized as follows: After the introduction in section (1), we present a

novel two-population, two-reservoir model in section (2), with different levels of segregation and

integration. We derive the basic reproductive number and introduce the effects of non-medicinal

interventions. Our results and numerical simualtions are discussed in section (3) before concluding

in section (4).

2 Theoretical Framework

2.1 A two-population, two-reservoir model

We introduce a novel compartmental model with two interacting populations, to simulate Cholera

spreads in societies with different degrees of integration or segregation. This is an SIBR model, where

each population is divided into four compartments, S (susceptible), I (infected), B (concentration

of the bacteria in infected water reservoirs), and R (removed). We neglect the transmission from

person to person and focus solely on transmission through exposure to infected water reservoirs.

We present our model in system (1). The susceptible compartments are populated through

natural births and depopulated through natural deaths and cholera infections. We denote by Ni the

total number of individuals in population i, by µi the natural death rate or birth rate of population i,

which assume to be equal, without loss of generality. The rate of infection depends on the susceptible

population Si, the rate of exposure to infected water resources βi, the human infectious dose κ and

the reservoir bacteria concentration B. The human infectious dose is defined such that when κ = B,

the probability of infection upon exposure to the reservoir is 50%.

The infectious compartment is augmented by infections from susceptibles defined above and it

is reduced by the natural death rate and by the removal rate γ (due to recovery or disease induced

death). We ignore infections caused by direct human to human interaction, as this would be a

marginal factor in comparison with the main driving force of infection: bacterial contamination of

vital environmental sources like water.

In the bacteria reservoirs Bi, the deposition of bacteria from the infected class of a population to

its corresponding reservoir happens at a rate of χi while the deposition rate into the other reservoir

occurs at τ χi. The parameter τ is a suppression parameter that represents the cross interaction

between between a population with the other natural reservoir, and could be used to represent the

degree of segregation or integration between the populations, with numerical values 0 ≤ τ ≤ 1 .

Finally, the rate of death of the Vibrio cholerae bacteria in the environment is given δ.

The recovery compartments Ri occur due the removal rate γi (by recovery or disease related

death) from the infected population. It is diminished by natural deaths among the surviving recov-

ered population only, since a fraction l of those removed are already dead due to disease.

The flow diagram in Fig. (1) summarizes the dynamics of the model among its various compart-

ments, interactions and their rates. The red lines in this figure represent the dynamics of infection

of susceptible individuals upon contact with the corresponding contaminated reservoir, the black

lines connecting Ii and Ri summarize the rate of recovery of infectious individuals and the dashed
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Figure 1: A flow diagram corresponding to the two-population two-reservoir model presented in
system (1). The flow lines represent dynamics between compartments and the dashed lines corre-
spond to deposition into the reservoirs.

Parameter Description
µbi Rates of natural birth
µdi

Rates of natural death
βi Rates of contact/expousre to infected resources
κ Human infectious dose - 50% infection rate upon exposure
γi Rates of removal (recovery or death) from Cholera infection
χi Rate of bacterial deposition from infected people to their reservoir
τ Supression factor representing levels of segregation or integration
l Rate of death among infectious individuals

δ Rate of death of the Vibrio Cholerae bacteria in the reservoir

Table 1: A summary of the model parameters and their definitions

blue lines represent the deposition of the bacteria by infectious individuals into their own as well as

the other reservoirs. The other one-sided black lines show the natural birth and death rates.

Mathematically, our model is best represented by the following system of coupled ordinary

differential equations:
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dS1

dt = µb1N1 − µd1S1 − B1

κ+B1
β1S1

dS2
dt = µb2N2 − µd2

S2 − B2

κ+B2
β2S2

dI1
dt = −(µd1

+ γ1)I1 +
B1

κ+B1
β1S1

dI2
dt = −(µd2 + γ2)I2 +

B2

κ+B2
β2S2

dB1

dt = χ1I1 + τχ2I2 − δB1

dB2

dt = τχ1I1 + χ2I2 − δB2

dR1

dt = γ1I1 − µd1(1− l)R1

dR2

dt = γ2I2 − µd2
(1− l)R2

(1)

where Ni = Si + Ii +Ri. An important quantity in epidemic model is the force of infection which is

essential rate for determining infections. For Cholera spreads, the force of infection is mainly caused

by the interaction between the susceptibles and the bacteria in the reservoir. In this model, it is

given by:

λi =
Bi

κ+Bi
βi (2)

Lemma 1: λ is an increasing function with respect to β and B and decreasing with respect to κ.

