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ABSTRACT 
Introduction 
During the COVID-19 pandemic, SARS-CoV-2 antigen rapid detection tests (RDTs) emerged as 
point-of-care diagnostics in addition to the RT-qPCR as the gold standard for SARS-CoV-2 
diagnostics. Facing the course of the COVID-19 pandemic to an endemic characterised by several 
SARS-CoV-2 virus variants of concern (VOC) and an increasing public COVID-19 vaccination rate 
the aim of the study was to investigate the long-term test performance of SARS-CoV-2 RDT in large-
scale, clinical screening use during and its influencing factors, above all SARS-CoV-2 VOC and 
COVID-19 vaccination. 

Methods 
In a prospective performance assessment conducted at a single centre tertiary care hospital, RDTs 
from three manufacturers (NADAL®, Panbio™, MEDsan®) were compared to RT-qPCR among 
individuals aged ≥ 6 month. The evaluation involved the determination of standardised viral load from 
oropharyngeal swabs as well as the evaluation of their influencing factors, especially the COVID-19 
vaccination, for detecting SARS-CoV-2 in a clinical point-of-care environment spanning from 12 
November 2020 to 30 June 2023 among patients, staff, and visitors of the hospital. 

Results 
Among the 78,798 RDT/RT-qPCR tandems analysed, 2,016 (2.6%) tandems tested positive for 
SARS-CoV-2, with an overall sensitivity of 34.5% (95% CI 32.4-36.6%). A logistic regression revealed 
that typical COVID-19 symptoms significantly declined over the course of the study and throughout 
the COVID-19 pandemic, and that among the vaccinated, significantly fewer presented with an 
infection exhibiting typical symptoms. The employed lasso regression model indicated that only higher 
viral load and typical COVID-19 symptoms significantly increase the likelihood of a positive RDT result 
in the case of a SARS-CoV-2 infection directly.  

Conclusion 
Our findings indicate that only viral load and COVID-19 symptoms directly influence RDT performance 
while the obtained effects of COVID-19 vaccination and Omicron VOC both reducing RDT 
performance were mediated by these two factors. RDTs remain an adequate diagnostic tool for 
detecting SARS-CoV-2 in individuals showing respiratory symptoms. RDTs show promise beyond 
SARS-CoV-2, proving adaptable for detecting other pathogens like Influenza and RSV, highlighting 
their ongoing importance in infection control and prevention efforts. 
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1 Introduction 
Since 2020, the COVID-19 pandemic has posed far-reaching global challenges,[1] new therapies,[2] 
prevention strategies, and diagnostic concepts have been developed in a very short space of time 
and repeatedly adapted to and influenced by the dynamics of the pandemic.[3]  

The acute phase of the pandemic has now passed, and COVID-19 is in transition as a seasonal 
pathogen of acute respiratory diseases and is now a new player alongside Influenza and RSV.[4-8] 

In the acute phase of the COVID-19 pandemic in particular, an important pandemic management 
strategy, alongside the development of therapies and vaccines and the establishment of public 
measures such as contact restrictions, was the timely, rapid and reliable diagnosis of SARS-CoV-2 
as the central key to breaking chains of infection.[9-12] 

As a well-established, very precise method, reverse transcription polymerase chain reaction (RT-
qPCR) has been the gold standard for diagnostics since the beginning of the pandemic.[9] For a more 
rapid, cost-effective and point-of-care diagnostics, SARS-CoV-2 rapid tests (RDT) were made 
available as lateral flow immunoassays just a few months after the beginning of the pandemic, with 
cost-effective point-of-care application without infrastructural requirements and rapid results.[13]  

To date, a large body of evidence has demonstrated in detail that the sensitivity and specificity of 
RDTs can be far below the manufacturer's specifications and do not correspond to the gold standard 
of RT-qPCR although the majority of the evidence to date does not cover the entire COVID-19 
pandemic, analyses only small, selective test collectives or does not evaluate RDTs in screening 
use.[14] The following correlations have already been proven in the evidence to date as decisive 
factors influencing test performance: the presence of typical COVID-19 symptoms and high viral load 
correlate positively with high sensitivity values of RDTs.[13, 15-21] 

However, since the establishment of RDTs in COVID-19 diagnostics, many circumstances in the test 
environment have changed which requires the re-evaluation of RDT performance under this current 
conditions.[22] With the course of the pandemic, the infestation of society and the availability of 
COVID-19 vaccines, there is now a basic immunised test collective.[23, 24] As the various SARS-
CoV-2 virus variants of concern (VOC) progressed, the initial wild-type SARS-CoV-2 was 
chronologically displaced first by the Alpha and Delta VOC and ultimately by the Omicron VOC with 
its various sublines, which paved the way from pandemic to endemic with lower morbidity and a 
population that was immunised in parallel by previous infections and the available vaccinations.[25, 
26] 

