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(Abstract) 

Background: 

There are no known objective biomarkers for predicting Return to Work (RTW) in ischemic 

stroke survivors. This study aims to explore the predictive utility and define a cut-off value of 

lesion volume on RTW after endovascular treatment (EVT). 

  

Methods: 

We included patients <65 years undergoing EVT at Oslo University Hospital (OUS) between 

January 2017 and May 2019. Employment status was obtained at both baseline and a four-

year follow-up. Stroke lesion volumes were segmented using magnetic resonance imaging 

(MRI) scans 24 hours post EVT. Logistic regression models were conducted to assess the 

impact of lesion volume on RTW-status at follow-up, adjusted for patients’ characteristics, 

stroke related factors and treatment. We calculated the Receiver Operating Characteristic 

curve to determine the optimal lesion volume cut-off. Machine learning (ML) regression 

models were employed to assess the predictive abilities of baseline clinical and imaging 

variables for RTW. 

  

Results: 

Of the 109 individuals treated, 81 (74%) were employed at baseline. Among these, 60 

completed four-year follow-up with MRI available for stroke lesion segmentation and were 

included in the analyses. Mean age at stroke onset was 51.8 years (range 23.5–64.9), 50% 

were female. Median lesion volume was 18 ml (IQR 45-7). After four years, 34 (57%) had 

successfully RTW. The odds for not RTW increased by 5% for every 1 ml increase in lesion 

volume (adjusted odds ratio [aOR], 95% CI, 1.02–1.11], P=0.02). A lesion volume cut-off 
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value of 29 cm3 yielded a sensitivity of 0.91 and specificity of 0.65 for predicting RTW. 

Notably, the most influential feature in the ML model for predicting RTW was lesion volume. 

 

Conclusion: 

Lesion volume was the most robust predictor of RTW four years after EVT. Our findings 

suggest that a cut-off of 29 cm3 is suitable to distinguish between those with high and low 

chance of RTW.  

 

Key words: Imaging Biomarker, Ischemic Stroke, Magnetic Resonance Imaging, Return to 

Work, Prognosis, Follow-Up Studies, Machine Learning, Endovascular Procedures. 

 

Non-standard abbreviations and acronyms: 

AI – Artificial Intelligence 

DWI – Diffusion Weighted Imaging 

EVT – Endovascular treatment 

IVT – Intravenous Thrombolysis 

MCA – Middle Cerebral Artery 

ML – Machine Learning 

MRI – Magnetic Resonance Imaging 

mRS – Modified Rankin Scale 

NIHSS - National Institute of Health Stroke Scale 

NRTW – Not Return to Work 

OR – Odds Ratio 

OSCAR - The Oslo Acute Reperfusion Stroke Study 
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RTW – Return to Work 

mTICI – modified Thrombolysis in Cerebral Ischemia 
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Introduction 

Return to work (RTW) is associated with enhanced well-being and improved quality of life 

for stroke-survivors.1 Stroke imposes a substantial burden on society, and work-related 

issues account for a considerable share of those costs.2,3 In heterogenous stroke 

populations, the reported rates of RTW in working-age adults vary, ranging from 7% to 

81%.4,5 Studies focusing on patients receiving endovascular therapy (EVT) report that 

approximately one out of three achieve RTW within the first year after discharge.6,7 

Several factors have been identified as determinants for successful RTW, with male 

sex and younger age being the most consistent protective factors.8,9 Time since the acute 

incident is also important, as there is a growing number of patients achieving RTW in the 

years following a stroke.8 Other potential prognostic factors for RTW in patients undergoing 

EVT include the addition of intravenous thrombolysis (IVT), successful recanalization 

(Thrombolysis in Cerebral Ischemia (TICI) 2b – 3), medical complications and length of 

hospital stay.7 

The modified Rankin Scale (mRS) and the National Institutes of Health Stroke Scale 

(NIHSS) are key measures of functional post-stroke outcomes and stroke severity, and 

studies indicate that lower mRS and NIHSS scores during the index stay increases the 

likelihood of RTW.6,8,10 None of the factors listed above, individually, are sufficient predictors 

of RTW.11,12 In recent years, lesion volume has emerged as a potential biomarker for 

functional and cognitive outcome,13-15 but its capacity to predict RTW has not been 

investigated. 

