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Abstract

Cell-free DNA (cfDNA) is increasingly recognized as a promising biomarker candidate for disease
monitoring. However, its utility in neurodegenerative diseases, like amyotrophic lateral sclerosis
(ALS), remains underexplored. Existing biomarker discovery approaches are tailored to a specific
disease context or are too expensive to be clinically practical. Here, we address these
challenges through a new approach combining advances in molecular and computational
technologies. First, we develop statistical tools to select tissue-informative DNA methylation
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sites relevant to a disease process of interest. We then employ a capture protocol to select
these sites and perform targeted methylation sequencing. Multi-modal information about the
DNA methylation patterns are then utilized in machine learning algorithms trained to predict
disease status and disease progression. We applied our method to two independent cohorts of
ALS patients and controls (n=192). Overall, we found that the targeted sites accurately predicted
ALS status and replicated between cohorts. Additionally, we identified epigenetic features
associated with ALS phenotypes, including disease severity. These findings highlight the
potential of cfDNA as a non-invasive biomarker for ALS.

1 Introduction

Cell-free DNA (cfDNA) is an emerging biomarker or biomarker candidate for multiple diseases, as
it originates from dying tissues and can be non-invasively measured through a blood draw. CfDNA
has been used in the detection of cancer,1–3 to identify fetal genetic abnormalities,4,5 to screen
for infectious diseases,6,7 and to predict pregnancy complications.8 One underexplored domain
for cfDNA, however, is in neurodegenerative disease. Biomarkers for neurodegenerative diseases
are critically needed for improving patient care and evaluating the efficiency of clinical trials.9

While the application of cfDNA to neurodegeneration is nascent, our previous work,10 along with
the work of others,11–13 has shown alterations in the cell-free DNA and RNA of patients with
neurodegeneration relative to healthy controls.

Here, we build upon this work with a novel approach to epigenetic cfDNA biomarker development,
applied to a large cohort of amyotrophic lateral sclerosis (ALS) patients. A limitation of whole
genome epigenetic approaches is that the cost to achieve high sequencing coverage14 is
currently too expensive to be routinely applicable in clinical settings.2,15 High sequencing
coverage, however, is needed since certain cfDNA fragments may only be present in low
quantities, which could be missed by shallow sequencing.16 Furthermore, many methylation sites
are not variable,17 limiting their value in biomarker development.

To address these limitations, previous work has successfully used DNA methylation capture18 to
enrich for only relevant genomic regions, which can reduce sequencing costs while maintaining
high coverage. Examples of DNA methylation capture in cfDNA applications include an approach
to classify cancer types and to predict whether a patient develops preeclampsia.3,8,19 A limitation
of existing approaches, however, is that they are often optimized for a specific disease context.
To the best of our knowledge, methylation capture of cfDNA has not yet been adapted for use in
neurodegenerative disease.

In this work, we developed an algorithm to identify regions of the epigenome that are informative
for the presence of a tissue in the cfDNA. These regions can be used to learn about tissue death
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in a range of diseases, including neurodegeneration. We then developed algorithms that
leveraged differences in the methylation of these tissue informative sites to classify patients by
disease status based on their epigenetic cfDNA profile. Our methodology can be used to
characterize the contribution of diverse tissues to ALS cfDNA, leading to a multidimensional
picture of disease.

We applied this technology to two independent cohorts from The University of Queensland in
Brisbane, Australia (UQ) and the University of California at San Francisco, United States (UCSF)
comprising a total of 192 cfDNA samples from ALS patients, healthy controls, and patients with
other neurological diseases. Together, these cohorts represent the largest application of cfDNA
in the study of ALS to date. Consistent with our previous research, we found significantly
elevated cfDNA concentrations in ALS patients in both cohorts.10 Our machine learning model
significantly predicted ALS disease status in both cohorts with high accuracy (UQ AUC=0.82,
UCSF AUC=0.99). The model discriminated ALS cases from patients with other neurological
diseases, such as frontotemporal degeneration. It also identified a previously unknown
asymptomatic carrier of a pathogenic variant in C9orf72, which is the main genetic cause of ALS.
Finally, we identified methylation sites associated with other ALS phenotypes, including disease
severity. Together, these results suggest that epigenetic alterations in cfDNA are promising
quantitative biomarker candidates for ALS, which can be used to non-invasively study the
impacts of neurodegeneration.
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Figure 1: Overview of epigenetic cfDNA biomarker development approach. (a) Firstly, tissue
informative markers (TIMs) were selected using WGBS data to capture CpG sites that were

hypermethylated or hypomethylated in a tissue of interest. (b) Next, cfDNA was extracted from

the blood plasma of ALS cases and controls. (c) The cfDNA was bisulfite-treated, hybridized to
capture probes, designed as complementary to TIMs, and then sequenced. Some off-target

reads were also captured. (d) Using computational approaches, we analyzed the tissue of origin
of the cfDNA samples and performed machine learning to identify features of ALS.
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2 Results

2.1 Overview of approach

The approach was composed of four steps. First, we analyzed published whole-genome bisulfite
sequencing (WGBS) tissue data to identify methylation sites with distinct patterns in a tissue of
interest. We call these sites tissue-informative markers (TIMs). Previously published cfDNA
WGBS data from diverse disease contexts was used to screen candidate TIMs for those actually
observed in cfDNA (See Methods). We then designed methylated and unmethylated probes
complementary to these regions (Fig. 1a). Next, cfDNA from our two cohorts was extracted (Fig.
1b) and underwent methylation profiling on the TIM-enriched cfDNA (Fig. 1c). Lastly, we analyzed
the methylation status of the targeted regions and developed statistical and machine learning
approaches to learn about the disease status of the ALS patients and controls (Fig. 1d).

2.2 Cohort characteristics

Our approach was applied to participants (n=192) who were recruited between 2018 and 2021
from two independent university-affiliated neurology clinics at UCSF and UQ (Table 1). The
Revised El Escorial diagnostic criteria20 were used to classify cases (See Methods). Cases were
composed of two groups of patients, those who had likely or probable ALS according to the
criteria (referred to here as “ALS”), and those classified as possible ALS or primary lateral
sclerosis (PLS) (referred to here as “PLS”), which is a related motor neuron disease.21,22

The UCSF cohort comprised 42 ALS cases, 9 PLS cases, and 45 healthy age-matched controls
consisting of unrelated partners or carers. At UQ, a total of 48 cases were enrolled (N=43 ALS
and N=5 PLS). Forty-eight UQ controls were enrolled, consisting of both unrelated
partners/carers (N=32) and patients with other neurological diseases (OND) (N=15). The UQ
OND samples included a cross-section of neurological conditions, including diseases that share
pathophysiology with ALS, like frontotemporal degeneration,23 and other neurodegenerative
diseases like Alzheimer’s disease (Table 2). Therefore, the UQ cohort represented a challenging
real-world scenario for ALS biomarker development.

