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Abstract 
 
In a genome-wide association study (GWAS) meta-analysis of 685,808 individuals with 

major depression (MD) and 4,364,225 controls from 29 countries and across diverse and 

admixed ancestries, we identify 697 independent associations at 636 loci, 293 of which are 

novel. Using fine-mapping and functional genomic tools, we find 308 high-confidence gene 

associations and enrichment of postsynaptic density and receptor clustering. Leveraging 

new single-cell gene expression data, we conducted a causal neural cell type enrichment 

analysis that implicates dysregulation of excitatory and inhibitory midbrain and forebrain 

neurons, peptidergic neurons, and medium spiny neurons in MD. Our findings are enriched 

for the targets of antidepressants and provide potential antidepressant repurposing 

opportunities (e.g., pregabalin and modafinil). Polygenic scores (PGS) trained using either 

European or multi-ancestry data significantly predicted MD status across all five diverse 

ancestries and explained  a maximum of 5.8% of the variance in liability to MD in Europeans. 

These findings represent a major advance in our understanding of MD across global 

populations. MD GWAS reveals known and novel biological targets that may be used to 

target and develop pharmacotherapies addressing the considerable unmet need for effective 

treatment. 
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Introduction 

Major depression (MD) is a leading cause of worldwide disability and affects approximately 

15% of the global population during their lifetime. The peak age of onset is in early adulthood 

and the disorder is typically recurrent or chronic in nature, often with persisting disability 

despite pharmacological and psychological therapies. Twin and family-based studies provide 

evidence of a significant genetic contribution to its etiology, with a heritability of 

approximately 37% (Polderman et al., 2015). Since 2013, genome-wide association studies 

(GWAS) have provided major insights into the polygenic nature of MD, its genetic risk factors 

and underlying mechanisms (Ripke et al., 2013; CONVERGE Consortium et al., 2015; Hyde 

et al., 2016; Howard et al., 2018; Wray et al., 2018; Howard et al., 2019; Levey et al., 2021; 

Meng et al., 2024). The largest study conducted to date reported 243 independent MD risk 

loci from a meta-analysis of the Million Veteran Program, 23andMe, UK Biobank, FinnGen, 

and iPSYCH including 371K cases (Als et al., 2023).  

 

Despite these efforts, the molecular, cellular, and neurobiological mechanisms of MD remain 

largely unidentified, limiting the development of disease models and mechanism-informed 

drug treatments (Zhu, 2020). In the current study, we report results from the Psychiatric 

Genomics Consortium (PGC) Major Depressive Disorder Working Group’s largest GWAS 

meta-analysis of MD to date. We used strategies designed for analysis of multi-ancestry and 

admixed populations to implement the largest, most inclusive study of MD genetics. These 

results substantially extend previous GWAS findings, implicating genes, cell types and 

tissues in the aetiology of MD, and demonstrate out-of-sample prediction across diverse 

ancestry groups.  

 
Table 1: Details of diverse ancestry studies included in the current GWAS  
 
Ancestry 
Group 

N studies N cases N controls Neff/2 

European 76 525,197 3,362,335 788,603 
East Asian 7 18,709 349,619 30,654 
South Asian 1 3,748 25,934 6,549 
African 8 9,649 122,347 17,077 
Hispanic/Latin 
American 

5 19,927 340,403 36,875 

Multiple/mixed 12 108,578 163,587 120,342 
All ancestries 109 685,808 4,364,225 1,000,101 
 
Legend to table 1: Summary of the studies included in the current meta-analysis broken 
down by ancestry group and admixture/multiple ancestries (analyzed using GENESIS 



 
 
 
 
software). The complete dataset included 109 datasets from 93 studies, some of which (e.g. 
UK Biobank) contributed more than one non-overlapping ancestry-specific dataset. Neff/2 
represents the effective sample size, equal to case and control sample sizes of an 
equivalently powered balanced study. The European subset identified 570 genome-wide 
significant loci and the Non-European ancestries dataset, in total, identified 1 genome-wide 
significant locus.   
 