We aimed to explore the predictive value of lesion volume for RTW in patients 

undergoing EVT and establish a lesion volume cut-off to guide prognostic expectations. 

Secondary, we aimed to assess the predictive capabilities and influence of clinical and 
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imaging variables on employment status four years post-EVT, employing an interpretable 

machine learning model. 

 

Methods: 

Study sample and design 

This study utilizes data from "The Oslo Acute Reperfusion Stroke Study" (OSCAR, study-ID: 

NCT06220981), a prospective cohort study of consecutive acute ischemic stroke patients 

treated with EVT at Oslo University Hospital (OUH). The OUH is a comprehensive stroke 

center receiving EVT candidates from local stroke units. In this sub-study, all patients 65 

years and younger who underwent EVT between January 1, 2017, and May 9, 2019, were 

included. Follow-up was performed from September 2021 to June 2022. Baseline data were 

collected from the OSCAR study and medical records. We adhered to the STROBE guidelines 

when reporting our findings.16 The first author had access to all data and assumes 

responsibility for its integrity and accuracy of the data analysis. 

 

Imaging acquisition and imaging variables 

Magnetic Resonance Imaging (MRI) scans were acquired 24 hours post EVT, at four different 

Siemens scanners at OUH (Table S1). Lesions were identified as areas with diffusion 

restriction on Diffusion Weighted Images (DWI), indicative of irreversible brain infarction.17 

In two patients without 24-hour imaging, initial admission DWIs were used. Lesion 

segmentation was manually executed using the 'Insight Segmentation and Registration 

Toolkit-Snap' (IKT-Snap) software (v. 4.0.0) (Figure 1).18 Segmentations were performed by 

trained researcher G.B.H and overseen by experienced neuroradiologist M.K.B, who was 

blinded to the outcome and clinical data. 
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Lesion location is grouped to left or right anterior- or posterior circulation, as 

described on the diagnostic CT angiography acquired at admission. Reperfusion grade was 

assessed using the revised modified Treatment In Cerebral Ischemia (mTICI) scoring system 

(score 0-3) by the interventional neuroradiologist during the final Digital Subtraction 

Angiography procedure.19,20 Missing reperfusion scores were retrospectively completed by 

an interventional neuroradiologist blinded for clinical data including outcomes. For analysis, 

mTICI scores were dichotomized, with 3 defined as an “excellent“ outcome.21 

 

Follow-up: 

All patients included at baseline were invited to a four-year follow-up examination. Those 

unable to attend in person were interviewed by telephone to collect basic demographic and 

clinical information. The patients were provided two self-report questionnaires related to 

their mental health and quality of life, including the Hospital Anxiety and Depression Scale 

(HADS) and the EuroQol-5Dimensions-5Levels (EQ-5D-5L).22,23 Fatigue was assessed using a 

nine-point fatigue severity scale (FSS).24 Information regarding adherence to work was 

obtained and “RTW” was defined as part or full-time paid work, or being enlisted as a 

student. Participants who stated that they retired early due to stroke impairments, were 

considered as Not Returned to Work (NRTW). Statistical comparisons between those who 

RTW, did NRTW and “Retired” can be found in Table S2. Information concerning education 

level was collected retrospectively at follow-up. For the analyses, 'primary school' and 'high 

school' were categorized into 'high school', and 'college' and 'university' into 'higher 

education'. 

 

Statistical analysis 
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Traditional statistical analyses were performed using the R (v. 4.3.2) statistical software.25 

Baseline characteristics are presented as number (%), medians and interquartile ranges 

(IQR), means and standard deviations (SD), as well as ranges, as appropriate. We conducted 

two-sided t-tests to analyze continuous variables that followed a normal distribution, while 

the Mann-Whitney U test was used for data with non-normal distribution. For categorical 

variables, Chi-square test and Fischer’s Exact test was used based on observed frequencies 

in the contingency tables. 

