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Abstract 21 

Background: Single-cell technologies have unveiled various transcriptional states in different 22 
brain cell types. Transcription factors (TFs) regulate the expression of related gene sets, thereby 23 
controlling these diverse expression states. Apolipoprotein E (APOE), a pivotal risk-modifying 24 
gene in Alzheimer's disease (AD), is expressed in specific glial transcriptional states associated 25 
with AD. However, it is still unknown whether the upstream regulatory programs that modulate 26 
its expression are shared across brain cell types or specific to microglia and astrocytes.  27 
  28 
Methods: We used pySCENIC to construct state-specific gene regulatory networks (GRNs) for 29 
resting and activated cell states within microglia and astrocytes based on single-nucleus RNA 30 
sequencing data from AD patients' cortices from the Knight ADRC-DIAN cohort. We then 31 
identified replicating TF using data from the ROSMAP cohort. We identified sets of genes co-32 
regulated with APOE by clustering the GRN target genes and identifying genes differentially 33 
expressed after the virtual knockout of TFs regulating  APOE. We performed enrichment analyses 34 
on these gene sets and evaluated their overlap with genes found in AD GWAS loci.  35 
  36 
Results: We identified an average of 96 replicating regulators for each microglial and astrocyte 37 
cell state. Our analysis identified the CEBP, JUN, FOS, and FOXO TF families as key regulators of 38 
microglial APOE expression. The steroid/thyroid hormone receptor families, including the THR 39 
TF family, consistently regulated APOE across astrocyte states, while CEBP and JUN TF families 40 
were also involved in resting astrocytes. AD GWAS-associated genes (PGRN, FCGR3A, CTSH, 41 
ABCA1, MARCKS, CTSB, SQSTM1, TSC22D4, FCER1G, and HLA genes) are co-regulated with 42 
APOE. We also uncovered that APOE-regulating TFs were linked to circadian rhythm (BHLHE40, 43 
DBP, XBP1, CREM, SREBF1, FOXO3, and NR2F1). 44 
  45 
Conclusions: Our findings reveal a novel perspective on the transcriptional regulation of APOE in 46 
the human brain. We found a comprehensive and cell-type-specific regulatory landscape for 47 
APOE, revealing distinct and shared regulatory mechanisms across microglia and astrocytes, 48 
underscoring the complexity of APOE regulation. APOE-co-regulated genes might also affect AD 49 
risk. Furthermore, our study uncovers a potential link between circadian rhythm disruption and 50 
APOE regulation, shedding new light on the pathogenesis of AD. 51 
 52 
 53 
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Introduction 56 

Alzheimer disease (AD) is a progressive neurodegenerative disorder that affects millions of 57 

people worldwide. It is characterized by cognitive impairment, memory loss, and behavioral 58 

changes. The strongest genetic risk modifiers are variants in the gene APOE. It is involved in lipid 59 

transport and metabolism in the brain and has two primary variants that influence disease risk, 60 

e2 (protective) and e4 (risk). APOE is constitutively expressed in astrocytes and activated 61 

microglia1, cell types that are key players in neuroinflammation and neurodegenerative 62 

processes2.  63 

When activated, microglial cells can significantly upregulate APOE expression, a process that is 64 

crucial for the phagocytic clearance of amyloid-beta and other debris3. Astrocytes, utilize APOE 65 

to support the lipid and energy demands of the surrounding neurons4. The ε4 allele, in 66 

particular, has been associated with a detrimental effect on microglial activation and astrocytic 67 

function, exacerbating neuroinflammatory and neurodegenerative processes2–4. These 68 

expression states are not static; they evolve in response to the brain’s pathological environment, 69 

influencing disease progression and severity. Understanding the differences in APOE expression 70 

regulation between microglial and astrocytic cell states can provide valuable insights into the 71 

molecular mechanisms underlying APOE‘s involvement in AD and potentially other 72 

neurodegenerative disorders.  73 

In this study, we aimed to further investigate the differences in the regulation of APOE 74 

expression between various microglial and astrocytic cell states using single-nucleus RNA-seq 75 

(snRNA-seq). To this end, we performed state-specific gene regulatory network (GRN) analysis 76 

using pySCENIC on specific cell states (Figure 1). We then used two approaches to identify gene 77 

sets co-regulated with APOE in these networks: co-regulatory network clusters and transcription 78 

factor knockout (TF-KO) differentially expressed genes (DEGs). We assessed the relevance of 79 

these gene sets to AD by testing their overlap with AD genome-wide association study (GWAS) 80 

genes and their enrichment in AD-related pathways. By delineating the GRNs in these critical 81 

cell states, we seek to elucidate the distinct transcriptional regulatory mechanisms that govern 82 

APOE expression, which is crucial for unraveling the complex interplay between APOE regulation 83 

and AD pathogenesis. This knowledge may lead to the development of targeted therapeutic 84 



interventions to modulate APOE-related biology in specific cell types to mitigate disease 85 

progression.  86 

  87 
Figure 1 Analysis workflow 88 
We extracted microglial and astrocytic cell states and ran them individually through pySCENIC to create state-specific GRNs. We 89 
replicated the putative pySCENIC-TFs by integrating microglia and astrocytes from the ROSMAP cohort and running pySCENIC on 90 
them. We clustered the target genes into co-regulatory networks and virtually knocked out the transcription factors (TF KO) that 91 
regulated APOE. We identified genes co-regulated with APOE using co-regulatory network clusters and TF-KO DEGs. Both sources 92 
of gene sets were tested for inclusion of AD GWAS genes and gene set enrichment. 93 

  94 



Results 95 

Cell-state-specific transcription factors modulating APOE expression 96 

To identify the state-specific TF regulators of APOE, we utilized snRNA-seq data from the Knight 97 

ADRC and DIAN cohorts (parietal, n=67)5, and replicated the TFs in snRNA-seq from the 98 

ROSMAP cohort (dorsolateral prefrontal cortex, n=32)6. Focusing on microglia and astrocytes, 99 

the principal APOE expressors1, we isolated the resting and activated states for each cell type: 100 

mic-resting (n=7,032), mic-activated (n=3,662), mic-inflammatory (n=1,669), astro-resting 101 

(n=21,010), and astro-activated (n=10,028). We leveraged pySCENIC7 to build a GRN for each 102 

state, and detected an average of 117 and 109 reproducible TF regulators for Knight and 103 

ROSMAP cohorts respectively (Supplementary Table 1). We compared the putative TFs between 104 

the cohorts and identified an average of 96 replicating regulators for each cell state (Figure 2, 105 

Supplementary Table 1). Among these, 35 TFs were shared by all five states, including ARID3A 106 

(ABCA7 locus), GABPA (APP locus), and MAF (WWOX locus), which are within AD GWAS loci8 107 

(Supplementary Table 2). Moreover, 59 TFs were shared by the microglia states, including SPI1, 108 