Evidence to date is heterogeneous that the Omicron VOC might reduce the test performance of 
RDTs.[16, 19, 21, 27-30] Data from an interim analysis of the study suggested that any deterioration 
in RDT test performance is not attributable to VOC itself but rather to the change in symptomatology 
mediated by the VOC throughout the course of the COVID-19 pandemic.[18] Further, regarding the 
potential influence of COVID-19 vaccination on RDT performance only very few studies have so far 
considered the aspect of COVID-19 vaccination revealing no influence of COVID-19 vaccination on 
RDT performance.[19, 29, 31, 32] A preprint from 2022, not yet published in the peer-review process, 
discussed the hypothesis based on their results that the observed decrease in RDT sensitivity in 
clinical use, despite higher viral loads, is attributable to increased immunity among the study 
population due to COVID-19 vaccinations and previous SARS-CoV-2 infections.[32] In contrast, the 
two previously published studies that consider the potential influence of COVID-19 vaccination status 
on the large-scale clinical RDT test performance factor do not observe any impact of vaccination 
status on RDT performance. However, they only cover the pandemic period up to early 2022. [19, 29] 

This is the first study analysing the large-scale test performance and its influencing factors of RDTs 
in clinical screening use, including the role of COVID-19 vaccination and SARS-CoV-2 VOC, in the 
longitudinal course of the COVID-19 pandemic until its endemic transition in 2023.  
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2 Methods 
2.1 Test enrolment 
As part of the strategies implemented to prevent and mitigate the spread of SARS-CoV-2 within the 
hospital setting in the beginning of the COVID-19 pandemic, a tandem RDT/RT-qPCR testing was 
employed at a German 1,438-bed tertiary care hospital from 12 November 2020 to hinder the 
transmission of nosocomial SARS-CoV-2 chains starting.  

From 12 November 2020 to 24 November 2022, mandatory entry screening, i.e., RDT diagnostics 
upon admission, was conducted for patients and inpatient companions in all critically assessed areas 
of the hospital, such as emergency departments and delivery rooms, based on the prevailing evidence 
and pandemic situation. During periods of high COVID-19 incidence, from 1 February 2021, to 30 
June 2021, and from 4 November 2021, to 24 November 2022, this mandatory entry screening was 
extended to all areas of the hospital, resulting in a universal RDT entry screening.[23, 25] 

In addition, since 12 November 2020, employees with COVID-19 typical symptoms or contact with a 
SARS-CoV-2 positive person were examined using RDT/RT-qPCR test tandem at the central testing 
center of the hospital. The documented RDT/RT-qPCR tandems were also included in the study. 

From 25 November 2022, mandatory entry screening at the hospital, involving both RDT and RT-
qPCR, was discontinued due to the general easing of the pandemic situation, and the sole use of RT-
qPCR continued. The use of additional RDTs or RDTs without parallel RT-qPCR for screening was 
subsequently implemented and documented in risk-adapted, decentral concepts customised for their 
individual characteristics. 

On 19 May 2023, with the complete transition from pandemic to endemic, this cross-clinic, 
individualised mandatory RDT deployment strategy and further diagnostic continuation were voluntary 
in individual clinics until 30 June 2023, which remarks the end of the study period (Supplementary 
Figure 1).[23, 25, 33] 

2.2 Data collection 
The following inclusion criteria were defined for considering a paired RDT / RT-qPCR result for the 
analysis: 

- documented RDT with parallel RT-qPCR 
- valid test result of the RDT (presence of a control line, no interference lines) 
- age ≥ six month  

This age limit was deliberately chosen against the background of the EMA's vaccine authorisations 
for individuals aged six months and older in the course of the study in order to be able to analyse the 
influence of COVID-19 vaccination on RDT performance.[34-37] 

Documented RDTs were excluded from data analysis in the following situations: 
- multiple testing (more than one RDT per day and person): only the first chronologically 

performed RDT per day and person were considered. Patients meeting the inclusion criteria 
on multiple days during the study period underwent testing and inclusion once per visit. 

