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Abstract 23 

Introduction The ability to perform bodily movement varies in ageing men and women. We 24 

investigated whether physical fitness may explain sex differences in daily physical activity 25 

energy expenditure (PAEE) among older people.  26 

Methods A population-based cohort of 75, 80, and 85-year-old men and women (n=409, 62 27 

% women) underwent laboratory-based assessment of walking speed, maximal knee 28 

extension strength, and body fat percentage. Free-living physical activity was assessed as 29 

total PAEE, and light (LPA) and moderate-to-vigorous physical activity (MVPA) using 30 

individually calibrated combined accelerometry and heart rate sensing. Path modelling was 31 

used to examine indirect associations between sex, physical fitness, and physical activity.  32 

Results Men had a more favourable physical fitness profile and higher overall PAEE (mean 33 

34.0 (SD 10.8) kJ/kg/day) than women (28.3 (8.4) kJ/kg/day, p<0.001). The path model for 34 

PAEE explained 33 % of the variance. The direct association of sex on PAEE was non-35 

significant, whereas the association between sex and PAEE through body fat (β=0.20, 36 

p<0.001) and walking speed (β=0.05, p=0.001) were statistically significant. Similarly, the 37 

associations between sex and MVPA through body fat (β=0.11, p=0.002) and walking speed 38 

(β=0.05, p=0.001) were significant, as were the associations between sex and LPA through 39 

body fat (β=0.24, p<0.001) and walking speed (β=0.03, p=0.019). 40 

Conclusion Differences in physical activity between men and women may reflect underlying 41 

differences in cardiorespiratory fitness and adiposity. These results highlight the importance 42 

of maintaining physical fitness to support active living in older adults. 43 
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Introduction 45 

Low physical activity is of concern, especially in older adults, who are at risk for functional 46 

limitations and loss of independence (Westerterp, 2000). The overall volume of physical 47 

activity is typically expressed as daily physical activity energy expenditure (PAEE), which is 48 

accumulated through the engagement of behaviours of different intensities. Wearable sensors, 49 

such as accelerometers and heart rate (HR) sensors, can be used to objectively assess physical 50 

activity and estimate PAEE (Brage et al., 2015; Ceesay et al., 1989). To convert data from 51 

wearables into intensity estimates, often grouped into light, moderate, and vigorous physical 52 

activity, methodological studies with suitable criterion measures and population groups have 53 

been conducted, validating both intensity and volume estimates of activity (Brage et al., 54 

2004; Westgate et al., 2024). The implementation of wearables and the use of an inferential 55 

framework for PAEE estimation allows the evaluation of the joint health associations for 56 

activity volume and intensity as recently demonstrated for mortality in the UK Biobank 57 

(Strain et al., 2020). These prospective studies provide evidence of the health consequences 58 

of different activity behaviour profiles but say little about the determinants of physical 59 

activity, including individual physical characteristics, which decline at an accelerated rate in 60 

older people (Fleg et al., 2005).  61 

Physical fitness is a group of physical characteristics that are defined as the “physiologic 62 

attribute determining a person’s ability to perform muscle-powered work”, whereas physical 63 

activity is bodily movement produced by skeletal muscles that results in energy expenditure 64 

(2018 Physical Activity Guidelines Advisory Committee, 2018). Therefore, instantaneous 65 

PAEE, or intensity, is dependent on the individual capacity to perform muscle-powered work 66 

at any given moment. Physical fitness is a multicomponent characteristic including body 67 

composition, cardiorespiratory fitness, and muscle strength, which are all independently 68 

associated with health (Blair et al., 1996; Jayanama et al., 2022; Li et al., 2018). It is well 69 

known that men have a more favourable body composition, and higher muscle strength and 70 

cardiorespiratory fitness compared to women. The mean difference in cardiorespiratory 71 

fitness between men and women is approximately 1 to 2 METs in older age (Fleg et al., 2005; 72 

Ogawa et al., 1992), which could translate to higher physical activity intensity and volume in 73 

men compared to women. Thus, the previously observed tendency of men to favour vigorous 74 

intensity activities more than women, and women to engage in lower intensity activities more 75 
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often compared to men (Lindsay et al., 2019; Sattelmair et al., 2011)may be by constraint 76 

rather than choice. 77 

The aim of the study was to explore the direct and indirect associations between physical 78 

characteristics and physical activity volume and intensity among older people. More 79 

specifically, we examined how the components of physical fitness (body fat percentage, 80 

walking speed, and muscle strength) may mediate the relationships between sex and physical 81 

activity. We hypothesized that some of the variance in physical activity is explained by 82 

physical fitness rather than sex. 83 

Methods 84 

Participants 85 

The data for the present analyses are from a population-based observational study including 86 

three age cohorts: 75, 80, and 85 years and we have published the study protocol previously 87 