IKZF1, TCF3 (KLF16 locus), and GABPB1 (SPPL2A locus), which are within AD GWAS loci8,9, and 109 

69 TFs were shared by the astrocyte states including SREBF1 (MYO15A locus) and ZNF518A 110 

(BLNK locus). 111 

 112 
Figure 2 Inclusive intersection of state-specific TF regulators 113 
TF sets were identified by individually running pySCENIC on the Knight/DIAN and ROSMAP cell states and isolating the 114 
intersecting TFs between the discovery and replication runs (see Methods). The TF sets were then compared in an upset plot. The 115 
inclusive intersection indicates that all subsets are counted in the superset. For example, all 35 TFs shared between all cell states 116 
(the lowest subset) are counted in all other sets. The red column indicates the TFs that are common between all microglia states. 117 
The blue column indicates that TFs that are common between both astrocyte cell states.  118 



Different TF families regulate APOE between microglia and astrocytes 119 

Next, we pinpointed the TFs regulating APOE in each state. In the mic-resting GRN, APOE was 120 

regulated by CEBPA, CEBPB, CEBPD, IRF7, and JUND TFs. In the mic-activated and mic-121 

inflammatory GRNs, APOE was regulated by CEBPB, CEBPD, and JUNB, with IRF7 also involved in 122 

the mic-activated state. In the astrocytic GRNs, APOE was regulated by JUN and THRA in the 123 

resting state and by THRB in the activated state. 124 

These results highlight the CCAAT/enhancer-binding protein (CEBP) family of TFs, which form 125 

homo- and heterodimers to precisely control the expression of target genes that are primarily 126 

immune-related10. In mouse microglia cell cultures, CEBPA was shown to regulate homeostatic 127 

and anti-inflammatory DAM genes11, and in mouse models, CEBPB modulates APOE 128 

expression12. These findings validate pySCENIC’s ability to capture known biology and lends 129 

credence to the other findings. In addition, CEBPD was shown to boost the expression of 130 

activation genes, including NOS2, C6, IL1B, and IL6 in a BV2 microglia cell line13. Intriguingly, LPS 131 

treatment upregulates CEBPB and CEBPD while downregulating CEBPA, implying contrasting 132 

regulatory functions. This could account for CEBPA’s role as an APOE regulator only in mic-133 

resting, but not in mic-activated and mic-inflammatory.  134 

IRF plays a crucial role in the immune response. IRF7 regulates type I interferon genes and IL614. 135 

The JUN family proteins are known to be involved in various cellular processes, including 136 

proliferation, apoptosis, and immune response15. Their role in regulating APOE expression 137 

suggests a potential link between APOE and these cellular processes.  138 

Thyroid hormone receptor family proteins, including THRA and THRB, bind to thyroid hormone, 139 

which plays a crucial role in metabolism, growth, and development. Using cell lines, THRB was 140 

shown to upregulate APOE expression in astrocytes by forming a complex with RXRA and 141 

binding to the multienhancer ME.2 which activates the APOE promoter16. Once again, this 142 

shows that pySCENIC identifies true regulatory relationships.  143 

Our findings suggest that CEBPB and THRB regulate APOE expression in the human brain, in 144 

concordance with studies in model systems. The GRNs from pySCENIC suggest that the CEBP 145 

family primarily regulates APOE in microglia, while the THR family chiefly regulates expression in 146 

astrocytes. This is in line with CEPB regulating immunity genes and microglia being the primary 147 



immune cells in the brain, as well as THR influencing metabolism and astrocytes being the 148 

primary support cells for neurons. This does not exclude the possibility that both families may 149 

influence APOE expression in both cell types.  150 

 151 

APOE-associated target genes were regulated by TFs linked to the circadian rhythm 152 

We aimed to explore those genes co-regulated with APOE. Thus, we built a complex co-153 

regulatory network of genes, including all the putative TFs predicted by pySCENIC and their 154 

respective regulated genes. Then, we clustered the target genes into a UMAP space using the 155 

86-101 TFs signatures that defined each cell state. We identified an average of 27 gene clusters 156 

in each expression state (Figure 3, Supplementary Table 1). The gene clusters containing APOE 157 

comprised an average of 327 genes regulated by an average of 13 TFs for each cell state 158 

(Supplementary Table 1).  159 

To validate these gene clusters, we isolated the TFs that significantly upregulated the gene 160 

clusters containing APOE, a known activated marker gene, and CX3CR1 and P2RY12, known 161 

homeostatic marker genes, in the three microglia clusters. We then performed a virtual 162 

knockout (KO) of these TFs and observed the shift in the expression profile of the cells.  163 

We adapted the virtual TF knockout method described in SCENIC+17 to work with pySCENIC 164 

outputs. Following the knockout of the TF, this method propagates the change through the rest 165 

of the gene expression matrix (GEM) producing a perturbed expression profile and an 166 

associated visualization of the shift in the reduced dimensionality space. The TFs regulating 167 

these homeostatic and activated marker genes should have opposite influences on microglial 168 

activation, thus opposing shifts in the expression profiles. In the mic-resting state, an individual 169 

knockout of the TFs associated with the APOE gene cluster generally shifted cells toward the 170 

mic-resting state, indicating these TFs are involved in maintaining an activated state. Conversely, 171 

individual knockouts of seven of the 14 TFs associated with the CX3CR1 and P2RY12 clusters 172 

generally pointed away from the mic-resting state, suggesting these TFs promote a resting state 173 

(Supplementary Figure 1). A similar trend was seen within mic-activated, with KO of all 17 APOE 174 

TFs pointing away from mic-activated and eight of the 19 TFsCX3CR1/P2RY12+ pointing toward mic-175 

activated (Supplementary Figure 2). This indicates that the clustering groups mirror the 176 



expected biology. The mic-inflammatory cluster had no TFs significantly upregulating the 177 

CX3CR1 or P2RY12 clusters, so it was not explored for validation.  178 

We then explored the TFs regulating APOE in each state. The mic-resting APOE cluster was 179 

regulated by BHLHE40, CEBPG, FOS, FOSL2, GABPA, ILF2, JUN, JUNB, KMT2B, REL, and XBP1, in 180 

addition to the TFs directly regulating APOE mentioned previously (Figure 3A, Supplementary 181 

Figure 4A). BHLHE40 regulates the circadian rhythm, negatively regulates itself, DBP (another 182 

circadian gene), and represses RXR, a component of APOE activation through the THR family of 183 

TFs18–21. BHLHE40 is located within an AD African-American GWAS locus is a key regulator for 184 

clearing lipid-rich cellular debris by lipid-associated macrophages (LAMs)8,22. XBP1 becomes a 185 

functional TF in response to endoplasmic reticulum stress induced by unfolded proteins and is 186 

modulated by the circadian rhythm23,24. The mic-activated APOE cluster included BHLHE40, 187 