- recent SARS-CoV-2 infections and subsequent deisolation were excluded from the analysis 
due to the potential persistence of RT-qPCR positivity unrelated to the risk of viral 
transmission.[38] 

The sampling for RDT/RT-qPCR test tandems was consistently carried out by trained healthcare 
workers, ensuring correct execution. The swabs were taken as paired, consecutively collected 
oropharyngeal samples. 

The overall dataset was merged from the following sources (Figure 1). 
- hospital information system (HIS; SAP ERP 6.0 (SAP, Walldorf, Germany)): RDT 

documentation, RT-qPCR results, demographic data, clinical information, and anamnestic 
information on COVID-19 vaccination 
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- hospital’s COVID-database with a systematic overview about all positive SARS-CoV-2 
detections at the hospital 

- epidemiological data on VOC prevalence in Germany[25] 
- standardised viral load calculation of the RT-qPCR positive samples as described below 
- EMA COVID-19 vaccination authorisation data 

 
Figure 1: Schematic overview of data acquisition 
RDT: Antigen rapid detection test 
RT-qPCR: Quantitative reverse transcription-polymerase chain reaction 
VOC: SARS-CoV-2 virus variant of concern 
HIS: hospital information system 

Subjects were classified based COVID-19 case definition provided by the CDC[39] and the ECDC[40] 
into the following cohorts:  

- typical COVID-19 symptoms: individuals suffering fever, dry cough, shortness of breath, new 
anosmia, or ageusia 

- atypical COVID-19 symptoms potentially be linked to COVID-19: individuals with a decline 
in general condition, falls, diarrhoea, or seizures 

- asymptomatic individuals 

The vaccination status of the patients at the time of each RDT was determined by evaluating the 
admission questionnaire and incorporating the official approval data of the COVID-19 vaccines by the 
European Medicines Agency (EMA). The COVID-19 questionnaire was conducted as part of the 
standardised entry interview at the study centre from 31 May 2021, for the entire study period 
recording whether the patient was immunised against COVID-19 with at least two doses of an EU-
approved COVID-19 vaccine or with at least one dose in addition to a confirmed PCR-confirmed 
SARS-CoV-2 infection. Until the most recent documentation of the vaccination status "unvaccinated" 
of a subject, all this and previously conducted RDTs were classified as RDTs with as "unvaccinated". 
From the first documentation of a vaccination onwards, all RDTs conducted for an individual were 
classified as conducted with a fully "vaccinated" COVID-19 immune status. In addition, all RDTs 
performed before the age-stratified initial approval of a COVID-19 vaccine by the EMA were classified 
as having an "unvaccinated" COVID-19 immune status. In the age group with a minimum age of 16 
years, all conducted RDTs before 21 December 2020, were classified as "unvaccinated”,[34] in the 
age group between 12 and 15 years all RDTs before 28 May 2021,[35] in the age group between five 
and 11 years all RDTs before 26 November 2021,[36] and in the age group between four years and 
six month all RDTs before 19 October 2022.[37]  

2.3 Antigen rapid detection tests (RDT) 
To maintain an uninterrupted logistical provision, three specific RDT were chosen from a pool of 23 
products identified by the German Federal Institute for Drugs and Medical Devices in October 
2020.[15, 41] All the RDTs used are listed on the EU Common List of COVID-19 antigen tests by the 
European commission (directorate-general for health and food safety).[42]  

(I) NADAL® COVID-19 Ag Test (Nal von Minden GmbH, Regensburg, Germany) 
(II) Panbio™ COVID-19 Ag Rapid Test (Abbott Laboratories, Abbott Park IL, USA) 
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(III) MEDsan® SARS-Cov-2 Antigen Rapid Test (MEDsan GmbH, Hamburg, Germany) 

All three RDTs used for the study are designed as lateral flow immunoassays with the SARS-CoV-2 
nucleoprotein antigen as the target structure, according to manufacturer information. NADAL® and 
MEDsan® RDTs are approved for use with oropharyngeal swabs. The Panbio™ RDT is approved for 
nasopharyngeal swabs, but in this study, it was also used with oropharyngeal swabs in comparison 
to RT-qPCR. 

The distribution of RDTs to the individual hospital’s departments was random, depending on 
availability, independent of the current RDT deployment concept. All RDTs performed as part of the 
study were carried out directly at the point of care, decentralised immediately after the swab, following 
manufacturer instructions by trained medical personnel, and results were documented. Since RT-
qPCR diagnostics were only available after the RDT processing time due to logistics and RT-qPCR 
processing time, the interpretation of the RDT was always done without knowledge of the RT-qPCR 
result. 