There was heterogeneity of disease characteristics within and between cohorts. Both the UCSF
and UQ cases had overlapping distributions in terms of age of onset, defined as the date the
first ALS symptom was observed (Fig. 2a). For each cohort, ALS severity was measured using the
ALS Functional Rating Scale-Revised (ALSFRS-R)24 at the time of cfDNA collection, which is a
qualitative measure of physical functioning on a scale from 0 (not functioning) to 48 (high
functioning). The change in ALSFRS-R between visits, referred to as ALSFRS-R slope, was also
calculated as a metric of disease progression. We found that cohorts were similar in the
distribution of ALSFRS-R and ALSFRS-R slope, although the UCSF had slightly more progressed
cases (Fig 2b). UQ samples had higher forced vital capacity (FVC) (t-test p-value=4.5⨉10-5), which
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is a measure of lung function, where a higher value indicates better function (Fig. 2c). The two
cohorts were also similar in the distribution of days between cfDNA collection and symptom
onset (Fig. 2d). We noted that patients in the UCSF cohort were slightly older (UQ mean age:
61.45 ± 8.17, UCSF mean age: 66.33 ± 9.96)) and that the UCSF cohort also contained
patients from a larger variety of self-reported racial and ethnic (SIRE) backgrounds (Fig. S1b-d).

Figure 2: Cohort demographic and clinical characteristics. For the UQ (n=43) and UCSF (n=42) ALS

patients, (a) the distribution of the age of onset of ALS disease symptoms, where the dotted line

indicates the median age of onset, (b) patient ALSFRS-R scores (c ) FVC, and (d) the number of
days between cfDNA collection and date ALS symptoms were observed. In the box plots, the
center line of the box indicates the mean, the outer edges of the box indicate the upper and
lower quartiles, and the whiskers indicate the maxima and minima of the distribution. Each dot
indicates an individual.

2.3 Selecting tissue informative markers

After collecting cfDNA, we turned to selecting methylation sites that are variable between
tissues. In our previous work,10 we introduced the concept of tissue informative markers (TIMs)
as a method to identify methylation sites that vary between tissues and cell types. Briefly, a TIM

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2024. ; https://doi.org/10.1101/2024.04.08.24305503doi: medRxiv preprint 

https://www.zotero.org/google-docs/?QUVwC0
https://doi.org/10.1101/2024.04.08.24305503
http://creativecommons.org/licenses/by-nc/4.0/


is a site that is either hyper- or hypo- methylated relative to the average methylation proportion of
all other tissues at that site (Fig. 3a) (See Methods).

To find TIMs, we used reference WGBS methylomes that were obtained from two public reference
consortiums, ENCODE25 and Blueprint.26 For this work, we focused on CpG sites as candidate
TIMs, as most non-CpG sites are not methylated in adult tissues.27 We selected approximately
300 TIMs for 19 tissues (Table 3), which were prioritized based on deconvolution results from
our previous work10 and other recent works.28,29 These tissues included several hematopoietic
cell types, organs, epithelium, and brain (Table 3). We applied several filtering criteria to enrich
for CpG sites that appear in previously published WGBS cfDNA data.

An important property of cfDNA is that their fragmentation patterns are non-random.30–32 cfDNA
observed in blood generally are fragments approximately 160 base pairs long,33 suggesting that
cfDNA fragments are protected from degradation in the blood by the presence of tightly
associated histone proteins. Since DNA from compacted chromatin is more likely to be protected
and methylated, we chose to select a greater number of TIMs per tissue that were
hypermethylated (Table 3) (Fig. 3b).

After quality control (Methods), the final number of TIMS was 4,994. TIM sites were distributed
throughout the genome (Fig. S2a). Hypermethylated TIMs were closer, on average, to
transcription start sites and CpG Islands than hypomethylated TIMs (Fig. 3c; Fig. S2b). Since at
a hypermethylated TIM, all other tissues are predominantly unmethylated, this observation is
consistent with the role of unmethylated CpGs in facilitating transcription.34 Likewise,
hypomethylated TIMs were more likely to be in intergenic and intronic regions (Fig. 3d),
suggesting that in most tissues, these sites did not have a strong regulatory function. Together,
this suggests that hypermethylated and hypomethylated TIMs offer complementary types of
genomic information.

2.4 Capture panel sequencing and validation

After designing the probes, we performed several validation experiments to ensure that probes
could accurately profile the methylation state of the chosen TIMs. First, we used universal
methylated DNA standards to create mixtures where the CpG sites were methylated 0, 25, 50,
and 100% of the time. We captured the synthetic DNA mixtures with the probes and performed
high-throughput sequencing. For each DNA mixture, we estimated the proportion of the time the
captured CpG was methylated. We found that the observed methylation was highly concordant
with the true methylation proportion (Fig. 3e), suggesting that the probes were quantifying the
methylation accurately.

Next, to examine how the capture panel might perform in real-world cfDNA scenarios, we
validated the capture panel using sheared genomic DNA from blood (n=2), along with healthy
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cfDNA samples (n=3). After performing cell-type deconvolution with CelFiE,10 we found that the
sheared blood samples were estimated to be primarily composed of white blood cells (Fig. S3a).
The majority of cfDNA from healthy controls was also estimated to be originating from neutrophils
and lymphocytes, consistent with published research (Fig. S3b).35

Lastly, we extracted cfDNA from a healthy control before and after vigorous exercise to examine
the ability of the panel to measure tissue-specific changes in biological state. After capture and
sequencing, we performed deconvolution of these two cfDNA samples. We found that cfDNA
originating from neutrophils increased in the sample taken after exercise (Fig. S3c), consistent
with a recent report36 studying the effect of exercise on cfDNA composition. Together, these
experiments demonstrate that our approach for targeting TIMs can correctly capture the
methylation state of cfDNA and measure relevant tissue of origin effects.
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Figure 3: Capture panel design. (a) The panel was designed to capture both hypomethylated TIMs,
which were CpG sites that were less methylated in a tissue of interest relative to other tissues,
and hypermethylated TIMs, which were designed to capture sites more methylated in a tissue of

interest than other tissues. (b) The methylation proportion of reference tissues at either the site
the TIM was selected for, or all other tissues. (c) The distance hyper- or hypo- methylated TIMs
are from the transcription start site of a gene. (d) The number of hyper- and hypo- methylated
TIMs in different genomic regions. (e) For samples where the true genome-wide methylation
proportion was between 0.0 and 1.0 (red dots), the observed methylation proportion after
capture and sequencing. For all box plots, the center line of the box indicates the mean, the
outer edges of the box indicate the upper and lower quartiles, and the whiskers indicate the
maxima and minima of the distribution. Each dot indicates an individual.

2.5 cfDNA capture from ALS cases and controls

We next turned to examining the cfDNA epigenome of our disease cohorts. cfDNA was extracted
from the blood plasma of cases and controls from both UQ and UCSF patients. We first
confirmed our previous finding10 of an increased concentration of cfDNA in the plasma of ALS
patients relative to controls after correcting for age, sex, and SIRE (Fig. 4a) (logistic regression
UQ: log odds ratio=7.5x10-3, p-value=1.8x10-2, UCSF: log odds ratio=2.4x10-2, p-value=6.0x10-3).
Interestingly, cfDNA was also elevated in ALS patients relative to the OND controls (logistic
regression log odds ratio=1.6x10-2, p-value=3.6x10-2), which had overall low levels of cfDNA. This
suggests that the cfDNA generative processes of apoptosis and necrosis might differ between
ALS and other types of neurological diseases.