CEBPA, CEBPG, CHD1, CREM, ETS2, FOS, FOSL2, FOXO1, FOXO3, JUND, SP3, SREBF1, and USF2, 188 

but not IRF7, compared to APOE alone (Figure 3B, Supplementary Figure 4B). CREM and SREBF1 189 

are related to circadian rhythm and SREBF1 is additionally related to lipid metabolism25,26. 190 

Upregulation of FOXO3 and two other TFs, was shown to move weakly inflammatory microglia 191 

to a strongly inflammatory state in a cell line27. Additionally, FOXO3 is deactivated by SIRT1, 192 

another gene associated with circadian rhythm28. The mic-inflammatory APOE gene cluster 193 

added CEBPA, E2F4, FOSL2, GABPB1, HDX, ILF2, IRF7, JUN, JUND, KMT2B, MAF, MAFG, NFE2L1, 194 

NR3C1, TCF7L2, and ZBTB40 to the APOE TF list (Figure 3C, Supplementary Figure 4C). E2F4 halts 195 

the cell cycle and has been linked to cell quiescence, regulation of AD-related gene networks, 196 

and upregulation in AD brains29. Macrophage/microglia activation factor (MAF) expression has 197 

been linked to changes in the endosome/lysosome membranes30, which suggests a concerted 198 

action between APOE and endo-/lysosomal function in activated microglia. Taken together, the 199 

CEBP, FOS, and JUN families regulate the APOE gene clusters across microglial cell states.  200 

The APOE clusters within astrocytes were regulated by fewer TFs than their microglial 201 

counterparts. Interestingly, astro-resting did not include either of the THR-related TFs. However 202 

it included another steroid/thyroid hormone family receptor NR2F131 (Figure 3D, 203 

Supplementary Figure 4D), which is associated with Bosh-Boonstra-Schaaf optic atrophy 204 

(BBSOA), optic nerve atrophy featured by the loss of retinal ganglion cells critical for the light 205 



entrainment of the circadian rhythm32,33. The APOE cluster in astro-resting also had TFs DBP, 206 

CEBPB, ING4, JUND, and TBP (Figure 3D, Supplementary Figure 4D). This supports the idea that 207 

the CEBP family of TFs influences APOE in astrocytes and microglia. As previously noted, DBP is 208 

related to the circadian rhythm. Astro-activated had MAFG, NFIC, NR2F1, PBX1, POU3F2, RARB, 209 

RFX3, and TCF7L1 regulating the APOE gene cluster in addition to THRB which directly regulated 210 

APOE in this cell state (Figure 3E, Supplementary Figure 4E). MAFG has been implicated in 211 

astrocyte-driven inflammation linked to the chronic inflammatory disease, multiple sclerosis34. 212 

TCF7L1 is important for astrocyte maturation, highlighting the central role that APOE plays in 213 

normal astrocyte function35. RARB is another steroid/thyroid hormone family receptor that 214 

forms heterodimers with RXR to facilitate transcriptional activation or repression. Despite the 215 

absence of the THR-related TFs in astro-resting, both APOE gene clusters were regulated by 216 

steroid/thyroid hormone receptors, suggesting expression regulation through thyroid hormone.  217 

Overall, we observed that circadian rhythm-related TFs were associated with regulating the 218 

APOE gene clusters across cell types and states. This implies that APOE participates in processes 219 

similar to those regulated by these TFs, even if they do not directly regulate APOE. Alternatively, 220 

these TFs may have a role in APOE regulation, but the pySCENIC analysis may lack the power to 221 

detect them. 222 

 223 
Figure 3 UMAP representation of gene regulatory networks 224 
A-E) A global UMAP visualization of each cell states’ regulome along with a zoomed view highlighting APOE. Principle 225 
component analysis was performed on the TF-by-target gene matrix. The top five principal components were used to calculate 226 
the UMAP coordinates. APOE is underlined. The TFs in red directly regulate APOE. TFs in black significantly upregulate the APOE 227 
gene cluster. TFs in blue are the TFs that were replicated in the ROSMAP dataset. D) The global UMAP for Astro-resting is 228 
zoomed. The full figure can be found in Supplementary Figure 3.  229 



Gene set enrichment of APOE gene clusters 230 

To investigate the pathways behind the genes within the APOE gene clusters from the co-231 

regulatory networks, we performed an enrichment analysis using Gene Ontology (GO) biological 232 

process (BP) terms. Mic-resting showed an enrichment of pathways related to cytoplasmic 233 

translation, cytokine production, apoptotic process, integrated stress response, 234 

immunoglobulin-mediated immune response, response to lipid, IL-6 production, and response 235 

to LPS (Supplementary Figure 4F, Supplementary Table 3a). Mic-activated shared most of these 236 

pathways, but also the glycolytic process (Supplementary Figure 4F, Supplementary Table 3b), 237 

which is a metabolic feature of AD36. Mic-inflammatory had fewer pathways than the other two 238 

microglial states, but they included endocytosis, macroautophagy, and cotranslational protein 239 

targeting to the membrane (Supplementary Figure 4F, Supplementary Table 3c). These results 240 

imply that the genes in this cluster are related to the uptake and degradation of extracellular 241 

material and the replenishment of membrane proteins.  242 

Astro-resting was enriched for genes in mitochondrial electron transport, NADH to ubiquinone 243 

and other aspects of the electron transport chain. It also had genes related to Golgi vesicle 244 

transport and synapse organization (Supplementary Figure 4F, Supplementary Table 3d). These 245 

results reflect the roles of astrocytes in energy metabolism and synaptic modulation. Astro-246 

activated had many genes in its APOE cluster (n=409), which made the enrichment analysis less 247 

sensitive. None of the GO terms passed multiple testing correction, but the top hits (p-value < 248 

0.01) included terms such as semaphorin-plexin signaling, axon guidance, synapse assembly, 249 

fatty-acyl-CoA biosynthetic process, glucan catabolic process, and amide metabolic process 250 

(Supplementary Table 3e). Semaphorin-plexin signaling, in conjunction with axon guidance and 251 

synapse assembly, suggests an active regulation of the surrounding synapses. Glucan catabolism 252 

indicates the cell is low on glucose and tapping into glycogen reserves. Fatty-acyl-CoA 253 

biosynthesis and amide metabolism both indicate that resources are being diverted from ATP 254 

production through cellular respiration toward the synthesis of lipids like phospholipids and 255 

cholesterol for membranes and neurotransmitters, which is consistent with previous findings in 256 