2.3 RT-qPCR and viral load determination 
RT-qPCR diagnostics were processed in the hospitals’ virological diagnostic laboratories utilising 
several RT-qPCR methods adhering to the guidelines provided by the respective manufacturers.  

To prioritise RDT-positive samples for the fastest possible confirmation by RT-qPCR, the RDT results 
were made available to the virus diagnostics staff. 

The subsequent RT-qPCR analytical instruments were employed for the determination of viral load: 

(I) MagNaPure 96 / 7500 Real-Time PCR System / FTD SARS-CoV-2-PCR (target 
N/ORF1ab-gene, Roche Diagnostics, Rotkreuz, Switzerland / Thermo Fisher Scientific, 
Waltham MA, USA / Siemens Healthineers, Munich, Germany) 

(II) NeuMoDx™ (target N/Nsp2-gene, Qiagen, Hilden, Germany) 
(III) Alinity m (target RdRp/N-gene, Abbott Laboratories, Abbott Park IL, USA) 
(IV) QIAstat-Dx® (target RdRp/E-gene, Qiagen) 
(V) Xpert® Xpress SARS-CoV-2/Flu/RSV (target E/N2/RdRp-gene, Cepheid, Sunnyvale CA, 

USA) 
(VI) cobas® SARS-CoV-2 (target ORF1ab/E-gene, Roche Diagnostics) 
(VII) cobas® Liat (target ORF1a/b/N-Gen, Roche Diagnostics) 
(VIII) BIOFIRE® FILMARRAY® (target S-/M-gene, bioMérieux, Marcy-l’Étoile, France) 

Since the two methods cobas® Liat and BIOFIRE® FILMARRAY® only enable qualitative SARS-
CoV-2 RT-qPCR without quantification of a Cycle Threshold value (Ct-value), in the event of positive 
SARS-CoV-2 detection by one of these two methods, the RT-qPCR was repeated for quantification 
with Xpert® Xpress SARS-CoV-2/Flu/RSV in case of a positive cobas® Liat result and Xpert® Xpress 
SARS-CoV-2/Flu/RSV or NeuMoDx™ in case of a positive BIOFIRE® FILMARRAY® result. 

Viral loads were computed from Ct-values employing the previously described formula with reference 
standards, as follows:[15]  

𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑	(𝑆𝑎𝑚𝑝𝑙𝑒) = 𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑	(𝑆!) × 2 3
	𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑(𝑆")
	𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑(𝑆!)

!"($%)'!"($()

4

#$"(&%)($"(&)*+,-).

	

For instances involving multiple targets with distinct Ct-values on an RT-qPCR system (cobas®, 
NeuMoDx™, Xpert® Xpress SARS-CoV-2/Flu/RSV), the viral load was determined by computing the 
geometric mean of the estimates derived from the two individual genes (Supplementary Figure 2). 

2.4 SARS-CoV-2 virus variant of concern  
Between February 3, 2021, and January 19, 2022, for allocation of VOC of all RT-qPCR-positive 
samples with sufficient viral load a PCR with spike protein variant-specific differentiation was 
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performed. Outside of the phase of molecular VOC determination, variant assignment was done 
epidemiologically wherever possible. The precise procedure of molecular and epidemiological VOC 
assignment is described in the Supplementary Methods and Supplementary Table 1.[23, 25, 43] 

2. .5 Ethical approval 
The Ethics committee of the University of Würzburg considered the study protocol and waived the 
need to formally apply for ethical clearance due to the study design (File Nr 20231219 02). 

2.6 Statistics 
The data in the overall RDT dataset were recorded using Excel 2019 (Microsoft, Redmond WA, USA). 
The hospital’s COVID-19 database is based on an Access 2019 (Microsoft, Redmond WA, USA) 
platform. Statistical analyses were conducted using GraphPad Prism 10.2.1 (GraphPad Software, 
San Diego CA, USA), and R (Version 4.1.3).  

Confidence intervals were calculated using the Wilson-Brown method (RDT test performance) or the 
Baptista-Pike method (Odds Ratio).[44] 

Statistical significance levels were calculated using the Fisher-Exact test (comparison of sensitivity 
by manufacturers, VOC, vaccination status, and symptoms) and the Mann-Whitney U-test 
(comparison of viral loads). 

Regression analyses were employed to investigate the influence of the following factors on viral load 
(linear regression analysis) and typical COVID-19 symptoms (logistic regression analysis): age, 
gender, COVID-19 vaccination, and testing time point during the COVID-19 pandemic.  