To explore the association between lesion volume and RTW, we performed a logistic 

regression analysis with lesion volume as a continuous variable. Results were reported for 

both univariable and multivariable models, with odds ratios (OR) and 95% confidence 

intervals (CI). Variables selected for the univariable logistic regression analysis were based 

on clinical expertise and insights from previous studies. Variables included sex, age, 

education, affected vascular territory, NIHSS on admission and at discharge, mTICI score and 

whether IVT was administered or not.8 In the multivariable logistic regression model, sex, 

age, and education were predefined variables. Other variables were incorporated if they had 

a p-value below 0.2 in univariable analyses and variation inflation factor among variables 

was below 5.26 An interaction analysis between NIHSS and lesion volume was performed. To 

further validate our findings, we conducted the aforementioned logistic regressions, 

normalizing lesion volume to the estimated total intracranial volume, as determined by 

FreeSurfer, version 7.3.2.27 T1 weighted images taken 24 hours post-EVT were used for this 

analysis. 

To establish a lesion volume cut-off, we made a Receiver Operating Characteristic 

(ROC) curve and determined the lesion volume to optimally balance sensitivity and 

specificity using Youden’s index. 
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To enhance the interpretability further, we performed a univariable logistic 

regression analysis, categorizing lesion volume and NIHSS scores at discharge. Lesion 

volumes were classified into small, medium and large (<15 cm3, 15-70 cm3 and >70 cm3), 

based on previously published cut-offs from the ESCAPE-NA1 trial, which looked at stroke 

lesion volume and functional outcome (mRS).14 NIHSS scores were categorized as minor (0-

4), moderate (5-15) and severe (16-42), in line with international guidelines.28 Categorization 

of admission NIHSS scores was not performed due to the minimal number of patients falling 

into the reference category. 

 

Machine learning model 

To explore the predictive properties of a larger set of baseline data using a data-driven 

approach, a machine learning model was developed using python with building blocks from 

scikit-learn.29 A dataset was assembled using domain expertise, comprising 28 baseline 

features (Table S3). While inspecting the dataset we identified some missing values (35/1740 

= 2%), which were imputed with the mean of their respective features. 

To establish the model, we performed a 10-fold cross-validation stratified for 

outcome and sex to increase the robustness of the results. Evaluation metrics included ROC 

and area under the curve (AUC), sensitivity, specificity, and accuracy. We utilized a LASSO 

regularization to perform automatic feature selection.30 Furthermore, we conducted a 

permutation test to assess the statistical significance of the predictive performance of our 

machine learning model compared to chance levels. In this test, we repeatedly shuffled the 

employment outcome variable while keeping the predictors intact. This process was 

repeated 100 times to establish a distribution of baseline performances of models fitted to 

noise, against which the performance of the true model was compared.31 Statistical 
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significance was assessed by evaluating whether the mean AUC achieved by the true model 

was in the 95th percentile of the AUC’s in the baseline distribution, equivalent to a 

significance threshold of 0.05. The ML modelling methodology and reporting of results in 

this study align with published recommendations.32  

 

Ethical approval 

The study was carried out in accordance with the Helsinki Declaration and received approval 

from the regional ethics committee (Regional Committee for Medical Ethics Southeast 

Norway, (REC ID: 152864). Informed consent was obtained from all eligible study 

participants, and for those unable to provide consent, their next-of-kin were approached to 

seek consent on their behalf. 

 

Data availability 

Supporting data for the findings in this study will be made available from the corresponding 

author upon reasonable request. To facilitate replicability, the pre-trained machine learning 

model is made publicly available at 

https://github.com/gislebh/Return_to_Work_after_Stroke. 

 

Results: 

A total of 416 patients underwent EVT, of whom 133 were below 65 years of age at stroke 

onset. Among those employed at baseline, 60 provided consent and were followed up after 

four years, as seen in the flow chart in Figure 2.  

Mean age at baseline was 52 years (SD 9 years, range 23.5 – 64.9). 50% were female. 

Median NIHSS score on admission was 12 (IQR 19-7) and decreased to 3 (IQR 7-1) upon 
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discharge. The median lesion volume within the first 24 hours was 18 ml (IQR 45-7). The 

patient who RTW and had the largest lesion volume showed a volume of 79 cm3, whereas 

the patient who NRTW with the smallest lesion volume had a volume of 6.1 cm3. 

Excellent recanalization was achieved in 21 (35%) of the participants. At the four-year 

follow-up, 34 (57%) participants had RTW and 26 (43%) were NRTW. Characteristics of the 

study population according to RTW are presented in Table 1. Figure 3 shows a box plot of 

lesion volume (cm3), including individual data, based on employment status at follow-up. 