AD37. 257 



Overall, all microglia states were associated with immune, inflammation, and cytokine-related 258 

terms. We observed that mic-activated and astro-activated cells had genes related to known 259 

metabolic alterations in AD. We also noticed that mic-inflammatory and astro-activated cells 260 

had genes involved in endocytosis and autophagy, which are mechanisms for clearing amyloid-261 

beta plaques and recycling other macromolecules.  262 

 263 
Gene set enrichment of TF target genes 264 

To complement the analysis of the APOE gene clusters, we took a deeper dive into the TFs 265 

directly regulating APOE. Specifically, we identified the target genes significantly perturbed by a 266 

virtual knockout of these TFs. As previously described, we implemented a modified version of 267 

the TF-KO method included in SCENIC+, producing a perturbed expression profile after TF-KO. 268 

We then performed a Mann-Whitney rank-sum analysis to identify differentially expressed 269 

genes between the original and TF-KO GEMs. We found 60 to 434 nominal DEGs for each TF 270 

knockout (Supplementary Table 1, Supplementary Table 4). Using the nominal DEGs, we 271 

performed a gene set enrichment analysis and visualized the results in a heatmap to better 272 

identify patterns in the regulation of biological processes.  273 

CEBPB-regulated processes were common across the microglial states, including positive 274 

regulation of cytokine production, receptor-mediated endocytosis, and humoral immune 275 

response mediated by circulating immunoglobulin (Figure 4, Supplementary Table 5). These 276 

processes reflect the role of CEBPB in modulating the inflammatory response of microglia. 277 

However, CEBPB also regulated processes that were specific to certain microglial states. For 278 

example, in mic-inflammatory, CEBPB-regulated genes are involved in mRNA splicing, via 279 

spliceosome and cellular response to lipopolysaccharide (Figure 4, Supplementary Table 5). In 280 

contrast, in mic-activated, CEBPB lacked the terms related to positive regulation of protein 281 

phosphorylation, positive regulation of transferase activity, antigen processing and presentation 282 

of exogenous peptide antigen, and cellular response to cytokine stimulus (Figure 4, 283 

Supplementary Table 5). 284 

CEBPD regulated shared processes in mic-resting and -activated, but had a distinct signature in 285 

mic-inflammatory. The main divergence between the primary CEBPB and CEBPD signatures was 286 

that CEBPD additionally regulated fat differentiation, lipoprotein biosynthesis process, and 287 



positive regulation of small molecule metabolic process (Figure 4, Supplementary Table 5). Mic-288 

activated CEBPD also regulates the lipid metabolic process. These results suggest that CEBPD 289 

has a more specialized role in regulating genes related to lipid processing than CEBPB.  290 

 291 
Figure 4 Gene set enrichment analysis of the target genes for each cell-state-specific TF regulating APOE 292 
Target genes for each TF were assessed for GO Biological Process terms. Terms were condensed using Revigo. Rows and columns 293 
were sorted using hierarchical clustering on Euclidean distance. Tiles with (.) indicate significance after multiple testing 294 
correction. 295 
 296 

JUNB regulated processes related to the immune response in mic-resting and mic-activated 297 

states, including negative regulation of the apoptotic process, negative regulation of 298 

inflammatory response, cellular response to cytokine stimulus, and humoral immune response 299 

mediated by circulating immunoglobulin (Figure 4, Supplementary Table 5). Within mic-300 

activated, it regulated inflammatory response, cellular response to lipopolysaccharide, but also 301 

synapse pruning and regulation of mRNA splicing, via splicesome indicating that JUNB regulates 302 



additional processes other than immune roles in microglia. JUND was the regulator in mic-303 

resting state that also regulated negative regulation of apoptotic process and humoral immune 304 

response mediated by circulating immunoglobulin, but uniquely among the JUN family, it also 305 

regulated negative regulation of amyloid-beta formation through RIN1 and RIN3, which 306 

negatively regulate BACE1. This implies that JUND may be beneficial in preventing amyloid-beta 307 

accumulation in AD. Within astro-resting, JUN was the regulator and it had the most divergent 308 

profile, regulating processes involved in negative regulation of growth, regulation of cell cycle, 309 

regulation of cell population proliferation, cellular response to metal ion, and carbohydrate 310 

catabolic process (Figure 4, Supplementary Table 5).   311 

THRA target genes were not enriched for any particular GO term, but THRB-regulated genes 312 

associated with transcription, negative regulation of inclusion body assembly, positive 313 

regulation of neurogenesis, cellular response to oxidative stress, axonogenesis, and regulation 314 

of cytokinesis (Figure 4, Supplementary Table 5). These processes suggest that THRB regulates 315 

genes that prepare astrocytes for activation and inflammatory response. Overall, this alternative 316 

method of examining the genes co-regulated with APOE revealed similar immune, lipid, and 317 

energy metabolism pathways to those of the APOE gene clusters, strengthening the validity of 318 

these biological pathways with APOE.  319 

 320 

Additional AD GWAS genes are co-regulated with APOE 321 

The identified TFs that regulate APOE also regulate other genes in AD GWAS loci. Using the 322 

same set of nominal DEGs identified after the TF KO, we isolated the DEGs that intersected the 323 

list of genes within AD GWAS loci. Several of the genes are regulated by multiple APOE TFs 324 

including PGRN, FCGR3A, CTSH, ABCA1, MARCKS, CTSB, SQSTM1, TSC22D4, FCER1G, and several 325 

of the HLA genes (Figure 5A,B,  Supplementary Figure 5).  326 

PGRN, CTSH, and CTSB are all related to lysosome function and are co-regulated with APOE in 327 

the microglia states. CTSB is specifically associated with the proteolytic processing of APP38. 328 

FCER1G and FCGR3A are in the ADAMTS4 locus and encode Fc immunoglobulin receptors that 329 

bind to IgE and IgG respectively. CEBPB regulates FCER1G in mic-resting and mic-inflammatory. 330 

It represses AD risk genes through the Herpes simplex (HSV-1) escape strategy39. FCGR3A 331 



exacerbates neurodegeneration and is a potential link behind the increased AD risk in chronic 332 

periodontitis patients40,41. It is regulated in mic-resting by CEBPB and IRF7; mic-activated by 333 

CEBPB and CEBPD; and mic-inflammatory by CEBPB, and JUNB. ABCA1 is a transporter that 334 

transfers cholesterol and other lipids to APOE and there is a link between ABCA1, APOE, and A 335 

levels42. APOE and ABCA1 are co-regulated in both astrocyte and microglial states. MARCKS is 336 

associated with lipid rafts, dissociates from the membrane at decreased concentrations of 337 

cholesterol, causing PIP2 release, and also influences inflammation43–45. SQSTM1 (p62), found in 338 

the RASGEF1C locus, is also found in both astrocytes and microglia and functions as a bridge 339 

between ubiquitinated proteins and autophagosomes46. TSC22D4 is within the NYAP1 locus and 340 

is regulated in astro-resting by both APOE TFs (THRA and JUN). TSC22D4 participates in forming 341 

a complex that degrades BRI2 and BRI3, inhibitors of A production and aggregation.  342 