A logistic Lasso regression was performed to identify factors associated with the RDT result 
confirming a SARS-CoV-2 infection. The regression model included factors age, gender, viral load 
typical COVID-19 symptoms, COVID-19 vaccination, and infection by the Omicron VOC. Using a 
tenfold cross-validation procedure, the model parameters of the Lasso regression model were 
estimated (Supplementary Figure 3).To correct against multiple testing, the resulting p-values were 
adjusted using the Benjamini-Yekutieli procedure.[45] .  

For both regression analyses, only those RDT/RT-qPCR tandems with available vaccination status 
as well as a clearly epidemiologically or molecularly assigned VOC were considered.  

Adjusted p-values < 0.05 were considered statistically significant. 
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3 Results 
3.1 Test enrolment 
Between 12 November 2020 and 30 June 2023, a total of 113,117 RDTs were performed and 
documented at the study centre from individuals aged ≥ 6 month. After exclusion of RDTs without 
parallel RT-qPCR, multiple RDTs on one study day and in case of a recent de-isolation as well as 
RDTs with invalid results, 78,798 RDT/RT-qPCR test tandems from 53,918 individuals could be 
included (Figure 2). The 48 invalid RDTs are distributed among the three RDT manufacturers as 
follows: 5 (10.4%) NADAL®, 15 (31.2%) PANBIO™ and 28 (58.3%) MEDsan®. 

 
Figure 2: Enrolment of SARS-CoV-2 antigen rapid detection tests (RDTs) 
VOC: virus variant of concern 
RDT: Antigen Rapid Detection Test 
RT-qPCR: Quantitative reverse transcription-polymerase chain reaction 
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Figure 3: SARS-CoV-2 prevalence, number of tests, and COVID-19 vaccination status over the 
course of the study 
3A) Fraction of RT-qPCR positive RDT/RT-qPCR test tandems per study week (bright red filled curve) 
and SARS-CoV-2 incidence per 100,000 inhabitants per CW in the study region (red line) 
3B) Number of RDTs per CW stratified by RDT manufacturer 
3C) Fraction of COVID-19 vaccination status of RDT/RT-qPCR test tandems per CW 
CW: Calendar week  
RDT: Antigen Rapid Detection Test 
RT-qPCR: Quantitative reverse transcription-polymerase chain reaction 
Data source: Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit[23, 25] 
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3.2 Study population 
The median age of the individuals included at paired RDT/RT-qPCR performance analysis was 54 
years (range 6 month to 102 years, IQR: 31-70 years) covering 49.5% (39,037/78,798) female and 
50.5% (39,759/78,798) male individuals (Figure 4A). Two RDT/RT-qPCR test tandems were 
performed on individuals allocating themselves to diverse gender.  

The RDT/RT-qPCR test tandems included were performed in 87.3% (68,819/78,798) on patients, in 
11.7% (9,228/78,798) on accompanying individuals, and in 1.0% (751/78,798) on staff.  

Overall, a SARS-CoV-2 prevalence of 2.6% (2,016/78,798) was detected in the entire cohort (Figure 
3A) with a median viral load of 5.6 (IQR: 4.1-7.2) log10 SARS-CoV-2 RNA copies/ml (Supplementary 
Figure 5). In the linear regression analysis, the factors age (p=0.40), gender (p=0.94), timing of 
RDT/RT-qPCR tandem tests during the study (p=0.16), and COVID-19 vaccination (p=0.44) did not 
show any significant association with viral load. 

Regarding the manufacturer 11,021 (14.0%) of the test tandems were performed with NADAL®, 
25,882 (32.8%) with PANBIO™ and 41,895 (53.2%) with MEDsan® (Figure 3B). 

Among the test tandems with positive RT-qPCR results, 3.4% (68/2,016) could be allocated to wild-
type SARS-CoV-2, 1.3% (26/2,016) to the Alpha VOC, 5.6% (112/2,016) to the Delta VOC, 34.2% 
(689/2,016) to the Omicron BA.1/2 VOC and 27.4% (553/2,016) to the Omicron BA.4/5 VOC. The 
remaining 29.1% (586/2,016) could not be allocated to any VOC whereas 76.6% (449/586) were in 
the transition phase between the two Omicron VOC groups. Two (0.1%; 2/2,016) further RDT/RT-
qPCR samples were molecularly allocated to the Iota VOC; in one (0.1%; 1/2,016) remaining sample 
no VOC could be finally allocated despite molecular testing. 