Results  
The GWAS and subsequent downstream bioinformatic and predictive testing analyses are 
summarised in Figure 1. 
 
Figure 1: Overview of MD GWAS and downstream analyses 

 

GWAS meta-analysis  

We meta-analyzed GWAS summary statistics from 109 ancestrally diverse cohort datasets 

with 685,808 MD cases and 4,364,225 controls (see Methods and Figure S1, Tables S1, 

S2, supplementary study information). These studies had power equivalent to a case-

control study of 1,000,101 cases and 1,000,101 controls, with 23% representing diverse/non-

European ancestries (Table 1). For cohorts with diverse ancestries, associations were 

assessed using tools that explicitly model population structure, admixture, and relatedness 

(GENESIS). For a subset of cohorts with ancestrally diverse samples, we compared the 

sample size using the commonly used strategy of assigning individuals into ancestry groups 

followed by logistic regression (N=24,859) to our joint approach (N=47,642) and found a 

92% sample size increase. Our final sample size of 160,611 cases and 1,001,890 controls 

with diverse ancestries (Supplementary Material) led to the identification of an additional 66 

genome-wide significant loci compared to the European only ancestry studies analysis. 
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Using conditional and joint GCTA-COJO (Yang et al., 2012) analysis with threshold P ≤ 5 × 

10-8 within 10 Mb windows, we identified 697 significant independent single nucleotide 

polymorphisms (SNPs) in 635 genomic regions, about half (293/635; 46%) have not been 

previously reported (Figure 2, Table S3).  Of these, 27 were identified due to the inclusion of 

cohorts with ancestrally diverse samples.  

 

In order to carry out downstream analyses, including heritability, gene prioritization, 

enrichment, genetic correlation and Mendelian Randomisation analyses, we performed a 

fixed-effects meta-analysis for samples of European ancestries (525,197 cases and 

3,362,335 controls), using a large single linkage disequilibrium reference dataset. The 

consequences of MD phenotyping on the meta-analyses was examined using genomic 

structural equation modelling (SEM) with a common factor meta-analysis of the European-

ancestry summary statistics in Genomic SEM (Grotzinger et al., 2019) (Figure S2). Cohorts 

were first meta-analyzed based on how the MD phenotype was determined: 

clinical/interview, electronic health record [EHR], questionnaire, or self-report of MD 

diagnosis. The proportion of total effective sample size contributed by each phenotype 

definition was 4% clinical/interview, 54% EHR, 14% questionnaire, and 27% self-report. The 

different phenotype definitions of MD had strong genetic correlations (LD score rg from 0.78 

to 0.88). We fitted a common factor model in Genomic SEM and set the clinical/interview 

phenotype as the primary phenotype by fixing its factor loading to 1 and its residual variance 

to 0. This factor model was consistent with the data (��
� = 4.49, P = 0.213), therefore we 

could not reject the null hypothesis that a single factor capturing all the variance of the 

primary method explained the intercorrelations between the other depression phenotypes. 

Most MD phenotypes had strong positive loadings on the common factor (clinical/interview = 

1.0 [reference], EHR = 0.92±0.04, questionnaire = 0.95±0.04) although the loading for self-

reported diagnosis was lower (self-report loading = 0.85±04). One locus showed significant 

SNP heterogeneity between phenotyping definitions (rs12124523 intronic variant in NEGR1, 

common factor association P = 8.4 × 10-14, Q heterogeneity P = 2.9 × 10-10, I2 = 0.71) with a 

stronger association found in self-reported depression studies (Self-report odds ratio (OR) = 

1.081, CI = 1.065–1.098, other cohorts OR = 1.008, CI = 0.999–1.018). We found no 

evidence of heterogeneity at 569/570 loci, supporting the use of multiple phenotypes in 

genetic association studies of MD.  