Looking at the APOE gene clusters, we identified genes within the ABCA7 and SCIMP loci across 343 

all five cell states and four out of the five states had HLA-DRB1, LILRB2, SIGLEC11, KLF16, 344 

DOC2A, and NYAP1 (Figure 5D, Supplementary Figure 5, Supplementary Figure 6). Using SCIMP 345 

as an example, mic-resting had gene PFN1 within the APOE gene cluster; mic-activated had 346 

CXCL16 and PFN1; mic-inflammatory had CXCL16; astro-resting had SLC25A11; and astro-347 

activated had RABEP1 (Figure 5C). Interestingly, PFN1 is related to amyotrophic lateral sclerosis 348 

(ALS), action polymerization, and binding of PIP247,48, which could connect it to MARCKS and, 349 

therefore membrane cholesterol concentrations as mentioned above. CXCL16 induces a 350 

chemokine-induced chemotactic response, SLC25A11 maintains the organization and 351 

morphology of the mitochondrial cristae49, and RABEP1 is involved in endocytic membrane 352 

fusion and recycling of endosomes, all of which connect to AD biology. Genes in AD loci CD33 353 

and APH1B were exclusively found in both astrocyte states (Figure 5D). LACTB (APH1B locus) 354 

was co-regulated with APOE in astro-resting (Figure 5C) and regulated mitochondrial lipid 355 

metabolism50. TLN2 (APH1B locus) was co-regulated in astro-activated (Figure 5C) and is a 356 

component of the actin cytoskeleton linking to focal adhesion plaques, which have been shown 357 

to have higher concentrations of cholesterol than the surrounding membrane51. Even though 358 

the genes were not necessarily the same across the cell states, the consistency of genes within 359 



these loci clustering with APOE, and many relating to lipid metabolism, suggests common 360 

regulatory mechanisms behind these loci and APOE. 361 

These findings suggest that the regulatory networks involving APOE and the identified 362 

transcription factors extend beyond APOE itself and involve other genes associated with AD. 363 

Many of these AD-GWAS genes are related to critical immune, lysosome, lipid, and energy 364 

metabolism pathways highlighted by the previous TF and gene set enrichment analyses. It also 365 

supports the notion that some GWAS loci have many genes that can simultaneously influence 366 

AD risk.  367 

 368 
Figure 5 Other AD GWAS genes are coregulated with APOE  369 
(A,B) Genes (A) in AD GWAS loci (B) that are co-regulated by APOE-regulating TFs.  Genes co-regulated by APOE-TFs were those 370 
differentially expressed (Mann-Whitney Rank U) between the original expression profiles and the perturbed values following 371 
virtual TF-KO. (C,D) Genes (C) in AD GWAS loci (D) that co-clustered with APOE in the co-regulation networks. Principle 372 
component analysis was performed on the TF-by-target gene matrix. The top five principal components were used to calculate 373 
the UMAP coordinates. Gene clusters were calculated from a shared-nearest-neighbor graph using the Louvain algorithm. Rows 374 
are colored by loci. Some genes are within two loci and therefore have two colors. These plots are truncated; the full plots can be 375 
found in Supplementary Figure 6.  376 

  377 



Discussion 378 

We used GRNs to elucidate the cell-type- and -state-specific regulation of APOE. These analyses 379 

revealed that APOE and its co-regulated genes were modulated by several transcription factor 380 

(TF) families, including CEBP, JUN, FOS, FOXO, and THR. The CEBP (A/B/D/B), JUN (/B/D), and 381 

FOS (/L2) families were involved in APOE regulation in all microglial states, whereas FOXO (1/3) 382 

was specific to the mic-inflammatory state. Despite the consistency of the CEBP, JUN, and FOS 383 

families across microglial states, the individual members had different strengths and 384 

associations based on cell state suggesting individual TFs could more strongly promote one state 385 

over another. The CEBP family of TFs form homo- and heterodimers with each other, so the 386 

proportions of these dimers could influence cell state. Additional experimental studies are 387 

needed to better understand the interplay between members of these families and how they 388 

regulate the activation states of microglia. Interestingly, CEBPB and JUND also regulated the 389 

APOE gene cluster in the astro-resting state, suggesting that these TF families play a role in 390 

APOE regulation in both microglia and astrocytes. APOE in astro-activated was controlled by the 391 

known APOE regulator THRB16, and NR2F1 and RARB, two other members of the steroid/thyroid 392 

hormone receptor family.  We previously reported an upregulation of THRB in the mic-activated 393 

state compared to the other microglia states, implying that the THR family of TFs could 394 

influence APOE expression in microglia as well, but to a lower degree5. Further studies are 395 

required to confirm this conclusion.  396 

These GRNs identified associations with immunoglobulin binding, IL1B/IL6/cytokine production, 397 

glycolysis, endocytosis, macroautophagy, mitochondrial electron transport, fatty-acyl-CoA 398 

biosynthesis, glucan catabolism, and amide metabolism. Related to immunoglobulin binding, AD 399 

GWAS associated genes FCER1G, FCGR2A, and FCGR3A are Fc immunoglobulin receptors that 400 

bind to IgE and IgG and were coregulated with APOE in microglia. Usually, IgE and IgG cannot 401 

cross the blood-brain-barrier (BBB), but it has been suggested that in APOEe4 carriers, the 402 

vasculature and endothelial cells making up the BBB are compromised, and albumin, antibodies, 403 

cytokines, and other inflammatory molecules more easily cross into the brain52,53. This might 404 

account for the association between this biology and APOE. It might also explain how 405 

periodontitis, a peripheral infection, could increase AD risk in association with FCGR3A41. 406 



Additionally, when microglia and astrocytes encounter these inflammatory signals, they 407 

propagate the signal by producing their own IL1B, IL6, and other cytokines, as suggested by 408 

these GRNs54–56. Astrocytes also boost their cholesterol production in response to cytokine 409 

signaling53. Within astro-activated, we saw many APOE-related genes pointing to fatty-acyl-CoA 410 

biosynthesis, a precursor to cholesterol. APOE is one of the key molecules transporting this 411 

newly synthesized cholesterol to the surrounding cells. Evidence indicates that increases in 412 

cholesteryl ester, the storage molecule for excess cholesterol, increase the accumulation of 413 

phosphorylated tau (pTau) by reducing the proteasome protein units57,58. Studies have also 414 

suggested that this increased cholesterol enlarges the lipid rafts, influencing many associated 415 

receptors53,59,60. For instance, APP, BACE1, TREM2, MS4A, TLR4, Fc immunoglobulin receptors, 416 

and GLUT1 are all associated with lipid rafts53,59–61. Our analysis shows that other AD GWAS 417 

genes are co-regulated with APOE; some are also associated with cholesterol levels in the 418 

membrane, including MARCKS, PRN1, and TLN2. In neurons, APP is upregulated and 419 

preferentially beta-cleaved when associated with lipid rafts which is amyloidogenic59,60. TREM2, 420 