(Rantanen et al., 2018). The personal details such as sex and date of birth, were available in 88 

the sample specifics drawn from the Digital and Population Services Agency 89 

(https://dvv.fi/en). We targeted everyone living independently near the city centre of 90 

Jyväskylä, in Central Finland, who were born during the years specified. The ethical 91 

committee of the Central Finland Health Care District provided a statement on the AGNES 92 

study protocol on the 23rd of August, 2017. Participants were required to provide a written 93 

informed consent.  94 

Of the 2791 people approached, the overall participation rate was 36.6 (Portegijs et al., 2019). 95 

From this sample of 1021 participants (57.3 % women), 910 individuals agreed to participate 96 

in the laboratory assessments and were thus also invited to take part in the device-based 97 

physical activity monitoring in free living (Fig. 1). To those who agreed to wear a thigh-98 

mounted accelerometer (n=495), we additionally offered an electrocardiogram (ECG) 99 

recorder unless the participant had an active implantable medical device such as a heart 100 

pacemaker (n=19). We excluded participants with less than 3 days of wearables data and 101 

were able to obtain combined accelerometry and HR data for 409 participants (61.9 % 102 

women).  103 
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 104 

Fig. 1.  Participant flow chart. Combined wearable sensor data from the AGNES study at 105 

baseline. ACC, accelerometry; ECG, electrocardiogram; PAEE, physical activity energy 106 

expenditure; HR, heart rate. 107 

Physical fitness measurements 108 

Six-minute walk test (6MWT) 109 

We used the 6-minute walk test to assess cardiorespiratory fitness and to individually 110 

calibrate HR to PAEE. The walking test was performed at the research centre on an indoor 111 

20-meter corridor at a self-selected usual pace (Karavirta et al., 2020). Walking speed (in 112 

km/h) was calculated from the total distance walked in six minutes. The participants wore the 113 

same sensors as during the free-living monitoring: a triaxial accelerometer (sampling 114 

continuously at 100 Hz, 13-bit, ±16 g, UKK RM42; UKK Terveyspalvelut Oy, Tampere, 115 

Finland) and an ECG recorder (14-bit, ±16 g, 250 Hz, eMotion Faros 180, Bittium 116 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.24305391doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305391
http://creativecommons.org/licenses/by/4.0/


Corporation, Oulu, Finland). HR was derived from the ECG recordings using a built-in QRS 117 

detection of Kubios HRV Premium 3.2.0 software (Kubios Oy, Kuopio, Finland) that is 118 

based on the Pan-Tompkins algorithm (Pan & Tompkins, 1985). Any artifacts were corrected 119 

using automatic noise detection with manual editing, when necessary. Walking HR was 120 

calculated by averaging the resulting RR intervals (the time interval between two successive 121 

R waves on the ECG) over the last minute of the test and converting to HR in beats per 122 

minute (bpm). Recovery HR after the test was analysed from the RR intervals over 90 123 

seconds, subjected to quadratic regression against recovery time, and solved for 45 seconds, 124 

similar to previous work (Brage et al., 2007; Westgate et al., 2024). For the PAEE estimation, 125 

HR values were expressed above sleeping HR (HRaS) but are reported as absolute values in 126 

the results for readability. 127 

Maximal knee extension strength 128 

Knee extension strength was measured at an angle of 60 degrees from the fully extended leg 129 

towards flexion. Following a practice trial, the test was performed at least three times 130 

allowing one minute rest between trials until no further improvement occurred (Rantanen et 131 

al., 2018). The highest value in newtons normalized to body mass to account for the strength 132 

requirements of transferring the body (Davies & Dalsky, 1997) was recorded as the test 133 

result. The test-retest reliability of the test is excellent; for measurements in 80-year-olds 134 

performed 1–2 weeks apart, the Pearson correlation coefficient was 0.965 (Rantanen et al., 135 

