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Abstract 

 There is considerable comorbidity across externalizing and internalizing behavior 

dimensions of psychopathology. We applied genomic structural equation modeling (gSEM) to 

genome-wide association study (GWAS) summary statistics to evaluate the factor structure of 

externalizing and internalizing psychopathology across 16 traits and disorders among European-

ancestry individuals (n’s = 16,400 to 1,074,629). We conducted GWAS on factors derived from 

well-fitting models. Downstream analyses served to identify biological mechanisms, explore 

drug repurposing targets, estimate genetic overlap between the externalizing and internalizing 

spectra, and evaluate causal effects of psychopathology liability on physical health. Both a 

correlated factors model, comprising two factors of externalizing and internalizing risk, and a 

higher-order single-factor model of genetic effects contributing to both spectra demonstrated 

acceptable fit. GWAS identified 409 lead single nucleotide polymorphisms (SNPs) associated 

with externalizing and 85 lead SNPs associated with internalizing, while the second-order 

GWAS identified 256 lead SNPs contributing to broad psychopathology risk. In bivariate causal 

mixture models, nearly all externalizing and internalizing causal variants overlapped, despite a 

genetic correlation of only 0.37 (SE = 0.02) between them. Externalizing genes showed cell-type 

specific expression in GABAergic, cortical, and hippocampal neurons, and internalizing genes 

were associated with reduced subcallosal cortical volume, providing insight into the 

neurobiological underpinnings of psychopathology. Genetic liability for externalizing, 

internalizing, and broad psychopathology exerted causal effects on pain, general health, 

cardiovascular diseases, and chronic illnesses. These findings underscore the complex genetic 

architecture of psychopathology, identify potential biological pathways for the externalizing and 

internalizing spectra, and highlight the physical health burden of psychiatric comorbidity. 
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Introduction 

  Traditional categorical classifications of psychopathology suffer from significant 

limitations. In epidemiological studies, psychiatric disorders consistently co-occur more often 

than expected,1,2 suggesting overlapping genetic underpinnings.3 Furthermore, largely arbitrary 

thresholds and polythetic criterion sets yield thousands of unique symptom combinations that 

lead to the same diagnosis.4 Along with the challenges these limitations present for clinical care, 

they hinder progress in psychiatric genetics and neuroscience research, where efforts to identify 

biological mechanisms that underlie psychiatric illness have had limited success.5,6 Recent 

attempts to address these limitations have included alternative approaches to understanding 

psychopathology, most notably the Hierarchical Taxonomy of Psychopathology (HiTOP) and the 

National Institute of Mental Health’s Research Domain Criteria (RDoC) initiative.5,7-9 HiTOP 

proposes a dimensional structure of psychopathology that progresses hierarchically from 

symptoms to an overarching psychopathology factor. In contrast, RDoC aims to identify the 

underlying mechanisms of psychopathology by focusing on domains of functioning rather than 

diagnostic categories. Despite differences in the units of analysis and the dimensions they 

identify, these systems’ constructs align well in a model of psychopathology.10  

Beginning in the 1990s, twin and family studies showed that dimensions of 

psychopathology had a shared genetic basis,11,12 with externalizing and internalizing 

psychopathology being the subject of much of this research. Whereas externalizing behaviors 

involve interaction with the social environment (e.g., aggression, impulsivity), internalizing 

behaviors are directed inwards (e.g., anxiety, depression).13 With statistical and methodological 

advances, molecular genetic research has also identified common externalizing14 and 

internalizing15,16 genetic factors that underlie each spectrum of psychopathology. Twin and 
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family studies17-19 and principal component analyses17,20 have also examined genetic factors 

shared by both externalizing and internalizing psychopathology. Genome-wide association 

studies (GWAS) of childhood behavior problems, which encompass externalizing and 

internalizing psychopathology, identified two genome-wide significant loci.21,22  

Romero and colleagues recently used a cross-trait GWAS meta-analysis to identify 

pleiotropic genetic effects across 12 psychiatric disorders.23 Because the meta-analytic signal in 

that study was driven by schizophrenia, the interpretation and joint biological characterization of 

the cross-trait signal was limited. Genomic structural equation modeling (gSEM) offers several 

advantages over cross-trait meta-analysis for identifying the shared genetic architecture that 

underlies psychopathology. First, gSEM enables specific hypotheses about the factor structure of 

psychopathology to be tested, with explicit comparison of proposed models that could account 

for the overlap observed across externalizing and internalizing spectra. Second, the use of latent 