Descriptive statistics of patients lost to follow-up is provided in Table S4. 

 

Prognostic accuracy of Lesion volume on NRTW 

Results from the univariable and multivariable regression analyses are presented in 

table 2. The unadjusted estimates found a substantial and significant increase in the odds of 

NRTW with higher NIHSS at admission (p=0.04) and discharge (p=0.04), as well as higher 

lesion volume, both as a continuous (p<0.01) value and when entered as a categorical 

variable (p<0.01). Higher education (p=0.03) and posterior infarcts (p=0.05) were found as 

protective factors against NRTW. 

After adjusting the model for age, sex, stroke territory, education, IVT, mTICI and 

NIHSS at discharge, lesion volume remained significant (OR 1.05, 95%CI 1.02 to 1.11, p= 

0.02). No significant interaction was observed between NIHSS at discharge and lesion 

volume (p0.9). Furthermore, adjusting for intracranial volume did not alter the results for 

lesion volume. The results are shown in Table S5. 

 

Establishing a prognostic cut-off value for Lesion volume. 
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 In the univariable model, lesion volume alone showed an AUC-ROC of 0.86. The 

optimal cut-off for lesion volume was 29 cm3, yielding a sensitivity of 0.91 and a specificity of 

0.65 for RTW. The positive predictive value for RTW was 78% and the negative predictive 

value was 85%. 

 
 

Machine learning model 

The logistic regression machine learning model, as illustrated in Figure 4, yielded a mean 

AUC of 0.86 (SD = 0.13), demonstrating an accuracy of 75%. The model achieved a sensitivity 

of 0.77 and specificity of 0.72 for identifying subjects who RTW and NRTW, respectively. The 

permutation test saw none of its 100 iterations yield AUCs above 0.86, instead resulting in a 

mean AUC of 0.53 (SD = 0.10). This substantial difference in AUC`s highly suggests that the 

model’s predictive ability significantly outperforms random models. 

Among the features considered in the model, lesion volume (mean OR=4.98) 

measured as a continuous variable, emerged as the most influential factor in predicting the 

outcome. For a comprehensive overview, we have presented the top eight most influential 

factors in Table S6. 
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Discussion 

In this study of working-age adults undergoing EVT for acute ischemic stroke, 

including machine learning, we found lesion volume as an imaging biomarker to be the most 

robust predictor of RTW. Our findings suggest that a cut-off of 29 cm3 is suitable to 

distinguish between those with high and low chance of RTW. To our knowledge, the 

importance of lesion volume and the use of AI to assess clinical variables on RTW have not 

been previously explored. 

The relationship between lesion volume and RTW underscores the critical impact of 

stroke severity on vocational outcomes and highlights its role as a promising biomarker of 

RTW. Furthermore, our analysis of ML modelling demonstrated the potential to anticipate 

RTW outcomes based on lesion volume and other baseline variables, although this warrants 

further validation. The proportion of patients in this study who RTW is consistent with 

findings from other stroke studies.6-8,10,33,34 Education emerged as a protective factor for 

RTW. However, its significance diminished when considered alongside other variables. 

Contrary to previous studies, we identified an association between lesion location and 

RTW,35,36 although significance was not retained in the multivariable model. Nonetheless, a 

more precise exploration of localization could be valuable, as previously demonstrated by 

the concept of strategic locations.37 

Previous research have uncovered the imprecise predictions of clinicians and 

randomness in the selection of individuals for rehabilitation.38-40 ML models offer a potential 

pathway towards a more objective, equitable and personalized stroke follow-up approach, 

hence reducing the undue influence of individual clinician biases. As a contribution to the 

growing field of stroke prediction models, we have made our pre-trained model available for 

download online. An obstacle to utilizing our study’s result in clinical practice is the absence 
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of routine measurement of lesion volume. Looking ahead, the integration of AI-powered 

tools for image analysis holds promise for enhancing lesion volume assessments, also when 

it comes to regular clinical scans, such as those used in our study.41 

Strengths of our study were the well described cohort with extensive clinical and 

radiological measures both at baseline and four-year follow-up. The main limitation of this 

study is the relatively modest sample size. Although the inclusion of diverse patients 

enhances generalizability, particularly to young stroke patients undergoing EVT, caution is 

necessary when extending our findings to broader ischemic stroke populations. 