Proof: We can verify that: ∂λi

∂βi
= Bi

κ+Bi
> 0 , ∂λi

∂Bi
= κβi

(κ+Bi)2
> 0 and ∂λi

∂κ = −Biβi

(κ+Bi)2
< 0.

Higher concentrations of bacteria in the reservoir and higher contact rates result in a stronger

rate of infection, while a higher human infectious dose means less rate of infections.

Without loss of generality, we assume here that the rates of natural deaths and natural births

are equal, hence: µbi = µdi
. The net change in population would consequently be:

dNi

dt
= µdi

Ril (3)

which represents the net decrease in the population due to deaths caused by cholera infections.

Note that in this setting, the total populations Ni decrease due to disease induced deaths and equal

natural birth and death rates.

Theorem 1: Fully segregated populations are independent For τ = 0 the two pop-

ulations are independent.

Proof: For τ = 0, the equations for Bi in system (1) decouple and the interaction between two

populations is fully suppressed. Consequently the whole system decouples into two independent
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Figure 2: Three dimensional plots of the force of infection λ in terms of: (a) B and β on the left,
(b) κ and B in the middle and (c) β and κ on the right.

systems given by: 

dSi

dt = µbiNi − µdiSi − Bi

κ+Bi
βiSi

dIi
dt = −(µdi

+ γi)Ii +
Bi

κ+Bi
βiSi

dBi

dt = χiIi − δBi

dRi

dt = γiIi − µdi(1− l)Ri

(4)

for i = 1, 2.

Theorem 2 Fully integrated populations form a single population For τ = 1, two

fully integrated populations form a single population which SIR compartments are the sums of the

individual compartments.

Proof: Two fully integrated populations would have access to same reservoirs, environmental and

social factors and contact rates, hence we assume that each doublet of parameters µbi , µdi
, χi and

Bi to be identical. In addition, with equal access to both reservoirs, we have that τ = 1.

Under these conditions, the model can be reduced to describe the spread of cholera in one population.

dS
dt = µbN − µdS − B

k+BβS

dI
dt = −(µd + γ)I + B

k+BβS

dB
dt = χI − δB

dR
dt = γI − µdR

(5)

where S = S1 + S2, I = I1 + I2, R = R1 +R2 and N = N1 +N2

In this paper, we consider a set of realistic scenarios of two interacting populations under various

levels of segregation or integration, modelled by 0 ≤ τ ≤ 1.
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2.2 Basic reproductive number

The model presented above admits a disease-free equilibrium given by

W =
(
Si Ii Bi Ri

)
=
(
Ni 0 0 0

)
(6)

This equilibrium is asymptotically stable if the basic reproductive number R0 is less than one.

To determine the basic reproductive number we use the next generation matrix approach. First,

let us define Y =

(
I

B

)
where I = I1 + I2 and B = B1 + B2 Let us now consider the infected

classes of the first population Y1 =

(
I1

B1

)
and Ẏ1 =

(
İ1

Ḃ1

)
. We then divide Ẏ1 into f − v such

that f =

(
B1

k+B1
β1S1

0

)
and v =

(
(µd1

+ γ1)I1

−χ1I1 − τχ2I2 + δB1

)
. The Jacobian of f and v evaluated at the

disease-free equilibrium are respectively F and V.

F =
df

dY

∣∣∣∣
W

=

(
0 N1β1

k

0 0

)

V =
dv

dY

∣∣∣∣
W

=

(
µd1

+ γ1 0

−χ1 − τχ2 δ

)
The next generation matrix is given by

NGM = FV −1 =

(
N1β1(χ1+τχ2)
kδ(γ1+µd1

)
M1β1

kδ

0 0

)

The basic reproductive number is given by the dominant eigenvalue of the next-generation matrix.