1997). 136 

Adiposity 137 

Multi-frequency bioelectrical impedance measurement (InBody 720, Biospace, Seoul, Korea) 138 

was used to assess adiposity as body fat percentage. Measurements were performed with 139 

participants wearing light clothing standing barefoot on the device platform and holding the 140 

handles in both hands. Physical assessments in the laboratory also included standard 141 

objective anthropometric measurements of height and body mass. 142 

Physical activity monitoring during free-living 143 

Physical activity monitoring took place between a home interview and a laboratory visit, at 144 

which the wearable sensors were attached and removed, respectively. The thigh-worn triaxial 145 

accelerometer was taped on by a research assistant to the anterior aspect of the mid-thigh of 146 

the dominant leg, and the ECG recorder was attached with an adhesive strip that included two 147 

electrodes 12 centimetres apart. The strip was attached either on the sternum or diagonally on 148 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.24305391doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305391
http://creativecommons.org/licenses/by/4.0/


the left side of the chest under the breast to ensure comfortable wear depending on the 149 

anatomy of the participant. Both monitors were covered with a self-adhesive film for 150 

waterproofing to enable constant wear including during showering. However, swimming or 151 

bathing was discouraged during the monitoring period. The electrode and adhesives were 152 

replaced once in the middle of the monitoring period by a research assistant. 153 

Accelerometry and ECG signal processing 154 

Raw acceleration data were calibrated to local gravity, based on the principle described 155 

elsewhere (van Hees et al., 2014). However, we deviated slightly from this procedure by 156 

including only gain and offset in the optimization procedure and utilizing the Levenberg-157 

Marquardt algorithm in the iterative minimization of the error function (Karavirta et al., 158 

2020). From resulting gravity-calibrated acceleration values, mean amplitude deviation 159 

(MAD = 1/n *∑ |rk – r|) was calculated from the vector magnitude (Euclidian norm) of the 160 

resultant acceleration (√X2+Y2+Z2) in nonoverlapping 5-second epochs (Vähä-Ypyä et al., 161 

2015). This activity-related acceleration metric is robust to residual calibration error through 162 

the subtraction operation. MAD was then resampled to 10-second epochs to match the 10-163 

second averaging of the HR time series. The data were visually checked day-by-day to ensure 164 

that only days with complete 24-hour data without non-wear were included in the subsequent 165 

analysis. Data of 11 participants owing to either loss of monitor (n�=�2), technical error 166 

(n�=�1), or data availability for less than three full days (n�=�8) were excluded (Fig.1).  167 

Free-living ECG recordings were analysed with commercial medically certified Awario 168 

arrhythmia analysis algorithms (Awario, Heart2Save, Kuopio, Finland) (Santala et al., 2022). 169 

The algorithm detects and removes noisy segments of the ECG, detects the QRS complexes, 170 

and estimates the average HR in a 10-second sliding time window from the analysable parts 171 

of the ECG. Participants with persistent atrial fibrillation throughout the recording were 172 

excluded from further analyses (n=35, Fig. 1). Additionally, one outlier was excluded due to 173 

unreliable HR resulting in a PAEE estimate more than 3 SD above the sample mean. 174 

Estimation of physical activity energy expenditure 175 

PAEE was estimated from the 10-second epoch time series of MAD and HR separately, and 176 

then combined in a branched equation model (Brage et al., 2004). A linear regression 177 

equation for estimating instantaneous PAEE (intensity) from MAD was established using 178 

treadmill walking in a separate dataset of 12 older participants (methods described in 179 

Supplement 1): 180 
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PAEE (J/kg/min) = 295.3 * MAD + 90.8    (1) 181 

The linear equation was used for all accelerometry epochs where MAD was above a flex 182 

movement point (Brage et al., 2007). Flex acceleration was defined as the group mean 183 

acceleration during the slowest speed of the treadmill walking (1.5 km/h) which is almost 184 

equal to the previously used flex point defined as 50 % of the acceleration measured during 185 

walking at 3.2 km/h (Brage et al., 2007). Between the flex point and zero acceleration (the 186 

lowest recorded MAD during free living), PAEE was extrapolated linearly between PAEE at 187 

the flex point and the origin of 0 g, 0 J/kg/min (Supplement 1, Fig.S1.1).  188 

From the HR time-series data, PAEE was estimated using an individual calibration equation. 189 

Individual variation in the relationship between HR and energy expenditure was captured 190 

using a novel calibration method based on a self-paced walking test (Westgate et al., 2024). 191 

The method can be used to individually determine the linear relationship between HR and 192 