Furthermore, the applicability of our results to countries with different social security 

systems and rehabilitation facilities than Norway should be approached with care. 

Additionally, several important variables were not addressed in our study, such as 

motivation, job type, income, rehabilitation, and the perception of social support, all of 

which have been established as influential factors in RTW outcomes.8,42 Future research 

could potentially benefit from obtaining the perspective of employers, as their role in 

facilitating RTW is a reasonable hypothesis and deserves investigation. As with other stroke 

prognostic machine learning models so far, another limitation is the lack of a separate test 

set. This diminishes certainty about the model’s generalizability, posing challenges in 

comparing different models and predicting their real-world performance, and is one of the 

reasons for making our pre-trained model available to others. 

In conclusion, our study underscores the role of lesion volume as a predictor of RTW 

after stroke. To our knowledge, this is the first objective imaging biomarker found to be 

associated with RTW. 
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Tables 
 

Table 1: Descriptive characteristics at baseline and follow-up. N = 60 

  
Returned to 
Work  

Not Returned to 
work 

p-
values 

Baseline characteristics N = 34 N = 26 
 Age, in years, mean ± SD; [range] 51 ± 10 [24-64.9] 53 ± 8 [39-64.5] ** 0.42 

Sex, (%) 
  

^ 0.43 

    Female 15 (44%) 15 (58%) 
 Education, (%) 

  

^ 0.05 

    High School  10 (29%) 15 (58%) 
     Higher Education 24 (71%) 11 (42%) 
 pre-mRS, median (IQR); [range] 0 (0, 0); [0-4] 0 (0, 0); [0-1] ° 0.80 

Smoking status*, (%) 
  

^ 0.07 

    Current or previous smoker 10 (30%) 14 (68%) 
     Non-smoker  23 (70%) 10 (42%) 
 Territory, (%) 

  

° 0.03 

    Left Anterior  13 (38%) 12 (46%) 
     Right Anterior  11 (32%) 13 (50%) 
     Posterior  10 (30%) 1 (4%) 
 mTICI, (%) 

  

^ 0.16 

    ≤ 2A 0 (0%) 3 (11%) 
     2B 9 (27%) 8 (31%) 
     2C 10 (29%) 9 (35%) 
     3. 15 (44%) 6 (23%) 
 Intravenous thrombolysis, (%) 

  

^ 0.23 

    Yes  28 (82%) 17 (65%) 
     No  6 (18%) 9 (35%) 
 NIHSS, mean ± SD; median [range] 

       at admission 11 ± 9; 9 [0-39] 16 ± 8; 16 [6-39] ** 0.02 

    at discharge† 3 ± 7; 1 [0-39] 8 ± 7; 5 [0-29] 
** 
<0.01 

Lesion Volume in cm3, mean ± SD; median 
[range] 

15 ± 18; 10.2 [0.1-
79] 

60 ± 51; 41.2 [6.1-
222] 

** 
<0.01 

At follow-up 

Follow up time, in years, mean ± SD; 
[range] 3.7 ± 0.5; [2.8-4.6]  3.9 ± 0.6; [3.0-5.3] ¥ 0.07 

NIHSS, mean ± SD; median [range] 
   

    at three months‡ 0 ± 1; 0 [0-7] 3 ± 4; 1 [0-15] 
** 
<0.01 

    at four years§ 1 ± 1; 0 [0-6] 2 ± 3; 1 [0-9] 
** 
<0.01 

mRS, median (IQR); [range] 
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    at three months∥ 1 (0, 2); [0-3] 2 (1, 3); [0-5] ° 0.01 

    at four years 1 (1, 1); [0-1] 2 (2, 2); [1-4] ° <0.01 

EQ-5D-5L#, mean ± SD; [range] 73 ± 16; [40-97] 59 ± 21; [20-95] ¥ 0.02 

Fatigue at 4 years#, mean ± SD; [range] 3.5 ± 1.4; [1.2-6.2] 4.2 ± 1.4; [1.7-6.6] ¥ 0.09 

HADS 
       Anxiety, at four years#, mean ± SD; 