After quantifying the amount of cfDNA, we performed high-throughput methylation sequencing on
the captured regions. Since bisulfite treatment can degrade the already low quantity of input
DNA, cfDNA sequencing experiments are prone to high duplication.16 To address this, we used
unique molecular identifiers (UMIs) to deduplicate reads. In total, after sequencing and
deduplication, the average on-target coverage of UQ samples was 134 ± 166 reads per CpG and
the average on-target coverage of UCSF samples was 195 ± 229 reads per CpG. The average
methylation proportion at TIM sites was highly correlated between the two cohorts (Pearson’s
R=0.98, p<1.0x10-16) (Fig. 4c).

We noted that UCSF samples had a higher percentage of on-target reads (Fig. S4), which likely
contributed to differences in overall CpG read coverage. We also found that cfDNA starting
concentration was a significant predictor of on target saturation after adjusting for total on target
coverage (linear regression effect size=-1.7 × 10-3, p-value=9.0 × 10-3) (Fig. S4d-e).

2.6 Cell-type decomposition
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Since TIMs were designed to be specific to a given tissue type, they can be used to estimate
what tissues are contributing to the cfDNA in the context of neurodegeneration. To do this, we
performed cfDNA cell-type decomposition with CelFiE.10 CelFiE is a supervised decomposition
algorithm that is designed to work with methylation read count data and missing or noisy
reference data. As input, CelFiE takes the TIM read count data for each cfDNA sample and
estimates the proportion of the cfDNA mixture originating from the tissues in the reference
dataset, along with a specified number of unknown tissues.

We ran CelFiE with two unknown components using the methylation proportion of the captured
sites as input (Fig. S5a-b). As with our prior ALS study10, we observed elevated skeletal muscle
in ALS patients in both cohorts relative to the healthy control samples (t-test p-value UCSF:
1.1x10-3, UQ: 4.7x10-2) (Fig. 5d). This is consistent with muscle atrophy that occurs as part of
their disease. We then tested the remaining tissue estimates for association with ALS disease
status. At nominal significance (p<0.05) CelFiE estimated a depletion of cfDNA originating from
eosinophils in ALS cases (t-test p-value UCSF: 1.0x10-2, UQ: 9.3x10-3)(Fig. S5c-d). While a
preliminary result,previous studies have observed changes in granulocyte counts in the whole
blood of ALS patients37,38 and overall immune dysregulation is thought to be an important
contributor to ALS etiology.39

Interestingly, we observed two UQ control samples with unusually high skeletal muscle
components (an estimated 5.4% and 3.9% of their total cfDNA sample) (Fig. 5d). One sample
was an OND control with frontotemporal dementia, a disease that has substantial genetic and
clinical overlap with ALS.40 The other sample was originally classified as a healthy control.
However, after further investigation into their clinical records, this individual had both a parent
and sibling with ALS. Genetic testing revealed that this individual also tested positive for a
C9orf72 repeat expansion, which is the most common genetic cause of ALS,41 suggesting that
the individual may be presymptomatic. Since the disease status of this patient was ambiguous,
we reclassified them as OND.
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Figure 4: Capture panel performance on cfDNA data. (a) The starting cfDNA concentration of ALS
patients and controls for each cohort, where each point represents one individual. (b) Coverage
of the on-target and off-target CpG sites of each cohort, where each dot represents one sample.

(c) Correlation between the UQ and UCSF methylation proportions at on-target sites. A single

point represents a TIM. (d) The proportion of cfDNA from the controls and cases in each cohort
that was estimated to originate from skeletal muscle. The grey shaded circle indicates outlier
control individuals discussed in Section 2.6. For all box plots, the center line of the box indicates
the mean, the outer edges of the box indicate the upper and lower quartiles, and the whiskers
indicate the maxima and minima of the distribution. Each dot indicates an individual.

2.7 Classification of ALS disease status

While muscle degeneration is a hallmark of ALS, it is not specific enough to serve as a
diagnostic tool. Therefore, to further characterize the relationship between alterations in the
cfDNA epigenome and disease, we developed a tissue-agnostic algorithm that utilized
information from all TIM epigenetic profiles to predict whether a cfDNA sample was from an ALS
patient or control. For these models, we did not consider PLS samples, but return to these
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samples in Section 2.9. Further models integrated all CpG sites, both on and off target (See
Methods).

We trained an elastic net prediction model42 in four contexts to explore the generalizability of the
results across the independent cohorts. First, a model was trained using ten-fold cross-validation
within each cohort. Then, the transferability of the models was assessed by training a model on
one cohort and applying it to the other. Since only the UQ cohort had OND and healthy controls,
we combined the controls for this analysis, although we later examined the ability of the model
to discriminate between the different sample types. Model parameters, including the elastic net
mixing parameter, were selected by using a cross-model selection and averaging procedure within
the training set.42 Non-penalized covariates included age at the time of cfDNA sampling, sex,
SIRE, cfDNA concentration, and total cfDNA input. We evaluated model performance with area
under the receiver operating characteristic curve (AUC) and by testing whether the predictions
could significantly predict true case-control status using a logistic regression model that included
covariates.

To best characterize the different types of information that TIMs can provide we explored two
classes of features for the prediction model, the methylation proportion and the coverage of the
TIMs. Coverage was included because cfDNA fragmentation is non-random (see Section 2.3); we
therefore reasoned that CpG coverage may also be informative of disease status. In total, we
trained models using CpG coverage only, CpG methylation proportion only, and a combination of
both as input features.

Overall, we found that tissue informative epigenetic features could significantly predict ALS
case-control status in both cohorts (Fig. 5, Fig. S6-7, Table 4). The best-performing model
incorporated both TIM coverage and methylation features (Fig. 5). Within cohorts, the ten-fold
cross-validated AUC was 0.82 within the UQ cohort (logistic regression odds ratio=2.34,
p=2.32⨉10-7) and the UCSF AUC was 0.99 (logistic regression odds ratio=2.51,
p-value<2.0⨉10-16). The models were more predictive than models trained using only covariate
information (Fig. S8). Importantly, even though the model was not trained to distinguish between
ALS cases and OND, the AUC was high for both UQ models (within UQ: AUC=0.91, UCSF-UQ:
AUC=0.76).

Models trained within one cohort replicated between cohorts. We noted that the prediction
performance was higher for the UQ-trained and UCSF-tested model (AUC=0.91, logistic
regression odds ratio=1.92, p=9.48 ⨉ 10-5) than the UCSF-trained model applied to the UQ
samples (AUC=0.81, logistic regression odds ratio=2.46, p=4.24⨉10-4). Differences in model
performance between cohorts were likely driven by a combination of factors, including cohort
heterogeneity and technical variation. One likely contributing factor was the lower on-target
coverage in the UQ cohort (Fig. 4d, Fig. S5). To test this, we randomly downsampled the number
of reads in each UCSF cfDNA sample, which reduced effective on-target CpG coverage. Then, we
re-ran the elastic net model within the UCSF cohort. We found that lower read coverage led to
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worse classification performance (Fig. S9), suggesting that on-target CpG coverage is an
important factor in prediction accuracy.