Information on COVID-19 vaccination status was available among 76.1% (59,966/78,798) of 
included RDT-/RT-qPCR samples, where of 31.5% (18,863/59,966) were conducted on unvaccinated 
and 68.5% (41,103/59,966) on vaccinated individuals (Figure 3C). Among the remaining 23.9% 
(18,832/78,798) of individuals no information on COVID-19 vaccination status could be evaluated 
(Supplementary Figure 4). A progressive proportion of the included RDT/RT-qPCR tandems on 
vaccinated individuals were chronologically performed from the Delta VOC period onwards (Figure 
4B). 

Among the RT-qPCR positive tandems, 34.0% (686/2,016) presented with COVID-19 typical and 
5.7% 115/2,016) with COVID-19 atypical symptoms. 48.3% (974/2,016) were asymptomatic (Figure 
4, Supplementary Figure 5). In 315 (45.9%) of the typically symptomatic test tandems included, 
information on the number of days since symptom onset was available. The viral load decreased 
significantly in the disease course (p<0.0001; Figure 4C). The proportion of individuals tested SARS-
CoV-2 positive with COVID-19 symptoms increased by viral load, decreased in the chronological 
sequence of the VOC periods and was lower among vaccinated individuals (Figure 4). A logistic 
regression analysis demonstrated a significant decrease in typical COVID-19 symptoms over the 
study period (p=0.021). Moreover, among those who were COVID-19 vaccinated, there was a 
significant reduction in the number of individuals experiencing a SARS-CoV-2 infection with typical 
symptoms (p<0.0001). The factors of age (p=0.16) and gender (p=0.83) showed no significant 
influence on typical symptomatology. 
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Figure 4: Characterisation of the study population 
4A) Age characterisation in categories of five years stratified by gender in reference to the German population 
4B) COVID-19 vaccination status stratified by SARS-CoV-2 VOC among RT-qPCR positive samples 
4C) Viral load depending on days since symptom onset 
4D) Distribution of viral load stratified by symptoms in absolute numbers among RT-qPCR positive samples 
4E) COVID-19 symptom status stratified by SARS-CoV-2 VOC among RT-qPCR positive samples 
4F) COVID-19 symptom status stratified by vaccination status among RT-qPCR positive samples 
RDT: Antigen Rapid Detection Test 
NA: no information available 
Data source: Bavarian State Office for Statistics[46] 
 

3.3 RDT performance compared to RT-qPCR: univariate analyses 
Overall, a RDT sensitivity of 34.5% (95% CI 32.4-36.6%) and a RDT specificity of 99.6 (95% CI 99.6-
99.7%) was obtained (Figure 5A). Regarding sensitivity no differences between the different 
manufacturers (all p>0.40) and the different SARS-CoV-2 VOC (all p>0.14) could be obtained in the 
univariate comparison. Univariately, the sensitivity among asymptomatic individuals was significantly 
lower compared to typically as well as atypically symptomatic individuals (both p<0.0001). Further the 
sensitivity among vaccinated individuals was significantly lower compared to the unvaccinated 
(p<0.0001; Figure 5A).  

Regarding the viral load, no significant differences could be obtained comparing univariately 
comparing the different manufactures (all p>0.12), as well as comparing vaccinated to unvaccinated 
individuals (p=0.10). Regarding the SARS-CoV-2 VOC the mean viral load of wild-type samples was 
significantly lower comparing to Alpha VOC samples (p=0.0011), to Delta VOC samples (p=0.0003), 
to Omicron BA.1/2 VOC samples (p=0.0041) and to Omicron BA.4/5 VOC samples (p=0.0006). The 
remaining pairwise comparisons stratified by VOC obtained no significant differences (all remaining 
p>0.13; Figure 5B). 
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Figure 5: SARS-CoV-2 prevalence, number of tests, and COVID-19 vaccination status over the 
course of the study 
5A) RDT sensitivity overall and by RDT performance influencing factors 
5B) Viral load overall and by RDT performance influencing factors 
5C) Odds Ratio of the several RDT performance influencing factors (lasso regression model) 
In the case of whiskers in the figures, these represent the respective 95% confidence intervals. 
VOC: virus variant of concern 
RDT: Antigen Rapid Detection Test 
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3.4 Determinants of RDT performance  
On the condition of data availability concerning vaccination status and VOC, 1,472 of the 2,016 
(73.0%) SARS-CoV-2 positive RDT/RT-qPCR tandems could be considered for the employed lasso 
regression model. This model revealed only the factors of viral load and typical COVID-19 symptoms 
being the factors directly influencing the RDT performance as both (p<0.0001) significantly increased 
the odds of having a positive RDT result in case of a SARS-CoV-2 infection (Figure 5C, 
Supplementary Figure 6, Supplementary Table 2). 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 14, 2024. ; https://doi.org/10.1101/2024.04.11.24304791doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.11.24304791
http://creativecommons.org/licenses/by/4.0/