TLR4, IFNGR, and TNFA are all receptors that rely upon clustering as a part of their activation53, 421 

and increased cholesterol mediates this clustering, enhancing the activation of these cells, again 422 

highlighting the connection between cytokines and the APOE-related genes. Astrocytes are the 423 

primary support cells of the brain and are in contact with the vasculature to facilitate the uptake 424 

and delivery of essential molecules to the neurons and other cells. GLUT1 transports glucose 425 

into astrocytes through the endfeet, but evidence suggests that GLUT1 is less efficient when 426 

incorporated into large lipid rafts induced by increased cholesterol62,63. This might explain why 427 

the mitochondrial electron transport chain is associate with astro-resting, while glucan 428 

catabolism, or the breakdown of glycogen into glucose, is linked to astro-activated state. Other 429 

studies have reported a reduction in glucose uptake in AD36. Interestingly, while extra 430 

cholesterol decreases glucose uptake, it increases neuronal energy demand by promoting 431 

neurotransmitter release in presynapses and the endocytosis and internalization of receptors in 432 

postsynapses64. This energy demand stimulates the transport of lactate and ketones from 433 

astrocytes to neurons, enabling increased neural activation by bypassing the rate-limiting step 434 

of glycolysis in energy production36,65. Evidence shows that in young APOEe4 carriers, there is an 435 



increase in cognitive performance and neuronal activity, suggesting this biology is 436 

occurring36,66,67. With age we see the negative aspects of this increased neuronal activity. 437 

Neuronal activity produces reactive oxygen species (ROS), so these hyperactive neurons 438 

produce increased quantities of ROS which then peroxidate the fatty acids (pFA) found in the 439 

cell and organelle membranes68. These pFA are toxic, so the neurons expel them with the help 440 

of APOE. Over time, ROS and pFA build up in the neuron, causing neurotoxicity, especially in 441 

APOEe4 carriers with less efficient binding and, therefore, export of lipids. The expelled pFA is 442 

then picked up by microglia and astrocytes and stored in lipid droplets (LD), which is consistent 443 

with our finding GO terms, TFs (MAF and CEBPB), and GWAS genes (RABEP1) related to 444 

endocytosis. This is also concordant with our finding that BHLHE40, a regulator for the clearance 445 

of lipid-rich cellular debris, is an APOE regulator. Excess cholesterol produced by astrocytes also 446 

collects in the lysosome, where it causes lysosomal dysfunction, leading to the buildup of 447 

autophagosomes and mitochondrial dysfunction36. This is consistent with many of the co-448 

regulated GWAS genes we identified, including PGRN, CTSH, CTSB (lysosome), SQSTM1 449 

(autophagosomes), SLC25A11, and LACTB (mitochondria metabolism).  450 

Our findings also show that many TFs regulating APOE and the APOE gene clusters are related to 451 

circadian rhythm, including BHLHE40, DBP, XBP1, CREM, SREBF1, FOXO3, and NR2F1. This is 452 

consistent with many studies that have reported an association between AD and disrupted 453 

sleep due to circadian rhythm dysfunction33,66,69–71. These findings highlight the importance of 454 

the circadian rhythm in regulating APOE expression and function. Interestingly, NR2F1 is 455 

associated with BBSOA, a neurodevelopmental disease characterized by the loss of retinal 456 

ganglion cells32. Another study with APOE-/- reported the loss of melanopsin-expressing ganglion 457 

cells in the suprachiasmic nucleus, resulting in the loss of light entrainment33, the process by 458 

which light synchronizes the biological clock with the environment. These studies suggest that 459 

NR2F1 and APOE are connected and involved in the circadian rhythm, as indicated by our GRNs. 460 

Furthermore, the disruption of energy metabolism and the suggested increase in ketone 461 

metabolism are modulated by AMPK72. AMPK also degrades the circadian proteins Per and Cry, 462 

which are produced by the transcriptional activation of Clock and Bmal173. Per and Cry form a 463 

complex with CK1E/D and inhibit the transcription of Clock, Bmal1, Per, and Cry, creating a 464 



negative feedback loop. The degradation of Per and Cry by AMPK breaks this loop and results in 465 

the overexpression of Clock and Bmal1, as well as their downstream targets, such as NR1D1, 466 

which encodes the Rev-ERB protein. NR1D1 represses Cx3cr1, a marker of homeostatic 467 

microglia, thus activating microglia and influencing lipid droplet formation74,75. Disruption of the 468 

circadian rhythm is associated with impaired function and integrity of the endothelial and 469 

vascular smooth muscle cells, causing inflammation and passing these inflammatory markers 470 

through a weakened BBB73. It is also related to energy metabolism during the fasting stage of 471 

sleep26. Overall, our results reemphasize the connection of AD to circadian rhythm and suggest 472 

that APOE and lipid biology are key contributors.  473 

In general, the TF families primarily associated with microglia suggest a relationship between 474 

immunity and APOE, while the TF family associated with astrocytes suggests a link between 475 

APOE and lipid metabolism. This is consistent with the primary function of each of these cell 476 

types. In astrocytes, the evidence points to the primary purpose of APOE in lipid metabolism is 477 

to shuttle cholesterol and other lipids synthesized by the astrocytes to other cells. The primary 478 

purpose of APOE in immunity is not quite as clear in microglia. A promising possibility is the 479 

secretion of extracellular vesicles (EVs) that are induced upon microglial activation. The biology 480 

related to these EVs is closely tied with that of the endosomal-lysosomal system76, highlighted 481 

in our GRNs. These EVs can contain RNA, protein, lipids, and cytokines for extracellular 482 

communication77. A study in Apoe-/- mice on a high-fat diet highlighted the role of Apoe in 483 

influencing the miRNA composition of EVs secreted by these macrophages and their impact on 484 

atherosclerosis78. Although most studies on EVs interrogate their miRNA composition, other 485 

studies suggest differences in lipid composition based on microglia state as well79, including 486 

increased secretion of cholesterol in EVs in response to increased free cholesterol80. APOE could 487 

play a role in the transfer of lipids to these EVs.  488 

A limitation of this study is that pySCENIC utilizes only a single modality, co-expression, to 489 

identify relationships between TFs and target genes, unlike the newer SCENIC+, which also 490 

incorporates chromatin accessibility. Despite this, pySCENIC has successfully identified 491 

biologically relevant TF-target interactions. We presume that TFs regulating the APOE gene 492 

clusters within the co-regulatory networks influence APOE, even in the absence of direct TF-493 



APOE links in the pySCENIC results. Nevertheless, the findings underscore many known features 494 

of AD and establish a link to APOE biology. Moreover, the discovery cohort includes carriers of 495 