PAEE, which can then be used to compute PAEE at any HR level as follows: 193 

PAEEij = βi * HRaSij + αi,      (2) 194 

where PAEEij and HRaSij are physical activity energy expenditure (J/kg/min) and heart rate 195 

(bpm above sleeping heart rate) for participant i for epoch j. βi and αi are the slope and 196 

intercept of the linear regression equation for participant i. 197 

For calculating the individual slope and intercept of the linear equation, we computed one 198 

more parameter from the 6-minute walk test in addition to walking and recovery HR: energy 199 

pulse, which was defined as the average HR above sleep divided by the energy cost of 200 

walking using a previously validated equation (Ludlow & Weyand, 2016): 201 

PAEE walk (J/kg/min) = 20.35 * (3.85+5.97*walk speed2/height),  (3) 202 

where 20.35 is the caloric equivalent of oxygen in J/ml O2 (Consolazio et al., 1963), walk 203 

speed is in m/s, and height is in m. Energy pulse was further transformed using a natural 204 

logarithm (ln EP). We used the combination of the simple and complex equations by 205 

Westgate and colleagues (Westgate et al., 2024) with an average weighting (factor 0.5) to 206 

account for beta-blocker use and sex but to avoid parameter overfitting: 207 

βi = 0.5*(5.67 + 5.82) + 0.5*(0.767 + 0.513)*ln EP + 0.5*(0+0.572)*sex (4) 208 
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αi = –0.5*(305 + 311) + 155*lnEP – 0.5*(1.45+1.50)*HRaSrec – 0.5*(0 + 0.4)*sex 209 

+ 0.5*(0 + 164)*beta-blocker – 0.5*(0 + 69)*lnEP *beta-blocker, 210 

where i indicates participant i, sex was coded 0=woman and 1=man, and beta-blocker use 211 

0=no and 1=yes. HRaSrec is recovery heart rate 45 seconds after the walking test above 212 

sleeping HR. 213 

The individual slope βi and intercept αi were used to estimate PAEE when HR was at least 5 214 

bpm above flex HR. Flex HR is a theoretical deflection point above which HR is linearly 215 

associated with PAEE and is classically defined as “the mean of the highest HR during rest 216 

and the lowest HR during the lightest imposed exercise” (Ceesay et al., 1989). Below this 217 

point, PAEE was interpolated to 0 J/kg/min at resting HR, since at low HR levels, HR can 218 

fluctuate due to other factors than physical activity (Brage et al., 2007; Westgate et al., 2024). 219 

Flex HR was individually estimated from the midpoint between the HR corresponding to 220 

PAEE at the slowest walking speed of our treadmill protocol (108 J/kg/min at 1.5 km/h, 221 

Supplement 1) and resting HR determined as 10 bpm above sleeping HR. For participants in 222 

whom we were unable to extract valid HR from the walking test (n=64, Fig.1), we used a 223 

group calibration equation based on all participants in the study with valid calibration whilst 224 

accounting for age, sex, beta blockage, and sleeping HR: 225 

PAEEj = (7.23 – 0.00878*age + 0.359*sex – 0.000175*HRsleep + 0.0671*beta-226 

blocker)*HRaSj – 2.10*age + 18.0*sex – 0.0903*HRsleep + 59.9*beta-blocker –  227 

4.27,        (5) 228 

where HRaSj is HR in epoch j expressed as above sleeping HR. In the group-calibrated 229 

subsample, flex HR (above sleep) was predicted from sleeping HR: 0.37 * sleeping HR - 2.5 230 

+ 5 (Brage et al., 2007). Sleeping HR was defined as the median of the 10th lowest HR 231 

observed during sleep across multiple 24-hour periods (Brage et al., 2004).  232 

Accelerometry and HR-based PAEE time series were combined using a branched equation 233 

modelling (Brage et al., 2004). In essence, the model gives a larger weight for accelerometry-234 

based PAEE estimation when acceleration and HR are low (due to the known fluctuation in 235 

HR at low levels regardless of physical activity), and a larger weight for HR when it is above 236 

the flex point and accompanied by physical movement, implemented as described elsewhere 237 
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(Brage et al., 2015). In addition, whenever HR was not available due to noise or transient 238 

arrhythmia in the ECG signal, acceleration-PAEE was used. HR availability is reported as a 239 

percentage of the accelerometer wear time. 240 

In addition to overall PAEE, we calculated PAEE at moderate-to-vigorous (MVPA, 2–5 net 241 