Importantly, the predictive performance of the elastic net models was stronger than using the
CelFiE skeletal muscle estimate alone (Fig. 4d). Indeed, models trained without any skeletal
muscle TIMs, did not have reduced performance relative to the full model (Fig. S10),
emphasizing the importance of combining information across tissue contributors.

We also noted that despite methylation proportion being the more common feature considered in
epigenetic cfDNA studies, the models trained only using CpG coverage also significantly
predicted case-control status (Table 4, Fig. S6). In fact, there was very similar performance within
the UCSF cross-validated model (AUC=0.97) and the UQ cross-validated model (AUC=0.84). This
suggests that disease-relevant information is contained in simply the observation of a given CpG
in cfDNA sequencing data, providing an additional layer of information over the CpG methylation
state alone. This information may be lost in other low-cost epigenetic assays, like methylation
arrays, that only return methylation proportion values.

Lastly, we considered the elastic net models that incorporated off-target CpGs (UCSF total
number of CpGs=32314, UQ total number of CpGs=49238). We found that the off-target models
performed well (UCSF AUC=0.86, UQ AUC=0.76), even though this was a challenging setting as
there were many more features than samples (Fig. S11). In future work, sites selected in these
models could be chosen to refine TIM selection for capture panel development.
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Figure 5: ALS disease classification with cfDNA epigenetic features. The false positive rate versus
true positive rate for models trained and tested using CpG coverage, CpG methylation, and

covariates as input features for (a) ten-fold cross-validation within UQ samples (b) ten-fold
cross-validation within UCSF samples (c) trained on UCSF data and tested on UQ data, and (d)
trained on UQ data and tested on UCSF data.

2.8 Biological significance of prediction features

Next, we sought to understand how different tissue informative sites contributed to predicting
disease. An advantage of using a regularized regression model like an elastic net is that the
model performs feature selection and assigns a higher weight, or absolute β value, to features
that contribute more to accurately predicting the outcome. Features that do not contribute to the
prediction will have an absolute β value near zero. Thus, to examine the overall contribution of
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different types of TIMs in making model predictions, we obtained the absolute β value for each
TIM from an elastic net model trained on the entire UQ and UCSF cohorts (Fig. 5c and Fig. 5d).
Then we examined how these values related to different characteristics of the TIMs.

We first analyzed whether TIMs selected for a given tissue type were more important in making
predictions. As expected, skeletal muscle TIMs were highly important in making model
predictions, especially for TIMs that were hypermethylated in skeletal muscle (Fig. 6a). Despite
the importance of skeletal muscle TIMs, we noted that TIMs for every tissue type contributed to
the model predictions (Fig. 6). This again highlights the contribution of multiple tissues in
neurodegeneration and the possibility of designing disease-specific biomarkers. For example,
T-cell TIMs were highly important (Fig. 6a), indicating that cfDNA originating from immune cell
types may be relevant in ALS disease.

Overall, there were differences in the importance of each class of TIM. Hypermethylated TIMs
generally had higher absolute β values than hypomethylated TIMs (Fig. 6b-e), which could be
related to our previous observation that hypermethylated TIMs were more likely to be in promoter
or genic regions (Fig. 3). We also observed that there were differences in the distribution of
absolute β values of methylation proportion and coverage features. For example, while
methylation proportion features for fibroblast and epithelial cells had high absolute β values,
coverage features for these tissues had relatively low absolute β values (Fig. 6b-c). Instead, the
coverage of TIMs for small intestine and T-cells were high, but close to zero as methylation
proportion features. Together, this could mean that including both methylation proportion and
coverage of tissue informative sites is useful for learning about disease in the context of cfDNA.

We next examined individual TIMs as an avenue for examining and generating hypotheses about
individual epigenetic biomarker candidates. TIMs with a non-zero absolute β value were chosen
for association with ALS case-control status, along with covariates and correcting for cohort.
Multiple test correction was employed using false discovery rate at 10%. One of the most
important methylation proportion features was a hypermethylated TIM selected for epithelium.
We observed significantly increased methylation in ALS cases for this TIM (logistic regression
odds ratio=14.09, q-value=8.06×10-2) suggesting that there was increased contribution from this
gene in the cfDNA of ALS patients (Fig. 6e). This TIM was located in the promoter region of the
SHISA5 gene, which, along with p53, is involved in apoptosis.43 Additionally, SHISA5 was found
to be over-expressed in the spinal cord of ALS patients.44

We identified a similarly interesting hypermethylated TIM in the coverage features. While the TIM
was selected for hepatocytes, it is in the XRCC6 gene, which was highly expressed in many
tissues in bulk RNA-seq from the Genotype-Tissue Expression (GTEx) Project.45 The TIM had
significantly reduced coverage in ALS patients relative to controls (logistic regression odds
ratio=-42.25, q-value=1.35 × 10-2) (Fig. 6f), and while it is difficult to infer directly from cfDNA
alone, this result could suggest potential dysregulation of this gene in cases. XRCC6 is involved
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in non-homologous end joining and DNA repair.46 Disruption of non-homologous end joining has
been previously linked to aging and ALS.47,48

Figure 6: Features selected by the elastic net algorithm. (a) For each tissue the TIMs were selected
for, and for the type of TIM, the total absolute β value. A larger absolute β sum indicated that the

feature type contributed more to model predictions. The β values for the (b) methylation
proportion and (c) the read coverage of individual TIMs selected to be hypermethylated, and the

β values for the (d) methylation proportion and (e) read coverage of individual TIMs selected to

be hypomethylated. (f) The methylation proportion of cases and controls for each cohort for a

hypermethylated TIM in the SHISA5 gene. (g) The read coverage of cases and controls for each

cohort for a hypermethylated TIM located in the XRCC6 gene. For all box plots, the center line of
the box indicates the mean, the outer edges of the box indicate the upper and lower quartiles,
and the whiskers indicate the maxima and minima of the distribution. Each individual dot
indicates a cfDNA sample.

2.9 ALS disease phenotypes

To further explore the value of tissue-specific methylation sites as a potential biomarker, we
developed models to predict ALS disease phenotypes. To do this, we trained three linear elastic
net models to predict ALSFRS-R (n=78), ALSFRS-R slope (n=60), and FVC (n=57) with ten-fold
cross-validation. We hypothesized that high-weight features from the case-control analysis would
also be associated with ALS phenotypes, and so, we chose the top 1000 coverage and top 1000
methylation features with the highest absolute β as input for the models. Since case-only
numbers were relatively low in each cohort, we meta-analyzed the two cohorts, adding a
non-penalized covariate for each cohort in the analysis, along with age, sex, cfDNA
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concentration, total cfDNA input quantity, and SIRE. To specifically evaluate the performance of
cfDNA features over covariates, we separately trained an additional three models using only
covariates.