[range] 4.9 ± 3.8; [0-14] 5.8 ± 4.6; [0-15] ** 0.53 
    Depression, at four years#, mean ± SD; 
[range] 2.4 ± 3.2; [0-12] 4.7 ± 3.7; [0-12] ** 0.02 
SD; Standard Deviation, mRS; modified Rankin Score, mTICI; modified Thrombolysis In 
Cerebral Infarction, NIHSS; National Institutes of Health Stroke Scale, EQ-5D-5L; EuroQol-
5Dimensions-5Levels, FSS; Fatigue Severity Scale, HADS; Hospital Anxiety and Depression 
Scale. Missing: *3, †1, ‡7, §8, ∥1, #16. Statistical test: **Mann-Whitney U test, ¥Two sided T-
test, ^Chi-square test, °Fischer’s exact test. Significant p-values highlighted in bold. 
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Table 2: Logistic regression, association between baseline variables and RTW. Lesion volume and 
NIHSS was treated as continuous variables in the multivariable model. N = 60 

  UNIVARIABLE MULTIVARIABLE 

 
Odds ratio (CI 95%) 

P-
value Odds ratio (CI 95%) 

P-
value 

Female sex 1.73 (0.62 - 4.94) 0.30 4.22 (0.78 - 30.1) 0.12 

Age 1.03 (0.98 - 1.10) 0.29 1.07 (0.95 - 1.22) 0.30 

Education High School ref. 
 

ref. 
 Education Higher 0.31 (0.10 - 0.88) 0.03 0.29 (0.05 - 1.35) 0.13 

Vascular Territory - Left MCA ref. 
 

ref. 
 Vascular Territory - Right MCA 1.28 (0.42 - 3.99) 0.67 0.81 (0.13 - 4.44) 0.81 

Vascular territory - Posterior 0.11 (0.01 - 0.70) 0.05 0.01 (0.00 - 0.68) 0.10 

Thrombolysis 0.40 (0.12 - 1.32) 0.14 0.70 (0.08 - 5.44) 0.73 

mTICI 2.63 (0.87 - 8.70) 0.10 3.99 (0.67 - 33.8) 0.15 

NIHSS at admission 1.07 (1.01 - 1.16) 0.04 
  NIHSS at discharge - continuous 1.10 (1.02 - 1.23) 0.04 1.11 (0.94-1.37) 0.27 

NIHSS at discharge - minor ref. 
   NIHSS at discharge - moderate 7.02 (2.10 - 26.9) < 0.01 

  NIHSS at discharge - severe 8.10 (0.92 - 174) 0.08 
  Lesion Volume (cm3) - continuous 1.05 (1.02 - 1.09) < 0.01 1.05 (1.02 - 1.11) 0.02 

Lesion Volume (cm3) - small ref. 
   Lesion Volume (cm3) - medium 6.90 (1.90 - 29.9) < 0.01 

  Lesion Volume (cm3) - large 57.5 (8.03 - 1222) < 0.01 
  MCA; Middle cerebral Artery, mTICI; modified Thrombolysis In Cerebral Infarction, NIHSS; National 

Institute of Health Stroke Scale. Significant p-values highlighted in bold. Lesion volumes small, medium 
and large (<15 cm3, 15-70 cm3 and >70 cm3). NIHSS at discharge minor (0-4), moderate (5-15) and 
severe (16-42). 
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Figures with figure legends 
 
 
 
 

 
Figure 1. Examples of diffusion weighted images together with its corresponding lesion 
segmentation and categorization. A) Left Middle Cerebral Artery infarct, small lesion 
(volume 6.1 cm3). B) Posterior Cerebral Artery infarct, medium lesion (volume 22.0 cm3). C) 
Right Middle Cerebral Artery infarct, large lesion (volume 94.7 cm3). 
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Figure 2. Flow chart of patient selection with an illustration of enrollment, inclusion, 
exclusion and loss to follow up. 
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Figure 3. Employment status at follow up (≈ 4 years) after stroke and lesion volume at 
baseline, here visualized through a box plot with individual data, including median and 
interquartile range. Green indicate subjects who returned to work, and orange those who 
did not return to work. 
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Figure 4. This figure provides a representation of the ten-fold cross-validation process used 
to validate the predictive performance of the machine learning model on not returning to 
work. It delineates the division into ten unique folds, each consisting of 6 subjects serving as 
the test set in one iteration of the validation process. The performance of the model is 
quantified through area under the curve, calculated as mean of folds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