 

Figure 2: Manhattan Plot of GWAS meta-analysis of 685,808 MD cases and 4,364,225 
controls 



 
 
 
 

 
Legend: Manhattan plot displaying the significance of each SNP’s association with MD across the 
genome (vertical axis shows -log10 p-value). Chromosomal position of each SNP is shown on the 
horizontal axis. The horizontal line at 7.3 (-log10(5 x 10-8)) indicated the genome-wide statistical 
significance threshold.  
 
SNP-based heritability was estimated in European ancestries using SBayesS (Zeng et al., 

2021) at 8.4% (s.e. 0.07%) on the liability scale (assuming lifetime MD risk of 15%) similar to 

prior estimates (Howard et al., 2018; Wray et al., 2018). Analyses of the genetic architecture 

using SBayesS estimated a polygenicity of 6% and selection parameter of -0.54. Compared 

to previously reported estimates for 155 traits, MD has a relatively higher polygenicity, but its 

associated variants are under weaker negative selection (Zeng et al., 2021). 

 

Gene prioritization and pathway enrichment analysis 

We used a range of methods and functional genomic datasets to gain insight into the 

associated variants, genes, and pathways that may be dysregulated in MD. These included 

3 rigorous ‘high confidence’ approaches: SNP-based fine-mapping of MD-associated loci, 

and integration of expression and protein quantitative trait loci (eQTL and pQTL) to infer 

genetically driven MD case control differences in RNA and protein expression. These are 

referred to as transcriptome- and proteome-wide association study approaches (TWAS and 

PWAS) and were reported when summary data-based Mendelian randomization (SMR), 

colocalization (COLOC) and expression based fine-mapping (of eQTLs and pQTLs, in 
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FOCUS) analyses all aligned to indicate a common gene. We also mapped associated loci 

to genes using standard gene-based association analysis in fastBAT, chromatin interaction 

datasets (HiC) and applied a novel gene prioritization package, PsyOPS (see Methods). 

 

SNP-based fine mapping 

We undertook functionally informed SNP-based fine-mapping analyses, using the European 

ancestry GWAS findings, targeted at all autosomal GWAS loci excluding the Major 

Histocompatibility Complex (MHC) region. Twenty-four variants showed strong putative 

evidence of causality (posterior inclusion probability, PIP > 0.95) at IRF4, ESR1 and FURIN 

(Table S4). Credible causal set sizes comprising ≤10 variants (cumulative PIP > 0.95) were 

identified at 224 loci (Figure S3) and 234/564 autosomal loci could be mapped to one or 

more genes (Table S5). 

 

RNA and protein expression based mapping 

Both eQTL and pQTL data were used to infer up- or down-regulated gene expression 

(TWAS) or protein (PWAS) levels associated with MD. Stringent criteria were used to identify 

high confidence associations with MD (Methods). MD genetic associations were found to 

correlate and colocalize with cis-regulated expression of 75 genes (Table S6) and cis-

regulated levels of 10 proteins (Table S7). Results were only regarded as high-confidence 

when altered expression was supported by significant summary Mendelian Randomization 

(SMR) and co-localization findings. No gene was identified as high confidence by both 

TWAS and PWAS analyses.  

 

Convergent high-confidence gene identification 

In total, across SNP-based fine-mapping, eQTL and pQTL analyses, 308 high-confidence 

associations were identified (Table S21). Fourteen eQTL genes and 1 pQTL gene also 

identified as high confidence by SNP-based fine-mapping. For example, SNP-based fine-

mapping found all SNPs in one 95% credible set were within the cytochrome P450 gene 

CYP7B1, which was also inferred to have decreased expression in the dorsolateral 

prefrontal cortex of individuals with MD (TWAS p-value = 2.92x10-15, COLOC PP4 = 0.939, 

FOCUS PIP = 1). Additional signals identified by both fine-mapping and expression-based 

analyses included the genes SP4, FURIN, DCC and the neurotrophin receptor kinase 

NTRK3. 

 

Other positional, chromatin-based and bioinformatic approaches 
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Positional mapping approaches were used to identify additional genes that may be involved 

in MD etiology, including identification of the nearest gene to lead MD variants, aggregating 

genetic associations across gene regions using fastBAT (Table S8, Figure S4), and linking 

associated loci to genes through Hi-C chromatin interactions using H-MAGMA (Table S9). 