We found the models based on cfDNA epigenetic features significantly predicted ALSFRS-R
(Fig.7a) (Pearson’s R=0.66, p-value=3.71⨉10-9). This was statistically significantly higher
(p-value=1.85⨉10-5) than the predictions from the model trained only on covariates (Pearson’s
R=0.49, p-value=5.81⨉10-5). We found that the high predictive performance of the covariate-only
model was largely attributed to cohort differences; within cohorts, the covariate model was not
predictive (UQ: Pearson’s R=8.48⨉10-3 p-value=0.95, UCSF: Pearson’s R=0.15, p-value=0.38)
but epigenetics remained predictive (UQ: Pearson’s R=0.49, p-value=8.52⨉10-4 UCSF: Pearson’s
R=0.54 p-value=7.24⨉10-4).

We also found that the epigenetic models predicting FVC and ALSFRS-R slope were also
significantly better than covariate-only models (FVC p-value=2.67⨉10-2, ALSFRS-R slope
p-value=4.10⨉10-2), but more mild than the ALSFRS-R models (FVC Pearson’s R=0.50,
p-value=3.78⨉10-3, ALSFRS-R slope Pearson’s R=0.28, p-value=2.81⨉10-2) (Fig. 7b-c). Together,
these results suggest that cfDNA epigenetic features are related to clinical traits used to
measure ALS disease progression.

Lastly, we studied whether the same cfDNA epigenetic features that were associated with ALS
disease phenotypes could differentiate between ALS and PLS cases. Due to the small sample
number of PLS cases (n=15), we again combined the two cohorts and fit using 5-fold
cross-validation with a non-penalized parameter for cohort. Although the analysis was
underpowered, we observed a statistically significant difference between model predictions for
ALS and PLS cases (AUC=0.74, linear regression effect size=36.61, p-value=1.9⨉10-2).
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Figure 7: Predictive performance of cfDNA epigenetic features for ALS phenotypes. For a tenfold
cross-validated model trained using cfDNA methylation proportion and coverage features the
predicted versus true (a) ALSFRS-R, (b) FVC, and (c) ALSFRS-R slope. Each point represents one
ALS case.
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3 Discussion

Here, we presented a scalable cfDNA capture protocol that measures the methylation status of
disease and tissue relevant CpG sites. We applied this capture technology to two independent
cohorts of ALS patients and age-matched controls and examined the correlation with ALS
disease status and progression. We then integrated both the read coverage and methylation
proportion of the targeted sites in a machine-learning model. This model significantly
discriminated between ALS patients and controls in two independent cohorts, including those
with a variety of other neurological diseases. Together, our results suggest that a capture
approach targeting tissue informative DNA methylation markers has value in quantitative
biomarker development and that cfDNA has the potential to be a clinically relevant biomarker for
ALS.

A key strength of using methylation markers informative of a broad variety of tissues is that it
facilitates a comprehensive picture of a patient’s biological state and is not limited to a specific
tissue or context. For example, neurofilament light chain is an exciting biomarker candidate for
ALS.49–51 However, neurofilament light chain also is elevated in other neurodegenerative
diseases, which might limit its specificity for some applications.52 By capturing and quantifying
methylation levels at multiple tissue-informative CpG sites simultaneously, the panel has the
potential to also learn about biological processes occurring in ALS outside of neurodegeneration.
In particular, cfDNA is well-suited to measuring inflammation,6,35 which has been of recent
interest in ALS pathophysiology.37,39 Future work could provide additional insight into how cfDNA
relates to markers in ALS, providing a complementary avenue for investigation into disease
mechanisms.

We observed differential performance between the UQ and UCSF cohorts. Specifically, the UCSF
model outperformed the UQ model. Furthermore, the transferability was better when the UQ
model was applied to the UCSF cohort. While it is likely a combination of factors, one
explanation may be attributed to differences in sequencing depth. The UCSF cohort had higher
on-target CpG coverage. Additional coverage may reduce noise, especially in analyses utilizing
methylation proportion. In some cases, the overall coverage is limited by the total amount of
cfDNA available as input to the sequencing assay. This could be improved by recent
high-throughput extraction technologies with the ability to increase cfDNA yield from a plasma
sample.53,54

Model performance also may be affected by the slight differences in ALS patient characteristics
between the cohorts. For example, the UCSF cohort had patients with lower ALSFRS-R scores
and whose advanced condition may be easier to detect in cfDNA. ALS is also an extremely
heterogeneous disease,55 which can make designing biomarkers that generalize across patient
populations difficult. It is also important to note that both cohorts were of majority European
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ancestry. Further exploration of how epigenetic cfDNA profiles differ between diverse subtypes of
patients or change longitudinally as patients progress is now needed.

This study also only examined the performance of tissue informative markers in characterizing
ALS. Since initiating these studies other proposed blood-based biomarkers for ALS, like
neurofilaments,52,56,57 proteomics,58 or miRNA13 have demonstrated promise and future studies
will need to benchmark with at least one of these. Previous studies have also illustrated the
benefit of combining different types of biomarkers to enhance predictive performance. Future
work on cfDNA biomarker development in ALS could assay multiple biofluids simultaneously and
include a range of cohorts (i.e. asymptomatic gene-positive carriers for diagnosis, multi-ancestry,
neurological conditions presenting with weakness). Integration of these multiple measurements,
along with information about existing patient genetic liability, would robustly test its potential
context of use and may improve disease prediction models.

Lastly, there are numerous avenues for improving algorithms associated with the approach
outlined here. While methylation capture arrays allow for a more cost-effective and focused
analysis over relevant CpG sites, targeted capture also limits the coverage of the genome. This
has the potential to miss important methylation changes occurring outside the targeted regions.
Additionally, since we relied on published tissue methylation data sets that are low coverage and
inherently noisy, TIM selection might be affected. Marker selection and overall algorithm
performance might be improved by better, high-coverage reference data. Reference panel design
for cfDNA applications is a robust area of current research, and incorporating new samples or
biobanks into ALS disease prediction could be an area for future research. Finally,
single-molecule59 and nonlinear models31 have shown recent promise in the analysis of cfDNA
profiles.