APOE, TREM2, APP, and PSEN1 variants, all of which could influence the GRNs in ways not 496 

accounted for. Additionally, the cohort’s European ancestry may restrict the generalizability of 497 

these results to other, less represented populations.  498 

In conclusion, the TFs and pathways associated with APOE all support known AD pathology and 499 

support the building evidence implicating lipids as a key driver of AD-related pathology. 500 

  501 



Methods 502 

Single nucleus RNA-seq acquisition and integration 503 

Human snRNA-seq data of the parietal lobe from the Knight ADRC and DIAN was gathered at 504 

NIAGADs (accession number NG00108) and upon request from DIAN. These data include a total 505 

of 67 neuropathological controls, sporadic AD, and autosomal dominant AD participants.  506 

An independent human snRNA-seq dataset from ROSMAP (dorsolateral prefrontal cortex) was 507 

collected from Synapse (synapse ID syn21125841). The ROSMAP data has 11 sporadic AD, 508 

11 TREM2 R62H, and 10 control participants. The microglia from the ROSMAP dataset was 509 

previously integrated with the microglia from the Knight and DIAN data5. The ROSMAP 510 

astrocytes were integrated as a part of this study using the same process described by Brase, et 511 

al. Briefly, we isolated and normalized the astrocytes with Seurat’s (v.4.3.0) SCTransform, setting 512 

“return.only.var.genes” to FALSE and regressing out “nCount_RNA” and “nFeature_RNA”. We 513 

integrated the astrocytes with 3000 features in SelectIntegrationFeatures, PrepSCTintegration, 514 

our data as reference in FindIntegrationAnchors, and IntegrateData. We clustered integrated 515 

data with ten principal components in FindNeighbors and resolution 15 in FindClusters. We gave 516 

each cluster an ‘original’ identity by isolating our nuclei from clusters and finding the most 517 

common original ID. We transferred this ID to ROSMAP nuclei like a k-nearest neighbor classifier. 518 

We mapped cluster identities to pre-integrated normalized ROSMAP data. 519 

 520 

Gene regulatory network prediction by pySCENIC 521 

We created cell-state-specific GRNs using the python implementation of the SCENIC81 analysis 522 

method called pySCENIC7 (version 0.12.1). We isolated the cell type of interest and filtered the 523 

genes to those that were expressed in ≥5% of the cell type population. Then we isolated the cell 524 

expression states of interest. We ran pySCENIC on each individual cell state 100 times (different 525 

seed for each run) as suggested by pySCENIC. We employed default values for all parameters 526 

and provided default reference data downloaded from https://resources.aertslab.org/cistarget/: 527 

Database (hg38_500bp_up_100bp_down_full_tx_v10_clust.genes_vs_motifs.rankings, 528 

hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings), table (motifs-529 

v10nr_clust-nr.hgnc-m0.001-o0.0.tbl), and transcription factor list (allTFs_hg38.txt). An 530 

https://www.niagads.org/datasets/ng00108
https://www.synapse.org/#!Synapse:syn21125841/wiki/597278
https://resources.aertslab.org/cistarget/


additional TF list was downloaded 531 

from http://humantfs.ccbr.utoronto.ca/download/v_1.01/TF_names_v_1.01.txt and the two 532 

lists were merged totaling 2093 TFs. 533 

After the 100 runs were complete, we identified the transcription factors (TFs) that were 534 

present in >= 80% of the runs. We then ran pySCENIC an additional 100 times using only the 535 

>=80% TFs labeled as transcription factors. The other TFs were retained in the expression 536 

matrix, but not labelled as TFs.  The TFs that appeared in >= 80% of the second round of runs 537 

were isolated as reproducible regulators.  538 

The same resource files and parameters were used in the ROSMAP cohort replication. We 539 

filtered the genes to those intersecting those from the Knight ADRC microglia and astrocyte 540 

runs. We ran pySCENIC 100 times using the filtered list of TFs for each respective cell state (list 541 

used in second round of discovery runs). We isolated the TFs that were present in >= 50% of the 542 

runs. We intersected the final lists of discovery TFs with the lists of replication TFs to identify a 543 

set of replicable TFs for each cell state.  544 

 545 

Co-regulation network clusters 546 

Using the TF-target gene matrices for cell state, we identified co-regulation network clusters and 547 

visualized them in the UMAP space. The TF-target gene matrix had each of the replicable TFs as 548 

features, the target genes as elements, and the values were the number of times the target 549 

gene was regulated by the TF out of the 100 pySCENIC runs. These values were normalized by 550 

the number of times the TF was included in the pySCENIC networks. For example, if TF_1 was in 551 

the pySCENIC networks 85 times, all the values would be multiplied by (100/85) to get the 552 

normalized value. We then log transformed the values and ran them through a principal 553 

component analysis using prcomp, a native R (v4.2.2) function. We then passed the top five 554 

principal components (PCs) through the umap function from the umap library (v0.2.10.0) to 555 

create a two-dimensional representation of the space. The top five PCs were also passed to the 556 

makeSNNGraph function from the bluster package (v1.8.0) to create a shared nearest neighbor 557 

graph. The resulting graph was passed to the cluster_louvain function from the igraph package 558 

(v1.3.5) to identify clusters of similarly regulated target genes using a resolution of 2. All target 559 

http://humantfs.ccbr.utoronto.ca/download/v_1.01/TF_names_v_1.01.txt


genes in the same cluster as APOE were considered co-regulated with APOE and were evaluated 560 

for additional AD GWAS genes and for gene set enrichment (Supplementary Table 6).  561 

 562 

TF regulators for gene clusters 563 

We identified the TFs significantly upregulating the genes in each gene cluster identified in the 564 

gene UMAPs. We utilized the normalized, but not log transformed, TF-target gene matrix 565 

described in the Gene UMAP clusters section. For each gene cluster at a time, we created a 566 

binary vector where 1 indicated the target gene was in the cluster. We then looped through 567 

each TF and modelled the TF-target gene values using the binary vector as a covariate. The 568 

native glm R function (v4.2.2) was used to train the model with a quasipoisson distribution and 569 

log link function. The hits for each cluster were then multiple testing corrected using the 570 

Benjamini-Hochberg (BH) method. TFs with a BH corrected p-value less than 0.05 and an 571 

estimate greater than zero were considered significant regulators for the gene cluster. 572 

 573 
In silico transcription factor knock-out 574 

SCENIC+17 was recently released with the functionality to knockout a TF and determine the shift 575 

in the expression space. We implemented the algorithm proposed in SCENIC+ (v1.0.0, python 576 

v3.8.18), which was an adaption from the original method in CellOracle82. In summary, this 577 

method uses the cell by gene expression matrix to train prediction models for each gene. These 578 

models allow for the virtual knockout of a TF (TF-KO) by setting the expression of the TF to zero 579 

and then using the trained models to predict the shift in target gene expression. The expression 580 

shift is then transformed back onto the reduction space and depicted by arrows.  581 