Furthermore, the gene prioritization method PsyOPS was used to score genes based on 

prior information on mutational constraint, brain expression, and involvement in 

neurodevelopmental disorders (Table S10). Of the 18,737 genes assessed using fastBAT, 

1,568 were associated with MD (P < 2.67 x 10-6) with the strongest evidence of association 

at the dopamine receptor D2 (DRD2) gene (P = 9.39 × 10-47). DRD2 was also associated 

with MD by H-MAGMA in all four brain tissue profiles analyzed (P = 1 × 10-10 to 1 x 10-15). An 

additional 1,033 genes were also identified as associated with MD based on three-

dimensional chromatin data using H-MAGMA.  While PsyOPS prioritized a neighboring 

gene, NCAM1 (PsyOPS score = 0.402), DRD2 had an equivalent score (0.399). Other 

genes with high PsyOPS prioritization scores were PTPRT, SLC12A5, RFX3, ELAVL2, 

HCN1, KIF5A, and SHANK3. 

 

Synaptic gene set enrichment  

We used the high-confidence gene list from SNP-based fine-mapping, TWAS, and PWAS 

(subset of Table S21) to identify enriched synapse functions using SynGO (Koopmans et al., 

2019). The 43 genes from the high-confidence gene list with SynGO annotations were 

compared against a background of 18,035 brain-expressed genes. We replicated earlier 

findings from Howard et al (2019), showing enrichment of neuron differentiation processes 

and postsynaptic membrane components. The current GWAS provided greatly increased 

specificity, implicating the cytosol, active zone membrane, calcium levels, vesicle cycle and 

presynaptic endocytosis. Postsynaptically, there was enrichment of synaptic specialization, 

density, and receptor clustering (Table S11A+B). 

 

Tissue and cell type enrichment analysis 

We conducted tissue and cell type enrichment analysis using published expression datasets 

including bulk RNA-sequencing data from human tissues (Bryois et al., 2020) and single-cell 

RNA-sequencing data from the adult mouse central and peripheral nervous system (Zeisel 

et al., 2018). Across human tissues, we found clearer enrichment patterns of MD SNP-

heritability in neural tissues using the current GWAS association findings than those 

obtained from the previous two PGC MDD group analyses (Figure S5). In the adult mouse 

central and peripheral nervous system, we found significant enrichment of MD SNP-

heritability in 10 out of 39 cell types with two different methods (MAGMA and partitioned LD 



 
 
 
 
Score, see Figure 3 and Figure S6). We confirmed all the cell types identified in the 

previous GWAS (Wray et al., 2018) including both excitatory and inhibitory neurons, but 

implicate multiple additional inhibitory neuron categories and peptidergic neurons.  

 

Analysis at a more refined level of cell types further emphasized the enrichment in excitatory 

and inhibitory neurons in multiple brain regions (Figure S6, Table S12). Associated cell 

types using both methods included midbrain (mouse atlas reference: MEGLU7, MEGLU8, 

MEGLU10 and MEGLU11), amygdala (TEGLU22), hippocampal (CA1, TEGLU21), thalamic 

(DEGLU4) and cortical (TEGLU1, TEGLU4, TEGLU8, TEGLU8, TEGLU11, TEGLU13 and 

TEGLU20) excitatory neurons. We also found additional evidence for the involvement of 

D1/D2 midbrain and striatal medium spiny neurons (MSN2 by both methods and MSN1,3-4 

by MAGMA only). 

 

Figure 3: Broad brain cell category enrichment analysis.  