 15 

4 Discussion 
Overall, in a cohort of 78,798 RDT/RT-qPCR tandems, a total sensitivity of 34.5% was detected over 
the course of the COVID-19 pandemic. This places it at the lower end of the spectrum in terms of 
previous RDT performance analyses,[13, 47-50] consistent with interim analyses of the study.[15-18] 
The low sensitivity can be attributed to the study setting, which involves screening both symptomatic 
and asymptomatic individuals in the clinical care setting.[19] With 78,798 included RDT/RT-qPCR 
tandems, the presented study mapped and analysed the influence of COVID-19 vaccination and 
SARS-CoV-2 VOCs from the introduction and establishment of RDTs to the transition to endemicity 
by summer 2023 in such a large cohort in screening use including asymptomatic and symptomatic 
individuals. Studies of comparable size and questions only cover parts of the COVID-19 pandemic 
excluding consideration of Omicron BA.4/5 VOC.[19, 29]  

The fluctuating number of tests throughout the study can be explained by the RDT deployment 
strategy at the study centre, which varied depending on the pandemic situation. The described RDT 
deployment strategy at the study centre, a tertiary care hospital, reflects the outcome of 
interdisciplinary development and close discussion of various interests in infection control and 
prevention, cost-effectiveness, and clinical feasibility.[33, 51] 

Furthermore, the dominant use of MEDsan® from 2022 onwards is justified by infrastructural reasons 
related to cost-effectiveness and market availability. The large-scaled study cohort fairly represents 
the German population as a reference. An excess of women in their thirties can be attributed to 
hospitalisations related to childbirth, while the surplus of children in the first years of life can be 
explained a hospitalisation incidence in this age group.[46] 

The conducted lasso regression analysis revealed two significant factors directly influencing RDT 
performance: exposed viral load and typical COVID-19 symptoms exhibited by the tested individual. 
The further univariate heterogeneities in test performance can be explained by the uneven distribution 
of both significant influencing factors: The lowering of RDT test performance in the chronological 
course of the several VOCs is caused by the obtained significant reduction of typical COVID-19 
symptoms in the course of the study and therewith across the entirety of the pandemic including the 
chronological changes of leading VOC. The presumed decrease in sensitivity resulting from COVID-
19 vaccination is also mediated by symptoms, as it was demonstrated that typical COVID-19 
symptoms were significantly less commonly exhibited among vaccinated individuals. 

Our findings corroborate previous reports indicating a gradual attenuation of symptoms with the 
evolution of VOCs in the course of the pandemic, culminating in the less symptomatic nature of the 
Omicron VOC, which signals the transition towards endemicity.[52-54] However, it remains 
undifferentiated whether the change in VOC during the course of the pandemic alone caused the 
change in symptoms, or whether this is also mediated by the COVID-19 specific immunity developed 
in the population over the course of the pandemic through previous SARS-CoV-2 infections. Further, 
the proportion of RDT/RT-qPCR tandems conducted on individuals vaccinated against COVID-19 
significantly increased over the course of the study. Conversely, the proportion of RDT/RT-qPCR 
tandems involving individuals experiencing typical COVID-19 symptoms decreased derived by 
changes of VOC and / or immunisation status. It remains unclear whether the mitigation of symptoms 
during the course of the pandemic is primarily mediated by the VOC or by the immunisation status, 
and what proportion each of these factors contributes to the alleviation of symptoms. 

It is also important to note that the increasing proportion of asymptomatic yet contagious individuals 
during the course of testing underscores the significance of SARS-CoV-2 screening for transmission 
prevention, especially when in contact with high-risk groups such as immunocompromised 
individuals.[55] 