METs) and light intensity (LPA, 0.5–2 net METs) as minutes and proportions of the overall 242 

PAEE. MVPA was also expressed in MET-minutes. The distribution of PAEE was 243 

additionally calculated in fine-grained intensity bins of 0.5 to 1.0 METs each. One MET was 244 

defined according to the standard of 3.5 ml/kg/min (Ainsworth et al., 2011) and converted to 245 

J/kg/min using 20.35 J/ml (Consolazio et al., 1963), resulting in a value of 71 J/min/kg.  246 

Covariates 247 

Age, duration of education, chronic conditions, beta-blocker use, smoking, accelerometer 248 

wear time, and HR availability as a percentage of the accelerometer wear time were tested as 249 

potential covariates. The duration of education (years) and the total number of self-reported 250 

physician-diagnosed chronic conditions were self-reported during the home interview 251 

(Rantanen et al., 2018). Participants reported their current medication in a postal 252 

questionnaire, and beta-blocker medication was identified (yes/no) based on the ATC 253 

(Anatomical Therapeutic Chemical) code. Smoking was self-reported as never, past, or 254 

current, and dichotomously reclassified as never or past/present.  255 

Statistical analyses 256 

Group values are means followed by standard deviations (SD). The differences in participant 257 

characteristics and physical activity between the sexes were tested using an independent-258 

samples t-test and Cohen’s d for effect sizes. Cross-tabulation and chi-squared tests were 259 

used for categorical variables. Bivariate associations among components of physical fitness 260 

and physical activity, stratified by sex, were analysed using Pearson’s correlation. Path 261 

modelling was conducted to examine whether the components of physical fitness (body fat, 262 

walking speed, and muscle strength) mediate the relationships between sex and physical 263 

activity. The model is structured considering the previously observed heterogeneity of 264 

physical fitness within sexes which suggests that stratification by sex alone may not account 265 

for the individual variance in physical activity. Maximum likelihood robust (MLR) estimator 266 

was used to obtain parameter estimates supposing missing values to be missing at random 267 

(MAR). The covariance coverage was 0.968 at minimum. In separate models, a component of 268 

physical activity (i.e., overall PAEE, MVPA, or LPA) was an outcome and sex was an 269 
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explanatory variable. All three physical fitness components were added simultaneously to the 270 

models to test the potential mediator effect, and they were allowed to correlate with each 271 

other. Each component of physical fitness and physical activity was adjusted for age, duration 272 

of education, and number of chronic conditions. Additionally (or based on modification 273 

indexes), age was allowed to correlate with the number of chronic conditions and the duration 274 

of education. In the final models, only statistically significant associations were included. 275 

Chi-square (χ2), root mean squared error of approximation (RMSEA, <0.06), comparative fit 276 

index (CFI, >0.95), Tucker-Lewis Index (TLI, >0.95), standardized root mean square residual 277 

(SRMR <0.08) are reported as indices of model fit. 278 

As a sensitivity analysis and to enhance the applicability of the present results to studies that 279 

use an accelerometer only, path modelling was also performed for accelerometry-based 280 

PAEE without HR sensing. Statistical significance was set at p<0.05. Analysis was conducted 281 

using IBM SPSS Statistics 28.0.1.1 and Mplus version 8.6 (Muthén & Muthén, 2017).  282 

Results 283 

Men and women in the present sample did not significantly differ in terms of age, the number 284 

of chronic conditions, duration of education, or beta-blocker use (table 1). As expected, men 285 

had larger body size with lower body fat percentage compared to women. Muscle strength 286 

and walking speed were higher in men. Women had higher HR during sleep, self-paced 287 

walking, and recovery after the walk compared to men. 288 

Table 1. AGNES study participant characteristics. 289 

 

Women 
(n=253) 

Men 
(n=156) 

Total 
(n=409) 

 

Mean SD Mean SD Mean SD p (sex) 

Age 78.2 3.4 78.2 3.2 78.2 3.3 0.985 

Body height (m) 1.58 0.05 1.72 0.06 1.64 0.09 <0.001 

Body mass (kg) 70.1 11.8 79.1 11.3 73.5 12.4 <0.001 

Fat Free Mass (kg) 42.1 4.5 57.2 6.9 47.9 9.2 <0.001 

Body Fat (%) 39.0 7.1 27.0 6.7 34.5 9.1 <0.001 

Chronic conditions (count) 3.0 1.8 2.7 1.8 2.9 1.8 0.17 

Education (years) 11.6 4.0 12.1 4.4 11.8 4.2 0.31 

Muscle strength (N/kg) 4.23 1.23 5.70 1.45 4.78 1.50 <0.001 
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Walk Speed (km/h) 4.13 0.79 4.45 0.76 4.25 0.79 <0.001 