 

Legend to Figure 3: Cell type enrichment analysis. 20 categories of brain cell types are listed 
(from a total of 39 broad brain cell type categories tested) along the vertical axis, horizontal bar size 
represents the significance of the enrichment measured using MAGMA gene set enrichment test or 
partitioned LDSC. Color encodes results that were significant after false discovery rate correction. 
Bars in salmon color represent enrichments significant using both methods, green – MAGMA only, 
blue partitioned LDSC only and purple when neither method showed significant enrichment. 19 broad 
categories not displayed were not significant using either method. Columns represent the results of 
each test using summary statistics from MDD2013 (Ripke et al., 2013), MDD2018 (Wray et al., 2018) 
and the current study. Dotted line shows threshold of nominal (uncorrected) statistical significance.  
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Drug target enrichment analysis 

Using Drug Targetor, we searched for therapeutic agents grouped according to organ and 

mode of action using their Anatomical Therapeutic Chemical (ATC) drug class, and identifed 

targets that were enriched in the association signals from the GWAS analysis (Gaspar et al., 

2019). Drug Targetor harnesses drug bioactivity data, to prioritize drugs and targets for a 

given phenotype. Replicating an earlier analysis, we found the gene targets of 

antidepressants (ATC class N06A) are significantly enriched (Figure S7) in our association 

findings. Other drug classes that were significantly enriched included antipsychotics (N05A), 

which includes some medicines with antidepressant effects (Table S13B).  

The gene targets of specific drugs were also enriched in genetic associations with MD, 

although the analysis does not infer whether the effects of these agents were more likely to 

be congruent or opposed to the effects of genetic risk. The identified drugs provide possible 

repurposing opportunities and examples included several anti-cancer therapies, and the 

agents pregabalin (used in the management of pain and anxiety) and modafinil which is 

used to treat daytime sleepiness caused by narcolepsy (Tables 2 and S13A).  

Table 2: Significant drug target enrichments 

ATC Class Drug name # of 
genes 

Q value Notes 

L01AC03 CARBOQUONE 7 1.16 x 10-4 
 

Cancer compound 

G03XC03 LASOFOXIFENE 2 5.64 x 10-4  Osteoporosis 
treatment; 

oestrogen receptor 
modulator 

L02AA04 FOSFESTROL 2 5.64 x 10-4  Cancer causing & 
block synthesis of 

testosterone 
G03GB01 CYCLOFENIL 4 1.39 x 10-3 

 
Gonadal stimulant  

N03AX16 PREGABALIN 27 1.40 x 10-3 
 

Neuropathic pain, 
epilepsy, 

generalised anxiety 
disorder 

N06AX19 GEPIRONE 2 5.19 x 10-3 Antidepressant, not 
marketed 

D11AX06 MEQUINOL 4 6.41 x 10-3 Pigmental drug 

N05AX16 BREXPIPRAZOLE 5 6.74 x 10-3 Antipsychotic, 
antidepressant 

N05AB08 THIOPROPERAZINE 2 0.0131 Antipsychotic 

N05AC04 PIPOTIAZINE 2 0.0131 Antipsychotic 

M05BX01 IPRIFLAVONE 14 0.0238 Osteoporosis 
treatment 
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N06BA13, N06BA07 MODAFINIL 2 0.0337 Narcolepsy 
treatment  

D07AB08, S01BA11 DESONIDE 4 0.0337 Anti-inflammatory 

J01XX08 LINEZOLID 3 0.0337 Antibiotic 

N05AD04 MOPERONE 3 0.0419 Antipsychotic 

N05AX15 CARIPRAZINE 6 0.0493 Antipsychotic 

 
Legend Table shows the top 16 most significantly enriched drugs based on capture of their targets 
within the gene-based associations of the current MD GWAS analysis. One topical preparation is not 
shown. The test for drug enrichment is not directional and may indicate compounds that confer risk of 
MD or exacerbate depressive symptoms, as well as those that ameliorate risk or depressive 
symptoms. Q value is false discovery rate, Benjamini–Yekutieli corrected (competitive analysis).   
 

Within and cross-trait prediction 

Polygenic score prediction in European ancestry samples 

Using the case-control cohorts in the meta-analysis, we conducted a leave-one-cohort-out 

GWAS meta-analysis for 42 European ancestry cohorts that had provided individual level 

data. Polygenic scores (PGS) were generated in the left-out target European samples 

generated using SNP weights for the multi-ancestry and the European ancestry meta-

analyses derived using SBayesR (Lloyd-Jones et al., 2019). Other PGS methods including 

the standard p-value clumping and thresholding gave similar results (Table S14). Across all 

European ancestry cohorts, the variance explained on the liability scale (��
�� was 5.8% (s.e. 