Overall, the design of the cell-free DNA methylation capture panel and related prediction
algorithms presented in this study represents a significant advancement in the field of ALS
research. They demonstrate promising potential as a non-invasive and diagnostic tool for ALS,
which could facilitate timely intervention and personalized treatment strategies. Further research
and validation are necessary to refine the panel's performance, assess its generalizability, and
address practical considerations. Nonetheless, this study paves the way for the integration of
DNA methylation biomarkers into the clinical management of ALS, bringing us closer to improved
patient outcomes.
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4 Tables

UCSF UQ

Number of ALS patients 41 (female=20) 43 (female=14)

Number of PLS patients 9 (female=1) 5 (female=2)

Number of healthy controls 45 (female=27) 31 (female=21)

Number of asymptomatic gene carriers 0 2 (female = 1)

Number of OND controls 0 15 (female = 8)

Age (mean ± SD) 62.3 ± 11.9 61.0 ± 9.4

Sex (percentage female) 54.7% 39.1%

ALSFRS-R (mean ± SD) 31.5 ± 9.3 32.4 ± 6.6

ALSFRS-R slope (mean ± SD) 0.7 ± 0.8 0.5 ± 1.1

Age of onset (mean ± SD) 61.3 ± 12.6 58.6 ± 8.5

Days since disease onset (mean ± SD) 1824.9 ± 2077.9 938.1 ± 847.8

Table 1: Clinical characteristics. The clinical and demographic characteristics per cohort. The
number of total patients is shown, and the number of female patients is shown in parentheses.
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Disease Type UQ OND Controls
Alzheimer’s disease 5

Progressive supranuclear palsy 3

Frontotemporal degeneration 2

Other neurological disease 1

Parkinson’s dementia (Lewy Body disease) 1

Corticobasal syndrome 1

Semantic dementia 1

Dementia with Lewy bodies 1

Table 2: Other neurological disease patients. For each of the controls with other neurological
diseases in the UQ cohort, the type of neurological disease (if known) and the number of
patients with that disease.
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Tissue Hypermethylated Hypomethylated Total

Adipose 208 42 250

Brain 200 50 250

Dendritic cell 179 71 250

Endothelial cell 200 50 250

Eosinophil 83 167 250

Erythroblast 134 116 250

Fibroblast 200 50 250

Heart left ventricle 204 46 250

Hepatocyte 200 50 250

Lung left lobe 200 45 245

Macrophage 86 164 250

Mammary 200 50 250

Megakaryocyte 184 66 250

Monocyte 72 164 236

Neutrophil 66 184 250

Placenta 200 50 250

Skeletal muscle 200 50 250

Small intestine 200 50 250

T-cell 290 223 513

Table 3: TIM selection design. Per tissue selected for capture, the number of hypermethylated
TIMs selected, the number of hypomethylated TIMs selected, and the total number of final TIMs
selected for capture.
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Training Test Input Features
AUC (ALS vs all
controls) Odds Ratio P-value

UCSF UCSF Coverage only 0.97 2.53 <2.0 ⨉ 10-16

UCSF UCSF
Methylation
proportion only 0.99 2.54 <2.0 ⨉ 10-16

UCSF UCSF Both 0.99 2.51 <2.0 ⨉ 10-16

UQ UCSF Coverage only 0.74 48.28 1.90⨉ 10-1

UQ UCSF
Methylation
proportion only 0.91 2.15 8.54 ⨉ 10-6

UQ UCSF Both 0.91 1.92 9.48 ⨉ 10-5

UCSF UQ Coverage only 0.71 1.12 6.40 ⨉ 10-1

UCSF UQ
Methylation
proportion only 0.79 2.08 2.43 ⨉ 10-4

UCSF UQ Both 0.81 2.46 4.24 ⨉ 10-4

UQ UQ Coverage only 0.84 2.90 3.07 ⨉ 10-8

UQ UQ
Methylation
proportion only 0.80 2.45 2.67 ⨉ 10-6

UQ UQ Both 0.82 2.34 2.32 ⨉ 10-7

Table 4: Binary prediction model performance. The AUC of predicting ALS vs all control samples
for four models trained either within a cohort or trained in one cohort and tested on the
remaining cohort. Models were trained with either only CpG coverage as input features, only CpG
methylation, or both.
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4 Methods

4.1 Patient Recruitment and Clinical Data

A total of 192 participants were enrolled in a prospective manner at the UCSF ALS Clinic in San
Francisco, California, USA, the Royal Brisbane and Women’s Hospital and Mater Hospital in
Brisbane, Australia under neurologist supervision from 2018-2021. All participants provided
written informed consent and the study received approval from the Human Research Ethics
Committee at the Royal Brisbane and Women’s Hospital (HREC/17/QRBW/299) and by the
UCSF Committee on Human Research (IRB 10-05027).

Patients (with ALS/being assessed for ALS) and when possible, control (non-related, closely
age-matched family members, caregivers or volunteers) were recruited. A second set of other
neurological controls were recruited from a non-ALS outpatient clinic under neurologist
supervision. Allocation to diagnostic groups was performed according to the latest available
clinical information (clinical censor date October 2024).

For cases and controls, age, sex, and self-identified race/ethnicity (SIRE) were recorded. For ALS
cases at the time of visit, FVC and ALSFRS-R were taken, and ALSFRS-R slope and FVC slope
relative to the previous visit were calculated. The symptom onset site and date of first symptoms
were also recorded.

To stabilize the cell-free DNA, all blood samples were collected in the PAXgene Blood ccfDNA
Tubes following a clinic appointment. To ensure enough cfDNA was available for downstream
applications 20 mL of whole blood from controls/OND and 10 mL of whole blood from cases
were collected. Following laboratory receipt (typically within 24-48hrs of collection) blood was
spun with the brake off (10mins, 1900g) before plasma was aliquoted and spun twice (10mins,
16000g) to remove any further debris. Plasma was then stored at -80 before further processing.

4.2 Library Preparation and Sequencing

Using a harmonized protocol across two sites (UCSF and UQ) cfDNA was extracted and prepared
for sequencing. Briefly, plasma was thawed at room temperature and cfDNA was extracted from

all available plasma (range 2-8 ml) using the QIAGEN Circulating Nucleic Acid kit (Cat No:

55114) according to the manufacturer's recommendations. Extracted cfDNA was quantified
using Qubit dsDNA HS Assay and visualized using the cfDNA assay (Agilent - TapeStation 4200

(UCSF) and Agilent Bioanalyzer 2100 (HS kit) (UQ)). cfDNA was bisulfite converted using the
Zymo Lightning kit (Zymo Research) and underwent library preparation using the Accel-NGS
Methyl-Seq (Swift Biosciences) according to the manufacturer's instructions with a major
modification. Briefly, the denatured BS-converted cfDNA was subject to the adaptase, extension,
and ligation reaction. Following the ligation purification, the DNA underwent primer extension
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(98C for 1 minute; 70C for 2 minutes; 65C for 5 minutes; 4C hold) using oligos containing
random UMI and i5 barcodes. #The extension using a UMI-containing primer allows the tagging
of each individual molecule in order to be able to remove PCR duplicates and correctly estimate
DNA methylation levels.

Following exonuclease I treatment and subsequent purification, the libraries were then amplified
using a universal custom P5 primer and custom i7-barcoded P7 primers (initial denaturation:
98C for 30 seconds; 15 cycles of: 98C for 10 seconds, 60C for 30 seconds, 68C for 60
seconds; final extension: 68C for 5 minutes; 4C hold). The resulting unique-dual indexed libraries
were then purified, quantified using the Qubit HS-dsDNA assay, the quality checked using the
D1000-HS assay (Agilent - TapeStation 4200), and grouped as 12-plex pools. Each pool was then
subject to hybridization capture using the xGen Hybridization Capture Kit (IDT) using custom
probes designed on approximately 5000 pre-selected regions.

For each top and bottom strands of the regions of interest, two probes were designed: one
“unmethyl” probe with all G bases converted to A, and one “methyl” probe with all non-CpG G
bases converted to A.