Walk EE estim. (net stdMET) 2.57 0.52 2.65 0.50 2.60 0.51 0.10 

HR walk (bpm) 104.9 15.3 98.6 16.0 102.5 15.8 <0.001 

HR rec (bpm) 88.8 15.0 84.4 14.6 87.1 15.0 0.007 

HR sleep (bpm) 52.5 6.7 48.9 6.5 51.2 6.8 <0.001 

 n (%) n (%) n (%)  

Past or present smoking (yes) 35 13.8 67 43.2 102 25.0 <0.001 

Betablocker use (yes) 91 36.0 45 28.8 136 33.3 0.138 

EE estim., estimated energy expenditure; HR, heart rate; rec; recovery 290 

Figure 2 presents overall PAEE stratified by age and sex, showing inverse associations for 291 

age in both sexes. The allocation of PAEE to LPA and MVPA as energy expenditure, 292 

proportion, and minutes per day are presented in Table 2. Approximately half of the daily 293 

PAEE was spent in light-intensity activities in both men and women (p=0.44), while the 294 

contribution of activities of at least moderate intensity was 28% in men and 23% in women 295 

(p<0.001). All the other indicators of daily physical activity were also higher in men 296 

compared to women (p<0.001). The effect size of sex on PAEE varied across the intensity 297 

spectrum ranging from 0.25 to 0.56, being largest at 1.5-2.0 METs (Fig.3). PAEE, MVPA, 298 

and LPA were significantly associated with body fat percentage, walking speed, and 299 

muscular strength in both men and women (Table 3). 300 

 301 
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Fig 2. A boxplot of the median (±first and third quartile with lower and upper adjacent 302 

values) of daily physical activity energy expenditure stratified by age group and sex (women 303 

in orange, men in blue). 304 

 305 

Table 2. Physical activity metrics stratified by sex. 306 

 
Women Men Total  

Mean SD Mean SD Mean SD p (sex) 

PAEE (kJ/kg/day) 28.3 8.4 34.0 10.8 30.5 9.8 <0.001 

PAEE from MVPA (kJ/kg/day) 7.1 5.7 10.5 7.5 8.4 6.6 <0.001 

PAEE from MVPA (%) 22.7 12.5 28.0 13.1 24.7 13.0 <0.001 

PAEE from LPA (kJ/kg/day) 14.1 4.8 16.6 5.4 15.1 5.2 <0.001 

PAEE from LPA (%) 50.0 8.7 49.3 8.5 49.7 8.6 0.44 

LPA (min/day) 184 59 211 66 194 63 <0.001 

MVPA (min/day) 37 27 52 32 43 30 <0.001 

MVPA (min/week) 260 187 364 227 299 209 <0.001 

MVPA (net stdMET mins/week) 703 556 1035 741 829 652 <0.001 

Wear time (days) 7.2 1.1 7.1 1.2 7.1 1.1 0.56 

HR availability (%) 74.8 24.4 74.1 23.8 74.5 24.1 0.78 

PAEE, physical activity energy expenditure; MVPA, moderate-to-vigorous physical activity; 307 

LPA, light physical activity; stdMET, standard metabolic equivalent (3.5 ml/kg/min) 308 
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 309 

Fig.3. Daily accumulation of physical activity energy expenditure (PAEE, mean ± 95 % CI) 310 

in men and women at different intensity levels expressed as standard metabolic equivalents 311 

above the resting level (net METs). Note, bin size differences below and above 2 net MET. 312 

Table 3. Pearson’s correlation coefficients between physical fitness and activity stratified by 313 

sex. 314 

Women 
PAEE 

(kJ/kg/day) 
PAEE from MVPA 

(kJ/kg/day) 
PAEE from LPA 

(kJ/kg/day) 