0.2%) (Figure S8, S9), with an AUC statistic of 0.625 (Figure S10). Adding functional 

annotations into the algorithm to generate SNP weights for PGS (SBayesR) increased 

prediction accuracy by 0.1% (i.e., �
�

� of 5.9%). The �
�

� was more than 1.4 times greater than 

that reported in the PGC MDD 2018 analysis (Wray et al., 2018; Ni et al., 2021) (Figure 4A 

and S8).  The OR for being a case per standard deviation (SD) increase in PGS was 1.57. 

The OR for being a case in the tenth compared to the first decile of polygenic scores was 

4.92 (95% CI 4.57-5.29) (Figure 4B), and the OR for the top vs bottom centiles was 11.8 

(95% CI 8.4-15.2) (Figure S11). The non-linear shape of these decile and centile plots is 

expected under a polygenic architecture (Baselmans et al., 2021). Heterogeneity in the out-

of-sample prediction results could be partly explained by the recorded ascertainment type 

(Figure 4B and S9), which we classified as ‘clinical’ (12 cohorts; ascertained from in- or out-

patient settings, or EHR) or ‘community’ ascertained (30 cohorts; interviews or 

questionnaires self-reporting on lifetime depression). The difference in mean PGS between 

clinical vs community cases was 0.131 (s.e 0.012, P< 2x10-16) control sample SD units. 

 

Figure 4: MD polygenic score prediction into European ancestry studies 



 
 
 
 

 
Legend to Figure 4: (A) Comparison of liability R2 by input summary statistics by availability (full 
dataset with 23andMe versus public dataset without 23andMe, using P-value clumping + thresholding 
at P <= 0.05 [P+CT]), PGS method (P+CT versus SBayesR), and discovery dataset (previous Howard 
2019 versus current MDD2024 SBayesR). The R2 are estimated across 42 cohorts with individual 
level data. For the Discovery panel the R2 are estimated from the 20 cohorts with individual level data 
contributed to the PGC after the Howard 2019 study. The  was calculated using a lifetime 
prevalence of 0.15. (B) Odds ratio by decile, with reference to decile 1, for clinical and community 
ascertained studies (SBayesR). Bars reflecting the 95%CI are based on estimates from the logistic 
regression. 
 
Cross-ancestry prediction of MD 

We used data from 9 diverse ancestry studies to assess PGS transferability (Table S15) 
using PGS derived from the clumping and thresholding approach. The PGS were derived 
from the multi-ancestry and the European ancestry meta-analysis excluding 23andMe 
(Neffective = 739,180 and 576,327, respectively) (Figure 5, Table S16). In the diverse ancestry 
studies, the , by the PGS based on the European ancestry training data ranged from ~0.6-
4.5%.  values for prediction into European ancestry (excluding 23andMe) were 3.9% 
(s.e. 0.2%) using PT=0.05. Values were lowest in studies with participants of African 
descent, and in the largest African ancestry study, the Million Veteran Program (MVP), the 
PGS was not associated with MD =0.0018). Results using the multi-ancestry summary 
statistics showed only minor and non-significant differences from European-only PGS 
GWAS trained scores in all ancestry groups. 
 
Figure 5: Polygenic prediction of MD status from European and multi-ancestry GWAS 
into ancestrally diverse non-European studies 



 
 
 
 

 
Legend to Figure 5: Details of cohorts found in Table S2. The  was calculated using a prevalence 
of 0.15 with the P+CT method. The error bars are confidence intervals calculated using bootstrap.  
The training data did not include 23andMe, because of access limitations. AFR: African ancestry; 
AMR: Hispanic and Latin American ethnicities; EAS: Easy Asian ancestries; EUR: European 
ancestries; SAS: South Asian ancestries.  
 