By default, SCENIC+ used the GradiantBoostingRegressor from sklearn (v1.3.2) with a learning 582 

rate of 0.01, 500 estimators, and max features set to 0.1 to train prediction models. We included 583 

the TFs that were regulating a target gene at least 5% of the time in the model that used TF 584 

expression to predict the target gene expression. To correct for the influence of sample 585 

proportion on each cell state, we also included the log transformed nuclei counts for the sample 586 

in the prediction model. SCENIC+ uses a default of five iterations to propagate the shift across 587 

the expression matrix. We extended SCENIC+’s implementation to work with the UMAP space 588 

rather than just the PCA space. We also switched the arrows to be drawn by the quiver function 589 



as was found in the CellOracle implementation rather than the streamplot function used by 590 

SCENIC+. 591 

To extend this method to the UMAP space, we trained a neural network to predict a cell’s UMAP 592 

coordinates using as input the expression levels of all genes (python v3.11.0). We used the 593 

original gene expression matrix (GEM) and UMAP representation for the cell types which 594 

included all expression states not just the resting and activated states passed to pySCENIC. First, 595 

we log transformed the GEM. We then used the train_test_split function from sklearn (v1.3.2) 596 

to split the data into training and testing data (80% training, 20% testing) and stratified by cell 597 

state. We then split the training data into training and validation sets (90% training, 10% 598 

validation) and once again stratified by cell state.  Using the StandardScaler function from 599 

sklearn (v1.3.2) we fit and transformed a scaler using the training GEM. This scaler was then 600 

used to transform the validation and test GEMs. The sequential neural network was constructed 601 

using tensorflow (v2.14.0) and consisted of three layers: two dense layers with the ReLU 602 

activation function and an output layer with the same dimensionality as the UMAP data (n=2). 603 

The model was compiled with the Adam optimizer and mean squared error loss function. Early 604 

stopping was implemented to prevent overfitting with monitoring set to ‘val_loss’ and a 605 

patience of 10. The model was then trained on the training data for a maximum of 1000 epochs. 606 

The trained model was evaluated on the test GEM. This trained model was used on the TF-KO 607 

perturbed matrices to transform the expression shift to the UMAP reduction space. This 608 

method was incorporated into a snakemake pipeline so that TF-KO could be performed 609 

consistently across TFs, cell states, and cell types.  610 

 611 

TF knockout differential expression 612 

We performed a differential expression analysis between the original GEM and perturbed GEM 613 

calculated after TF-KO. The original GEM and perturbed GEM were both log transformed. We 614 

then filtered out the cells that had zero expression of the TF in the original matrix as these cells 615 

have no changes in expression and would skew the results. We then performed a Mann-616 

Whitney rank U test using the mannwhitneyu function from scipy (v1.2.2, python v3.11.0) to 617 

identify differentially expressed genes. We performed FDR multiple testing correction. Genes 618 



with a corrected p-value less than 0.05 were considered co-regulated with APOE and were 619 

evaluated for additional AD GWAS genes and for gene set enrichment (Supplementary Table 6). 620 

 621 

Gene set enrichment of genes co-regulated with APOE 622 

Sets of co-regulated genes where run through enrichment analysis to better understand the 623 

related function. There were two sources of co-regulated genes, co-regulation network clusters 624 

and TF-targets, and they were analyzed independently. The gene sets identified by gene clusters 625 

were run through enrichment analysis using the enrichr function from the enrichR package 626 

(v3.1) in R (v4.2.2) and the TF-targets were run through the enrichr function from the gseapy 627 

package (v0.9.5) in python (v3.11.0). Both used the 2023 GO Biological Process (BP) terms and 628 

significant associations were those with adjusted p-values less than 0.05.   629 

The terms from the TF-targets analysis were condensed using rrvgo (v1.6.0), an R package that 630 

implements the Revigo83 tool for summarizing GO BP terms. The function calculateSimMatrix 631 

was used to calculate the relationships between the GO BP terms with variable inputs: 632 

orgdb = “org.Hs.eg.db”, ont = “BP”, method = “Rel”. The terms were then summarized using 633 

reduceSimMatrix and the following variables: score = “Rank”, threshold = .7, 634 

orgdb = “org.Hs.eg.db”. The summarized terms or “parentTerms” and their P values were then 635 

used to make a heatmap. Rows and columns were ordered using dist function 636 

method = “manhattan”. 637 

Identifying other AD GWAS genes co-regulated APOE 638 

There were two sources of co-regulated genes, co-regulation network clusters and TF-targets, 639 

and they were analyzed independently. These gene sets were compared against a list of genes 640 

within GWAS loci (+/- 500KB of the lead SNP, Supplementary Table 7) and can be found in 641 

Supplementary Table 6. The Loci for each source were identified and merged. This merged list 642 

was used to consistently color the genes and loci for each row in the upset plots in Figure 5.  643 

Data Availability 644 
The single nucleus data from the Knight ADRC accessed in this study are found in the National 645 

Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) with accession 646 

number NG00108 [https://www.niagads.org/datasets/ng00108]. The raw single nucleus data 647 



from the DIAN brain bank accessed in this study are available under restricted access to 648 

maintain individual and family confidentiality. These samples contain rare disease-causing 649 

variants that could be used to identify the participating individuals and families. Access can be 650 

obtained by request through the online resource request system on the DIAN Website: 651 

https://dian.wustl.edu/our-research/for-investigators/dian-observational-study-investigator-652 

resources/. The ROSMAP single nucleus RNA sequencing data used in this study are available at 653 

Synapse under Synapse ID syn21125841 654 

[https://www.synapse.org/#!Synapse:syn21125841/wiki/597278]. The pySCENIC default 655 

reference data was downloaded from https://resources.aertslab.org/cistarget/: Database 656 

[https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc_v10_cl657 

ust/gene_based/hg38_500bp_up_100bp_down_full_tx_v10_clust.genes_vs_motifs.rankings.fea658 

ther], 659 

[https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc_v10_cl660 

ust/gene_based/hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings.fea661 

ther], table [https://resources.aertslab.org/cistarget/motif2tf/motifs-v10nr_clust-nr.hgnc-662 

m0.001-o0.0.tbl], and transcription factor list 663 

[https://resources.aertslab.org/cistarget/tf_lists/allTFs_hg38.txt]. An additional TF list was 664 

downloaded from [http://humantfs.ccbr.utoronto.ca/download/v_1.01/TF_names_v_1.01.txt]. 665 

Source data are provided with this paper. 666 

Code Availability 667 
Custom code used to analyze the snRNA-seq data and datasets generated and/or analyzed in 668 

the current study are available from the corresponding authors upon request or at 669 

https://github.com/HarariLab/APOE-GRN. 670 
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