Body Fat (%) r -0.429 -0.323 -0.381 
p <0.001 <0.001 <0.001 

Walk speed (km/h) r 0.445 0.425 0.282 
p <0.001 <0.001 <0.001 

Muscle strength (N/kg) r 0.401 0.401 0.224 
p <0.001 <0.001 <0.001 

Men    
Body Fat (%) r -0.414 -0.341 -0.371 

p <0.001 <0.001 <0.001 
Walk speed (km/h) r 0.454 0.440 0.302 

p <0.001 <0.001 <0.001 
Muscle strength (N/kg) r 0.275 0.253 0.187 

p 0.001 0.002 0.021 
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Sex had a bivariate association with overall PAEE (β=0.28; 95% CI 0.19-0.37; p<0.001), 315 

LPA (0.23; 0.14-0.33; p<0.001), and MVPA (0.25; 0.15-0.34; p<0.001). Results of the path 316 

model further indicated that men had a lower percentage of body fat than women but faster 317 

walking speed and higher maximal strength (Fig.4). All associations of the path model are 318 

presented in Supplementary file 2, Table S2.1. Of the physical fitness components, higher 319 

body fat percentage was negatively and higher walking speed positively associated with 320 

PAEE and MVPA while the associations of maximal strength with PAEE at different 321 

intensities were not significant. The direct effect of sex on PAEE at different intensities 322 

attenuated to non-significant.  323 

The indirect effects from sex to PAEE through body fat (β=0.20, p<0.001) and walking speed 324 

(β=0.05, p=0.001) were statistically significant. The model explained 33.3 % of the variance 325 

in PAEE, and the model fit was good (χ2(9)=17.147, p=0.047, RMSEA 0.047, CFI 0.989, 326 

TLI 0.974, SRMR 0.047). Similarly, the indirect effects from sex to MVPA (Supplementary 327 

file 3 Fig.S3.1; Table S2.1) and from sex to LPA (Fig.S3.2; Table S2.1) through body fat and 328 

walking speed were statistically significant, and the models explained 27.2 % of the variance 329 

in MVPA and 21.1 % of the variance in LPA. Considering covariates, the number of chronic 330 

conditions was negatively related to all physical activity variables, walking speed, and muscle 331 

strength but positively associated with body fat. Duration of education was positively 332 

associated with walking speed and negatively with age, and the number of chronic conditions 333 

was positively associated with age.  334 

In the sensitivity analysis where only accelerometry was used (Table S2.2; Fig.S3.3), all 335 

indirect effects from sex to accelerometry-based PAEE through the physical fitness 336 

components were significant including muscle strength: body fat (β=0.16, p<0.001), walking 337 

speed (β=0.05, p=0.002), and muscle strength (β=0.05, p=0.042) explaining 30.6 % of the 338 

variance in accelerometry-based PAEE (χ2(9)=16.075, p=.065, RMSEA 0.044, CFI 0.990, 339 

TLI 0.976, SRMR 0.045). 340 
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 341 

Fig.4. Standardized beta coefficients (with 95% confidence intervals) from path model 342 

testing factors describing physical fitness (body fat percentage, walking speed, and muscle 343 

strength) as mediators in the relationships between sex and physical activity energy 344 

expenditure (PAEE, *p≤0.05, **p≤0.01, ***p≤0.001). 345 

Discussion 346 

In this study, we investigated the physical determinants of PAEE in older Finnish men and 347 

women using combined accelerometry and heart rate sensing. The PAEE component from 348 

accelerometry was based on incremental walking data of a similar age group, and the PAEE 349 

component from heart rate was individually calibrated using a novel method based on self-350 

paced submaximal walking. This is the first time the self-paced walking calibration was 351 

applied to older people, for whom it is a feasible method due to their heterogeneous 352 

functional ability. We observed approximately 20 % higher PAEE among older men 353 

compared to women, and our path analysis suggests this difference is largely explained by 354 

men’s lower body fat percentage and higher walking speed. Body fat percentage was an 355 

important contributor to LPA, whereas walking speed was the most important fitness 356 

component of MVPA. The results illustrate the intertwined association between physical 357 

fitness and physical activity in the context of ageing. 358 

Previous studies have reported similar differences between younger men and women. In the 359 

Fenland study including the age range of 29 – 64 years, higher overall PAEE was observed in 360 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.24305391doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305391
http://creativecommons.org/licenses/by/4.0/


men (59 (SD 23) kJ/kg/day) compared to women (50 (20) kJ/kg/day) (Lindsay et al., 2019). 361 