It is important to consider various limitations of the study when interpreting the data and drawing 
conclusions. Due to the RDT point-of-care use in the immediate clinical everyday reality in patient 
care and employee testing, the absolute numbers, and proportions of the RDT products used varied 
between different clinical departments and over the course of the study period. Similarly, reflecting 
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the clinical care reality, the individual participating clinics of the study centre differ in the demographic 
patient structure and morbidity. The assignment of individual RT-qPCR methods to each sample was 
random based on the capacities of virus diagnostics and the clinical urgency determined by the 
varying processing times of different RT-qPCR methods. The study participants included were only 
tested with one of the three selected RDTs. Laboratory analyses assessing the test performance of 
RDTs in an artificial setting may provide a more comprehensive to answer the issue of comparative 
performance analysis of different manufacturers, but they may not be as easily translated to the 
population's healthcare reality, especially with small sample sizes in the lab. The chosen RDTs in the 
study performed moderately in such laboratory-based performance evaluations.[13] It should also be 
noted that the RDTs used do not belong to the second generation of VOC-adapted RDTs, although 
based on the study results presented, the VOC does not directly influence the performance and 
therefore the first generation of RDTs can still be classified as equivalent.[56, 57] The swabs for RDT 
and RT-qPCR were performed by a variety of trained staff from the university hospital with user 
support available at all times, minimising the influence of potential heterogeneities in sample 
collection, test execution, and interpretation to the best extent possible. Additionally, the role of 
preanalytical quality and precise sample collection must be considered. Compared to RT-qPCR, 
RDTs are more susceptible to potentially less accurate swab collection, possibly leading to a higher 
rate of false-negative RDT results, especially with lower viral loads. Although the RDTs from NADAL® 
and MEDsan® are recommended for oro- and nasopharyngeal sampling according to the 
manufacturer's instructions, the PANBIO™ RDT was also used with oropharyngeal samples, contrary 
to the manufacturer's recommendations, which suggest a nasopharyngeal swab. This could limit the 
comparability with evidence that investigated the PANBIO™ RDT based on nasopharyngeal 
samples.[13] The laboratory determination of the VOC using RT-qPCR was only carried out between 
January 2021 and January 2022. Therefore, a relevant proportion of RDT/RT-qPCR test pairs could 
only be allocated to especially wild-type SARS-CoV-2 and the Omicron VOC epidemiologically. 
Omicron VOC sublines could only be differentiated epidemiologically with a transitional period 
between and before sublines BA.1-2 and BA.4-5. Allocation to other Omicron VOC sublines was 
epidemiologically not possible, as no other subline group in Germany exceeded the defined 90% 
threshold epidemiologically during the study period, and especially towards the end of the study, 
multiple Omicron VOC sublines were present simultaneously due to the transition to endemicity.[25] 
Precise sensitivity data for the Iota VOI could not be determined as only two samples detected by 
molecular analysis were available. In comparison to numerous published studies in the field of RDT 
performance analysis, the study represents a low prevalence of SARS-CoV-2 throughout the study 
period, with only 2.6% of included RDT/RT-qPCR test pairs showing a positive SARS-CoV-2 
result.[13] However, this reflects the chosen real study setting with RDT use for SARS-CoV-2 
screening, including asymptomatic test subjects. It should also be considered that vaccination data 
were only recorded for patients and accompanying individuals, and the recording of a COVID-19 
vaccination started only from 23 May 2021. Thus, in the previous study period either no vaccination 
data were available, or the status "unvaccinated" could only be recorded based on age-stratified EMA 
approval data.[34-37, 58] 

Despite all these limitations, the study's significant value becomes apparent as it systematically 
examined the RDT test performance and its influencing factors in the clinical care reality over a long 
period of the COVID-19 pandemic, including the transition to endemicity. This includes factors that 
changed significantly during the pandemic - the respective dominant variants of concern (VOC) and 
the COVID-19 vaccination status. 

In summary, this study represents a comprehensive investigation into the dynamic interaction 
between emerging factors such as VOC and COVID-19 vaccination throughout the entirety of the 
COVID-19 pandemic, utilising a substantial clinical cohort. The initially visible influence of VOC and 
COVID-19 vaccination could be completely mitigated identifying solely the viral load and the presence 
of typical COVID-19 symptoms as directly influencing factors. Both, the VOC evolution and the 
COVID-19 vaccinations reduced the occurrence of these symptoms in case of a SARS-CoV-2 
infection and the total RDT sensitivity, but did not effect the acceptable sensitivity of RDT in typically 
symptomatic SARS-CoV-2 infected individuals as well as the low sensitivity in asymptomatically 
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infected individuals. RDTs remain a relatively reliable SARS-CoV-2 diagnostic tool in individuals 
showing typical respiratory symptoms even if the RT-qPCR remains the gold standard for SARS-CoV-
2 diagnostics.[55, 59] Moreover, the potential of RDTs extends beyond SARS-CoV-2, as 
demonstrated by their adaptability to include other pathogens such as Influenza and RSV. This 
expansion underscores the ongoing relevance of RDTs in infection control and prevention efforts.[60, 
61]  
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