R0
1 =

N1β1(χ1 + τχ2)

kδ(γ1 + µd1
)

(7)

Similarly, we can show that

R0
2 =

N2β2(χ2 + τχ1)

kδ(γ2 + µd2
)

(8)

Lemma 2: The basic reproductive number of the two populations are related through the cross

interaction parameter τ

Proof: Dividing both sides of the expressions in equations (7) and (8), we get that:

R0
1

R0
2

=
N1B1

N2B2

γ2 + µd2

γ1 + µd1

χ1 + τχ2

χ2 + τχ1
(9)

From eq. (9), setting the constant parameter as C = N1B1

N2B2

γ2+µd2

γ1+µd1
and the τ dependent part as

g(τ) = χ1+τχ2

χ2+τχ1
, we could express R0

1 = C.g(τ).R0
2.
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Figure 3: The current number of infections in population 1 on the left, population 2 in the middle
and the total population on the right for various values of τ between 0 and 1.

2.3 Non-medicinal interventions

Various non-medicinal strategies can be employed to prohibit the transmission of cholera, such as

ensuring access to clean water, promoting sanitation, and emphasizing personal hygiene. Imple-

menting hygiene practices such as the promotion of handwashing, proper sanitation infrastructure,

and access to clean water significantly contributes to breaking the cycle of cholera transmission. Ed-

ucational campaigns on safe water storage and food handling further enhance community resilience.

Additionally, community engagement and the establishment of effective waste disposal systems are

essential in preventing the contamination of water sources. Non-medicinal interventions not only

address the immediate challenges posed by cholera but also contribute to long-term public health

improvements, creating a foundation for sustainable disease prevention and control.

The impact of these interventions is reflected in the dynamic model’s mathematical parameters

[39], with no alterations to the model’s structure itself. Sanitation measures, for instance, help

prevent water contamination from human feces by separating it from the drinking water supply,

thereby reducing contamination rates represented by χi. Chlorinating water reduces bacterial con-

tent and increases the removal rate δ, while purifying drinking water through boiling or filtering

lowers bacterial concentrations denoted as Bi. Additionally, introducing alternative sources of clean

drinking water diminishes the interaction between susceptible individuals and contaminated water,

thereby lowering the contact rate βi [42, 43]. It is assumed that a combination of these measures

will be implemented, varying in scale within different populations, and the model’s outcomes are

re-evaluated by considering the effects of these changes on model parameters.

We presume in this paper that non-medicinal interventions due to public health campaigns

and local initiatives would affect both populations leading to a realistic decrease by 20% and 50%

in the contamination rates and contact rates respectively among both populations as well as an

increase of 50% in the bacterial removal rates. We implement the adjusted parameters due to

these interventions in our two-reservoir two-population model to forecast the expected subsequent

reduction in the number of infections.

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306689doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: The cumulative number of infections in population 1 on the left, population 2 in the
middle and the total population on the right for various values of τ between 0 and 1.

3 Results, numerical simulations and discussions

Fig. (2) presents 3 three-dimensional plots of λ in Eq. (2) in terms of B and β, κ and B, and β and

κ respectively (using Wolfram MATHEMATICA 13.3 ). Our numerical plots are shown for κ = 105

cells/mL in (a), β = 0.07 /day in (b) and for B = 106 cells/mL in (c). The 3D plots confirm the

outcomes of Lemma 1. We can clearly see that λ increases with respect to B and β in (a), increases

with B and decreases with κ in (b), and finally increases with β and decreases with κ in (c).

The parameters used in our numerical analysis are based on values listed and used in the available

literature [36, 39]. Before non-medicinal interventions, medications and vaccines, we assume that

the contact rate between susceptibles and their reservoirs are β1 = 0.015 /day and β2 = 0.04 /day.

The recovery rates among the infectious are γ1 = 1
8 /day and γ2 = 1

10 /day. The contributions of the

infectious to the reservoir vibrio concentration are χ1 = 2 cells/mL/day and χ2 = 10 cells/mL/day

while the half saturation rate (the concentration of bacteria that leads to a 50% infection rate) is

κ = 105 cells/mL. The natural birth/death rates are given by µb1 = µd1 = 2.7 × 10−5 /day and

µb2 = µd2
= 3.0× 10−5 /day while the percentage of deaths caused by Cholera among the infectious

individuals is l = 4%. The population sizes are given by a sample of N1 = N2 = 105 individuals.