Following the hybridization capture, a final amplification PCR (initial denaturation: 98C for 30
seconds; 10 cycles of: 98C for 10 seconds, 60C for 30 seconds, 68C for 60 seconds; final
extension: 68C for 5 minutes; 4C hold) has been performed, followed by SPRI beads purification
and quantification as QC as previously described. To maximize consistency across sites, the
same probes were used (shipped to Australia following UCSF library preparation).

The final pool of libraries was submitted for sequencing on an Illumina NovaSeq6000 (USA;
UCSF Sequencing facility, Australia;UNSW Ramaciotti Sequencing facility) using identical run
conditions (S4 lane - 150 PE, 8bases for i7, 17 bases for i5).

4.3 Tissue informative marker selection

TIMs were selected for 19 tissues and cell types: dendritic cells, endothelial cells, eosinophils,
erythroblasts, macrophages, monocytes, neutrophils, T-cells, adipose, brain, fibroblast, heart,
hepatocytes, lung, megakaryocytes, skeletal muscle, small intestine, placenta, and mammary
epithelial cells. These tissues were determined based on our previous work to be relevant to
ALS, or selected based on previous publications to be the primary contributors to cfDNA. At least
two WGBS samples per reference dataset were obtained. The average methylation per CpG for
the reference tissue replicates was calculated.

Per CpG, for one tissue at a time, the distance between the methylation proportion at that tissue
and the mean methylation of all other tissues was calculated. The N sites per tissue with the
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greatest difference were kept as TIMs. If two tissues had the same CpG classified as a TIM, it
was removed from both lists.

To begin, we selected 300 potential TIM sites and then performed quality control checks. To
ensure that TIMs were sites that would be covered in cfDNA data, we used two WGBS cfDNA
datasets and removed any CpG site that had less than an average of 10X coverage in both
datasets. We also removed TIMs that overlapped a common SNP (minor allele frequency > 5%).
Since we wanted to have the greatest diversity of regions targeted in the capture, if there were
multiple TIM sites within 500bp of each other, we kept only the first site. Additional quality
control was performed to remove TIMs overlapping repetitive regions and with low predicted
target efficiency. After quality control, 4,994 TIMs remained.

4.4 Probe design

For each of the 4,994 TIMs, both a methylated and unmethylated probe were designed to bind to
and capture both possible states of the targeted CpG. To increase the efficiency of the capture,
120 base pair probes were designed to target a window around the TIM. During bisulfite
conversion, any cytosine base not protected by a methyl group in position 5 is converted into
thymine.60 Since methylation in humans primarily occurs at CpG sites, this means that all
cytosines on the forward strand would be converted to thymine. Thus, to capture the
unmethylated CpG state, the unmethylated probe was designed with all guanine bases converted
to adenine. For the methylated state, where only cytosines in a CpG dinucleotide would be
protected from the bisulfite treatment, only non-CpG guanine bases were converted to an
adenine.

4.5 Bioinformatic processing

For data generated at UCSF, UMIs were first extracted from the index read and added to the
header of the corresponding R1 and R2 fastq file using umi_tools.61 This step was skipped for
UQ samples since UMIs were not sequenced. For samples from both institutions, adapters were
trimmed using trim_galore. Read alignment, processing, and methylation calling were performed
using BsBolt v 1.6.162 in an adapted pipeline published in Morselli et at.18 Reads were aligned to
an hg38 bisulfite converted genome, which was generated using the BsBolt Index over an hg38
fasta file obtained from the UCSC genome browser. Reads were aligned using BsBolt Align in
paired end mode with default parameters. To prepare for duplicate removal, aligned reads were
subject to samtools fixmate and sorted.63 Umi_tools61 dedup in paired end mode was used to
remove duplicate reads.

For both cohorts, CpG methylation was called using the command BsBolt CallMethylation -BG -CG
-remove-ccgg. The CG parameter restricted to only CpG sites (ignoring non-CpG methylation), the
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the BG parameter sent the output to a bedgraph file and the -remove-ccgg parameter removed
methylation calls in ccgg regions.

4.6 Genetic sex

As a quality control metric, we estimated the genetic sex of the samples and assessed how they
corresponded to self-reported sex. We did this using scripts from Phung et al,64 which calculates
the number of reads mapped to chromosome 19 and compares them to the number of reads
mapped to the X chromosome. In individuals assigned female at birth, the ratio of chromosome
19 reads should be approximately 1 since they have two X chromosomes and two chromosome
19. We removed one individual whose genetic sex did not match their reported clinical data.

4.7 Deconvolution

cfDNA deconvolution was performed using CelFiE, which is a supervised deconvolution algorithm
that is designed for noisy read count data and missing reference tissues. Input sites for CelFiE
were the on-target TIMs selected for capture, As demonstrated in the CelFiE publication,
summing reads from adjacent CpGs can improve deconvolution performance by decreasing
sampling noise. As such, reads were summed +/-250bp around the target CpG. Sites with no
reads covering the CpG were set to have a read depth of zero.

Deconvolution was performed using tissues representing organs and hematopoietic cell types,
selected for their relevance in cfDNA.10,28,29 CelFiE can estimate an arbitrary number of unknown
tissues. Since CelFiE learns from both the input and reference data, the number of samples
influences the accuracy of unknown estimation. Based on simulation experiments published in
the original CelFiE paper, 2 unknowns were chosen for the sample size of 96 total cfDNA input
samples.

The reference panel for CelFiE consisted of 19 tissues over the same on-target TIMs as the input
matrix. Reference samples were WGBS samples obtained from ENCODE25 and Blueprint.26,65

Reference samples were also summed in 500bp regions around the target CpG.

CelFiE was run over the UMI-deduplicated UQ samples, the UMI-deduplicated samples, and both
cohorts combined. The CelFIE default of 10 random restarts was used.

After running deconvolution, differences in cell-type proportion between cases and controls were
tested for one tissue at a time using the Python StatsModels package. A logistic regression
model was run where the outcome was the binary case/control status and the input variable was
the estimated tissue of origin proportion for a given tissue. Age, sex, and genetic ancestry were
used as covariates.
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4.8 Machine learning preprocessing

Samples with more than 10% of targeted CpGs missing, meaning that no reads were covering a
CpG, were removed. Any site that had a median read coverage of 1 read or less was also
removed. For the remaining sites and samples, the input matrix was made by dividing the
number of methylated reads by the total number of reads. Imputation was performed per cohort
over the methylation proportion matrix using SoftImpute, implemented in the Python package
fancyImpute. For methylation coverage features, the coverage was normalized per sample by
dividing the number of reads at a CpG by the total number of sequencing reads per individual.

Sex and SIRE were one-hot encoded and added as columns in the input matrix. Age, cfDNA
starting concentration, and total cfDNA input were included as continuous covariates. Two
separate matrices were kept, one for the ALS case/control status, and one for the methylation
proportion and covariates.

4.9 Disease classification

Elastic net regression was performed in R using the BigStatsR package and big_spLogReg
command.42 ALS disease status served as the binary outcome variable, while the DNA
methylation proportion at targeted CpGs and clinical variables served as predictors. We
incorporated age, genetic sex, SIRE, cfDNA concentration (nanograms/microliter), and total input
cfDNA quantity (nanograms) into the regression models as non-penalized variables.