 
Genetic correlation and phenome-wide Mendelian randomization analysis 

We estimated LD score regression genetic correlations using 3,229 sets of summary 

statistics obtained from the OpenGWAS catalog (Table S17). Among phenotypes that were 

not direct measures of depression, the largest genetic correlation effect sizes with MD were 

with neuroticism (rg = 0.70, P = 2.02 × 10-162) and subjective well-being (rg = -0.63, P = 1.27 

× 10-26). Compared to Howard et al (2019), novel findings were restricted to phenotypes with 

smaller genetic correlations (|rg| <0.16) likely reflecting the greater power provided by current 

GWAS summary statistics.  
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In a phenome wide association study (PheWAS), we first identified associations between 

MD PGS, health related traits and potentially modifiable environmental factors (Table S18 & 

Fig S12).  We then tested for evidence of possible causal associations between MD and 

MD-PGC associated traits using bidirectional two-sample Mendelian Randomization (MR) in 

MR-Base (149 phenotypes; Table S19) and using summary statistics from European-

ancestry participants in UK Biobank (256 phenotypes; Table S20), leaving UK Biobank out of 

the European-ancestry MD GWAS. Lower salt usage, faster walking pace, and higher 

educational attainment were associated with a reduced liability to MD. Greater body mass 

index (BMI), bio-impedance trunk adiposity measures, and waist and hip circumference were 

all associated with an increased risk of MD (absolute effect sizes ranged from 0.031 to 

0.109, pFDR ranged from 0.006 to 4.33×10-15). A full list of these and other potentially causal 

associations is shown in Figure S13 and Table S19A-C. MR-Base analyses (Table S20A-

C), supported a causal role for BMI and measures of adiposity in conferring liability to MD 

(absolute effect sizes from 0.021 to 0.089, pFDR from 0.01 to 2.24×10-5).   

 

We found evidence of potential causal consequences of MD for a number of health 

behaviors (e.g., increased alcohol and salt intake, increased TV use, absolute effect sizes 

ranged from 0.023 to 0.207, pFDR ranged from 0.01 to 8.49×10-16) and known disease risk 

factors (e.g., higher triglycerides, C-reactive protein (CRP), and gamma glutamyl transferase 

levels, lower vitamin D levels, higher diastolic blood pressure and waist circumference, 

absolute effect sizes ranged from 0.018 to 0.128, pFDR ranged 0.046 to 9.63×10-22) (Figure 

S13; Table S19D-F). Lower gray matter, brain structure volumes, and fluid intelligence score 

were also implicated as causal consequences of MD (absolute effect sizes from 0.048 to 

0.102, pFDR from 0.044 to 3.01×10-16, see Figure S13, Table S20D-F).   

 

Discussion 

The current study represents the largest and most-inclusive GWAS of MD to date, identifying 

697 independent SNP associations located within 636 independent genetic loci and 

evidence that neuronal differentiation and receptor clustering are involved in the aetiology of 

the disorder. 286 high-confidence gene associations were identified (summarized in Table 

S21) in European ancestries. There was convergent evidence from multiple approaches for 

15 genes, such as CYP7B1, a gene encoding a cytochrome P450 enzyme involved in 

neurosteroid synthesis. However, the results of each gene prioritization approaches were 

largely distinct, potentially representing the differential sensitivity of each approach to 

variants within (fine-mapping) or outside (regulatory) gene boundaries. Results from 

conventional gene-association and chromatin interaction mapping approaches also 
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implicated DRD2 involvement in MD. Previous work has shown the DRD2 inhibition 

suppresses neuroinflammation in mice (Lu et al., 2022), supporting a potentially testable 

mechanism linking genetic variation to MD. 