The suppression parameter of cross interaction τ which accounts for various levels of segregation or

integration between the two populations is varied between 0 ≤ τ ≤ 1. All the subsequent simulations

corresponding to Figs. (3-7) were performed in MATLAB R2023b.

In Fig. 3, we forecast the anticipated number of infections in the absence of interventions across

various levels of segregation or integration, represented by the suppression factor τ = 0, 0.25, 0.5, 0.75

and 1, This gradient reflects different degrees of population interaction, ranging from complete

segregation to full integration. Our assumption is that the conditions for infection growth are more

favorable in population 2. Our findings indicate that the daily number of infections in population 2

(middle plot) is minimally impacted by its interaction with reservoir 1. Conversely, interaction with

the other reservoir significantly amplifies infections in population 1. The plot on the left, displaying

the blue curve, illustrates that the lowest endemic occurs when population 1 is entirely isolated from
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Figure 5: The concentration of the Vibrio Cholerae bacteria in water in the environmental reservoirs
1 and 2 belonging to populations 1 and 2 for various levels of the cross interaction parameter τ with
values between 0 and 1.

population 2. In addition to reducing infections (and subsequently hospitalizations and deaths),

this scenario also results in a delay of approximately 100 days in the peak of the spread. This

delay provides authorities with more time to implement public health and preventive measures. The

right plot illustrates the total daily infections stemming from both populations. Isolating the two

populations from each other’s reservoirs (τ = 0) clearly decreases the total number of infections,

alleviating about a third of infections and their associated hospitalizations and deaths. While most

of the reduction in infections is observed in population 1, a more controlled total spread ensures

additional resources are available for the sick in population 2 benefiting both communities mutually.

Notably, a secondary peak in total infections corresponds to a late rise in infections in population

1. However, this peak occurs at a significantly delayed time, with a weaker amplitude, and can

be mitigated through vaccination and medicinal intervention, given the available time before its

emergence.

The cumulative number of anticipated infections is depicted in Fig. 4 for population 1 (left),

population 2 (middle), and the total population (right) across values of τ ranging from 0 to 1.

Consistently, we observe a reduction in the cumulative number of infections in population 1 (left) with

decreasing interaction with the other population. The sharp increase occurs at a significantly delayed

time when τ = 0, indicating complete isolation from the other community. Similarly, the cumulative

number of infections in population 2, as shown in the middle plot, is not notably affected by the

level of interaction, given its role as the host of stronger endemic conditions. Consequently, isolating

individuals from the corresponding population’s environmental reservoir results in the lowest total

number of infections in the overall population, as depicted in the right plot. There is a considerable

time delay before reaching the plateau corresponding to the peak of cumulative infections. When

considered alongside the findings from Fig. 3, our results affirm the significance of complete isolation

of individuals from the environmental resources of others to effectively contain the spread and

mitigate the disease.

The concentration of the Vibrio Cholerae bacteria in water in the environmental reservoirs 1

and 2 belonging to populations 1 and 2 respectively are displayed in Fig. 5 for different levels of

cross interaction represented by 0 ≤ τ ≤ 1. Our simulation shows that the bacteria concentration is
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Figure 6: The current number of infections in population 1 on the left, population 2 in the middle
and the total population on the right for various values of τ upon the implementation of non-
medicinal interventions.

highly impacted by cross interaction. For population 1, suppressing the cross interaction completely

can reduce the magnitude of peak concentration by more than ten folds. In addition, the peak

concentration could be delayed up to 15 weeks for maximum segregation of the two populations,

giving public health authorities ample time to intervene and mitigate the related disease. Even for

intermediate levels of suppression of τ , the peak concentration could be reduced by several orders of

magnitude in the reservoir of population 1. These important gains are mutual for both communities,

as the peak concentration of bacteria would also be reduced in reservoir 2, but in a less significant

fashion. Our forecasts show that various levels of suppression of cross interaction would decrease

the peak of Vibrio Cholerae presence in the second reservoir by up to 15% in the best case scenario

of maximal separation of the two communities. Intermediate levels of cross interaction would lead

to less decreases in population 2. This result shows that curbing interactions across communities

and their corresponding reservoirs during Cholerae disease spreads would significantly decrease peak

bacteria levels in their reservoirs. In line to our analytical result in Lemma 1 and our numerical

result in Fig. 2, a decrease in bacteria concentration B ultimately leads to a decrease in the force of

infection λ, hence to a a diminished number infections I.