Schrack et al. quantified physical activity both in absolute and relative terms and concluded, 362 

that based on the absolute activity counts women appeared less active, whereas in relative 363 

terms (percentage of HR reserve) women were less sedentary and engaged in more light and 364 

moderate activity compared to men (Schrack et al., 2018). They also observed that walking 365 

speed over 400 m was lower in the tertile with the lowest agreement between absolute and 366 

relative physical activity, which indirectly suggests that slow walking speed may be a 367 

determinant of the lower absolute volume of activity of a person who engages in activities at 368 

their own comfortable pace. Thus, the chosen methodology affects the observed difference 369 

between the sexes, even though the contribution of the distinct methodology for relative and 370 

absolute intensity quantification may also play a role (Schrack et al., 2018).  371 

The majority of physical activity of older people is composed of walking, either incidental or 372 

planned. Therefore, the intensity at which people walk in their daily lives may have a major 373 

impact on the accumulation of MVPA. It can be inferred from the present and previous 374 

studies, that the preferred intensity of walking may be at either side of the common MVPA 375 

cut point of 3 METs (i.e. 2 net METs) (Rejeski et al., 2016; Schrack et al., 2012). In the 376 

present sample of older adults, the average walking intensity in the laboratory test was 2.6 377 

(SD 0.5) net METs varying from 1.2 to 4.2 METs. Comparable walking intensity has also 378 

been reported previously when oxygen uptake was measured at “usual comfortable pace” in a 379 

diverse age group of 30–100 years. They walked on average at 13.0 (SD 2.8) ml/kg/min, 380 

which equals 2.7 standard net METs (Schrack et al., 2012). Even though the preferred speed 381 

may be higher in the laboratory than in a free-living environment (Takayanagi et al., 2019), 382 

those with lower walking speed in the laboratory are probably less likely to exceed the 383 

moderate intensity cut point while walking in free-living. For LPA, an even more important 384 

contributor was body fat percentage. This may be explained by the differential metabolic 385 

contributions of muscle and fat tissue on energy expenditure during physical activity. PAEE 386 

is generally expressed relative to total body mass, as was the case also in this study, which 387 

means that individuals with higher body fat percentage have less muscle mass for generating 388 

bodily movement, and more fat mass to carry during weight-bearing activities. The 389 

contribution of LPA was large, approximately half of the total PAEE, which may explain the 390 

importance of body composition for LPA. 391 

We used combined sensing of accelerometry and HR for PAEE assessment to take advantage 392 

of both methods: 1) the well-established linear relationship between HR and energy 393 
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expenditure across activity modes at moderate-to-vigorous intensities (Ceesay et al., 1989), 394 

and 2) the capability of thigh-mounted accelerometry to separate movement from non-395 

movement at low intensities (Vähä-Ypyä et al., 2015), where the correlation between HR and 396 

PAEE is low (Ceesay et al., 1989). It has previously been shown that locomotion-based 397 

accelerometry models of PAEE may underestimate PAEE in free-living whereas individually 398 

calibrated HR models agree with doubly-labelled water measures of PAEE on average with 399 

high individual variance, and combined estimates being unbiased and with lower error 400 

variation (Brage et al., 2015). That said, correlations between combined sensing estimates 401 

and accelerometry-only estimates are relatively high, and our sensitivity analysis showed that 402 

the present findings are also applicable to accelerometry methodology.  Therefore, the 403 

potential role of physical fitness as a determinant of PAEE is a relevant consideration to all 404 

studies that use PAEE estimation for quantifying volume or the intensity distribution of 405 

physical activity. Therefore, we encourage the inclusion of both fitness and physical activity 406 

assessments in epidemiological studies. 407 

The strengths of the current study include the population-based sample of older men and 408 

women, which was reasonably balanced in terms of the sex of the participants including 61.9 409 

% of women, which is comparable to the national proportion of women in this age group 410 

(61.3 %) in 2017 (Statistics Finland, 2023). The subsample was somewhat more physically 411 

active based on self-report than those who did not volunteer for the device-based monitoring. 412 

The subsample also had a faster walking speed (Portegijs et al., 2019). Therefore, we cannot 413 

generalise our findings to represent the whole population of older people, which is an 414 

important but not unusual limitation when examining this age group.  415 

To conclude, we observed higher volume and intensity of physical activity in a population-416 

based sample of older men compared to women, a difference which was largely determined 417 

by sex differences in adiposity and cardiorespiratory fitness. The mediation effect of muscle 418 

strength was weaker and significant only when PAEE was assessed using accelerometry only. 419 

Our findings stress the importance of keeping fit and maintaining a healthy weight in order to 420 

support active living in older adults. 421 
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