Models were first trained on each cohort separately and then applied to the second cohort. The
alpha parameter which controls model sparsity, was selected by performing ten-fold
cross-validation on the training cohort and picking the optimal value. The BigStatsR package
removes the manual selection of an optimal lambda value by introducing the Cross-Model
Selection and Averaging (CMSA) procedure.42,66 In brief, CMSA separates the training set into K
folds and then performs cross-validation within the training set to obtain a set of vectors of
predictions. This set of coefficients is averaged to produce the final coefficient value. For our
model, we used the BigStatR default K value of 10. To standardize the weights produced per CpG
site in each model, we scaled input value parameters to have mean zero and variance one. We
scaled the test and training data separately.

Cohort-only models were trained only within a single cohort using ten-fold cross-validation. To
evaluate the overall performance of the two cohorts, we trained a single model combining both
sets of data and adding the cohort site as a non-penalized covariate. We used generalized linear
models with a logit link function and additionally report area under the receiver operator curve
(AUC).
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4.10 Analysis of important features

To examine the importance of important DNA methylation and methylation coverage features in
making model predictions, we obtained the weights, or β-values, at each feature from the
combined cohort model. We merged the feature β-values with information on what tissue a TIM
was selected for and whether it was hyper- or hypo-methylated. We used HOMER67 to intersect a
TIM with the closest gene to the TIM site.

To assess the relationship between the methylation or coverage at a specific TIM site, we
performed a logistic regression, with the methylation value of the samples as the predictor and
case-control status as the outcome. We used SIRE, age, sex, cfDNA concentration, and total
cfDNA input as covariates.

4.11 ALS disease phenotype prediction

ALS disease prediction models were trained for ALSFRS, ALSFRS Slope, and FVC. The top 1000
methylation features and top 1000 coverage features from the combined case-control prediction
model were used as input to the model along with age, sex, SIRE, input cfDNA concentration,
and total cfDNA input as non-penalized covariates. Due to low sample sizes for the case-only
analysis, we meta-analyzed the two cohorts and additionally added cohort as a non-penalized
covariate. We trained the elastic net model using the BigStatsR package with the big_spLinReg
command. Each of the three models were evaluated against an elastic net model trained on only
the covariates.

4.12 Off target prediction models

Off target prediction models incorporated information for all CpGs obtained from high throughput
sequencing. To do this, we found the union of all sites across all samples in a cohort. To
maximize the number of off-target sites considered, we then removed sites with more than 5%
missingness. Due to the lower coverage and increased number of sites, we did not impute
missing sites. Since cohorts had differences in sequencing depth and on-target coverage, sites
were analyzed separately. Case control status was then predicted using ten fold cross validation
in an elastic net model using the BigStatsR package in the same manner as the on-target
models.

4.13 Downsampling simulations

To simulate samples with lower read depth, we used picard DownsampleSam68 to randomly
remove reads at specified proportions of the total starting amount of reads to produce a bam
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file. We did this for each UCSF cfDNA sample. Then, methylation was re-called on the
downsampled bam file using BsBolt to produce a new estimate of the methylation proportion and
coverage of a CpG. We then subset to the on-target CpGs and individuals used in Fig.5b,
imputing any missing values with SoftImpute. Then, an elastic net model was trained as in
Section 4.9. The ten fold cross validated AUC was recorded for each set of downsampled
samples.
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9 Supplementary Figures

Figure S1: Cohort demographic characteristics. For the UQ and UCSF cohorts, (a) the distribution
of the age of the cases and controls, (b) the percentage of the cohorts that are female, and the
percentage of the (c) ALS cases and (d) controls that identify as five different racial/ethnic
categories.
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Figure S2: Properties of captured TIMs (a) The number of TIMs selected per chromosome and (b)
for the two types of TIMs, the distribution of distances between a TIM and a CpG island.
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Figure S3: Deconvolution of validation data. The CelFiE estimates (a) for sheared genomic DNA
(n=2) samples taken from blood and (b) healthy cfDNA (n=3). (c)For cfDNA taken from one
individual before and after exercise, the proportion of cfDNA estimated to be originating from
neutrophils.
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Figure S4: On target percentage. The percentage of reads that were on-target (a) before
deduplication and (b) after deduplication. For each cohort, (c) the percentage of the total mapped
starting reads before deduplication that remained after deduplication. The on-target saturation,
defined as 1-(median depth on target after deduplication / median depth on target before
deduplication) for (d) the UCSF cohort and (e) the UQ cohort.
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Figure S5: Cell-type decomposition estimates. The proportion of cfDNA estimated by CelFiE to
originate from each tissue for each sample type in the (a) UCSF cohort and (b) UQ cohort.
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Figure S6: ALS classification using CpG coverage. The false positive rate versus true positive rate
for models trained and tested using only CpG coverage as input features for (a) ten fold cross
validation within UQ samples (b) ten fold cross validation within UCSF samples (c) trained on
UCSF data and tested on UQ data, and (d) trained on UQ data and tested on UCSF data
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Figure S7: ALS disease classification using CpG methylation. The false positive rate versus true
positive rate for models trained and tested using only CpG methylation proportion as input

features for (a) ten fold cross validation within UQ samples (b) ten fold cross validation within
UCSF samples (c) trained on UCSF data and tested on UQ data, and (d) trained on UQ data and
tested on UCSF data
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Figure S8: ALS disease classification using only covariate information. The false positive rate
versus true positive rate for models trained and tested using only covariate information (age,

sex, SIRE, starting cfDNA concentration, and total cfDNA input) as input features for (a) ten fold
cross validation within UQ samples (b) ten fold cross validation within UCSF samples (c) trained
on UCSF data and tested on UQ data, and (d) trained on UQ data and tested on UCSF data
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Figure S9: The relationship between read coverage and predictive performance. For UCSF cfDNA
samples, the total number of reads was randomly downsampled to reduce overall on-target CpG
coverage relative to the actual UCSF read coverage. The downsampled samples were then used
as input for elastic net models trained using 10 fold cross validation to predict case-control
status in the UCSF cohort and the AUC was recorded. The within-cohort UQ AUC is indicated by a
red X.
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Figure S10: ALS disease classification without skeletal muscle TIMS . The false positive rate
versus true positive rate for models trained and tested using cfDNA CpG methylation, CpG
coverage, and covariate information (age, sex, SIRE, starting cfDNA concentration, and total

cfDNA input) for all TIMs besides those chosen for skeletal muscle as input features for (a) ten
fold cross validation within UQ samples (b) ten fold cross validation within UCSF samples (c)
trained on UCSF data and tested on UQ data, and (d) trained on UQ data and tested on UCSF
data
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Figure S11: ALS disease classification with off-target CpGs . The false positive rate versus true
positive rate for models trained and tested using off target cfDNA CpG methylation trained and

tested used (a) ten fold cross validation within UCSF samples (b) ten fold cross validation within
UQ samples.
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