We expect that upon the spread of Cholera, related public health authorities would intervene

and start by taking preliminary measures that aim to mitigate the disease through non-medicinal

interventions before other medicinal and vaccination measures could be taken. We inspect the

anticipated changes that would be achieved through a reduction of 20% in the contamination rates

χi and of 50% in contact rates βi respectively among both populations as well as an increase of 50%

in the bacterial removal rate δ.

We present that outcomes of our simulation of these reductions on the number of current infec-

tions in Fig. 6, corresponding to the same population modelled in Fig. 3. We find that the number

of infections is highly reduced in both population and for all levels of cross community interactions,

and consequently in the total number of infections. We can see that the peak of infections fall about

40% in each population for every value of τ . Moreover, for population 1 (left), the peak for scenarios
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Figure 7: The concentration of the Vibrio Cholerae bacteria in water in the environmental reservoirs
1 and 2 belonging to populations 1 and 2 after the implementation of non-medicinal interventions
for various levels of the cross interaction parameter τ .

involving some degree of cross immunity interactions is delayed by about 6 weeks, while that of

total suppression of interactions (τ = 0) is delayed by more than 20 weeks, practically allowing

the public health administration enough time to implement all additional medicinal and vaccination

measures needed. In population 2 (middle), we can also observe an average of a 6 week delay in

maximal number of infections, with a similar observation regarding extents of reduction and peak

delays among the total population (right). In this best case scenario of full separation between the

two communities and each other’s reservoirs, accompanied by a timely application of non-medicinal

interventions, the Cholera endemic could be largely controlled and mitigated, reducing the threat

that it would constitute to pubic health.

We finally forecast the effect of implementation of non-medicinal interventions with their previ-

ously anticipated effects on deposition rates, contact rates and bacterial removal rate numerically.

We find that bacterial concentrations would be more than halved due to these measures in both

environmental reservoirs for all levels of interactions between the communities. In addition, peak

concentrations would be delayed by about 5−6 weeks in most scenarios, as we can see by comparing

the outcomes plotted in Fig. 7 to those in Fig. 5 corresponding to no interventions. In particular, for

a full segregation scenario, reservoir 1 bacterial concentrations would be slashed by more than four

times and their peak concentrations would occur by more than 25 weeks later (left). The reservoir

of population 2 undergoes similar reductions in the magnitude of peak contamination and delays in

its occurrence except for the τ = 0 case, which doesn’t cause a severe reduction as in the case of

reservoir 1 (right). Nevertheless, it still sees a reduction of more than 50% of its value without these

non-medicinal interventions.

4 Conclusions

In this paper, we introduced a dynamic compartmental model tailored to portray Cholera outbreaks

within a dual-population framework, incorporating two environmental reservoirs. The model aimed

to simulate the influence of segregation or integration between two populations on disease transmis-

sion, considering both non-medicinal interventions and scenarios without such measures.
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Analytically, we demonstrated the direct dependence of the force of infection of each population

on the contact rates and contamination rates, and its inverse dependence on the human infectious

dose. We also showed that fully segregated populations are independent while fully integrated

populations could be treated as a single population, and that the reproductive numbers of the two

populations are related through a proportionality function of the suppression parameter.

By permitting infectious individuals to engage with the reservoir of the alternate population at

varying suppression levels alongside their regular interaction with their own reservoir, our simula-

tions revealed that heightened suppression of cross-community interaction effectively reduced overall

infection rates and those in the less contaminated and contacted population. Furthermore, we ob-

served substantial delays in the onset of peak infections, granting crucial time for public health

interventions and that decreased cross-immunity interactions were also associated with a decline in

bacterial concentrations in environmental reservoirs.

Ultimately, our numerical analysis demonstrated that non-medicinal interventions, encompass-

ing sanitation and water purification, played a pivotal role in significantly reducing and delaying

infections. This affords concerned parties a valuable timeframe for the implementation of addi-

tional medicinal measures, underscoring the potential impact of integrated public health strategies

in mitigating Cholera outbreaks.
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