 

Our results confirm and extend previous findings showing the enrichment of expression 

signals in excitatory and inhibitory neurons. Importantly, the increased power in this genetic 

analysis provided additional evidence of involvement of amygdala and hippocampal 

excitatory neurons including granule cells, and medium spiny neurons. The amygdala and 

hippocampus have been previously implicated from a wide range of human imaging (Whalen 

et al., 2002; Schmaal et al., 2016) and animal studies of depression (Hall et al., 2001; 

Jentsch et al., 2002; Warner-Schmidt and Duman, 2006) and medium spiny neurons have 

also been previously implicated in animal studies of reward and are linked to depressive 

behaviors (Lammel et al., 2014; Soares-Cunha et al., 2020). The enrichment of expression 

signals in granule cells is of particular interest given the renewal of this cell type throughout 

adult life in the dentate gyrus (Boldrini et al., 2018), its role in stress resilience (Holland, 

2012) and the increased hippocampal granule cell expansion associated with antidepressant 

treatment (Boldrini et al., 2009). Together, these findings underline the mechanistic insights 

provided by expansion of GWAS to over half a million depressed individuals. 

 

Lack of ancestral and global diversity remain a significant concern for GWAS, with 86% of 

studies conducted in participants of European ancestry (Fatumo et al., 2022). Our study 

included data from 160,611 cases and 1,001,890 controls of non-European diverse 

ancestries. Unlike most other multi-ancestry GWAS, we used a joint analysis approach and 

did not exclude individuals with mixed ancestry or ancestry not represented in reference 

sets. This is becoming ever more important as the number of people with mixed ancestry are 

increasing in countries such as the USA and the UK (Livingston, 2022). Overall, the 

additional ancestrally diverse participants helped identify 27 novel genetic associations and 

enabled for the first time to demonstrate significant genetic risk prediction across diverse 

ancestry groups.  

 

Using polygenic scores, the proportion of variation in liability to MD explained in European 

ancestry case control studies also showed a considerable increase from an R2 of 3.2% in 

our previous analyses, to 5.8% using SbayesR. We also show a significant MD prediction in 

diverse non-European and admixed ancestries. The SNP-h2 in the current study of 8.4% 

implies that approximately 69% of the additive genetic variance for MD associated with 

common SNPs across studies can now be accounted for by polygenic scores. This study 
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provides the first evidence of limited transferability of MD PGS to multiple diverse ancestries, 

and further emphasizes the importance of conducting future GWAS studies across different 

global populations, especially in Africa where transferability is poorest. Whilst we did not find 

evidence for improved prediction based on multi-ancestry rather than European-only PGS, 

this may be due to the small proportion of participants within each individual ancestry group 

(23% of individuals of Non-European ancestries were divided across 4 major ancestry and 

admixed groups) relative to the European ancestry group alone.   

 

Causal inference analyses using Mendelian Randomization provide the strongest genetic 

evidence to date that increased adiposity may increase the risk of MD. We also found that a 

less favorable profile of many behavioral and biochemical disease risk factors, reduced brain 

volumes and decreased fluid intelligence may be causal consequences of MD. These 

findings provide further evidence that behavioral and pharmacological interventions to 

reduce adiposity may reduce the risk of MD, and that reducing MD risk may have favorable 

consequences for disease risk, brain health and cognition.  

 

Genome wide association signals for depression also showed enrichment for the targets of 

antidepressants, suggesting that they may also help to reveal other effective treatment 

targets and more effective interventions. Pregabalin (Dobrea et al., 2012; Karaiskos et al., 

2013; Generoso et al., 2017; Dold et al., 2022) and Modafinil (Goss et al., 2013) are both 

supported by sparse non-randomized evidence supporting their efficacy in depression and 

related conditions. Our findings provide further proof of principle, that GWAS is a useful 

means of identifying therapeutically relevant drug targets and treatments. 

 

Together these findings highlight the value of ancestrally diverse genetic studies to prioritize 

the study of pathophysiological processes in MD. The clearer association of genetic variants 

with altered gene expression and the enrichment of antidepressant targets provides 

confidence that genetic association findings will be relevant to the development, deployment 

or repurposing of pharmacotherapies. Critically, these findings suggest genetic associations 

will point to new drug targets and more effective therapies that may reduce the considerable 

disability caused by depression.  
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