variables helps to identify the common genetic effects across externalizing and internalizing 

spectra, minimizing the capture of genetic signals associated with the most dominant trait, as in 

the meta-analytic study of Romero et al.23  

Other gSEM studies have investigated the factor structure of psychiatric disorders and 

identified one to four factors that underlie their shared liability.16,24,25 A previous GWAS 

identified two genome-wide hits for a higher-order p-factor encompassing compulsive, 

psychotic, internalizing, and neurodevelopmental disorders, and 66 significant hits upon post hoc 

examination of a bifactor model p-factor. Because the study included only psychiatric disorders, 

it did not capture a broad spectrum of psychopathology consistent with dimensional models like 

HiTOP. It also included only two internalizing (anxiety and major depressive disorder) and two 

externalizing (attention-deficit hyperactivity disorder and problematic alcohol use) conditions. 
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To conduct a detailed examination of the shared genetic architecture of externalizing and 

internalizing psychopathology, we applied gSEM to large GWAS summary statistics. Adopting a 

dimensional, transdiagnostic approach, we first evaluated models of psychopathology to 

determine which factor structure provided the best fit to the pattern of genetic covariance across 

16 externalizing and internalizing traits and disorders. To identify genetic effects for the 

externalizing spectrum, internalizing spectrum, and across the externalizing and internalizing 

spectra, we conducted GWAS on the latent factors derived from models with acceptable fit. 

Next, we performed downstream analyses to characterize biological mechanisms underlying the 

shared genetic liability to psychopathology and to examine potential causal effects on physical 

health. Identifying mechanisms that account for vulnerability across levels of psychopathology 

can yield insights into the genetic basis of psychopathology, which could lead to advancements 

in treatment, diagnosis, and disorder classification. 

Subjects and Methods 

Summary Statistics 

 Externalizing. Ten sets of summary statistics in European-ancestry (EUR) individuals 

were selected based on existing theory regarding the externalizing spectrum (Supplementary 

Table 1). We included summary statistics from the largest available GWAS of the following 

externalizing disorders: attention deficit hyperactivity disorder (ADHD; n = 225,534),26 four 

substance use disorders [SUDs; i.e., alcohol (AUD; n = 753,248),27 cannabis (CanUD; n = 

886,025),28 opioid (OUD; n = 425,944),29 and tobacco (TUD; n = 495,005)30]. We also included 

broader measures of externalizing psychopathology [age of first sexual intercourse (AgeSex; 

reverse-coded; n = 317,694),14 general risk tolerance (Risk; n = 431,126),14,31 number of sexual 
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partners (NumSex; n = 370,711),14,31 antisocial behavior (ASB; n = 16,400),32 and automobile 

speeding propensity (n = 404,291)31].  

 Internalizing. Summary statistics from eight GWAS in EUR individuals were selected to 

capture the internalizing spectrum (Supplementary Table 1). Three were the largest available 

GWAS of internalizing disorders: (1) anorexia nervosa (AN; n = 72,517),33 (2) major depressive 

disorder (MDD; n = 1,074,629),34 and (3) posttraumatic stress disorder (PTSD; n = 214,408).35 

To reflect a broad liability to internalizing, we included irritability (http://www.nealelab.is/uk-

biobank/; n = 345,231), loneliness (n = 490,689),36 subjective wellbeing (SWB; reverse-coded; n 

= 298,420),37 miserableness (http://www.nealelab.is/uk-biobank/; n = 355,182), and anxiety 

(ANX; n = 280,490).38-40 38-41 To boost power to detect variants associated with both anxiety 

disorders and subclinical anxiety, we combined three anxiety GWAS38-40 using multi-trait 

analysis of GWAS.41  

Exploratory Analysis 

 Genetic Correlations. Using linkage disequilibrium score regression (LDSC)42 in 

GenomicSEM,24 we calculated genetic correlations (rg) between the input traits. Single 

nucleotide polymorphisms (SNPs) were filtered using EUR HapMap3 reference panels,43 and 

SNPs with MAF < 0.01 were removed. LDSC was performed using ancestry-matched 1000 

Genomes Phase 3 linkage disequilibrium (LD) scores.44 When available in the summary 

statistics, SNP-level sample sizes were specified. Otherwise, the effective sample size was 

calculated by summing effective sample sizes across the input GWAS cohorts.45 After 

conducting LDSC, genetic correlations were inspected to identify traits having weak associations 

with the other input traits prior to fitting structural equation models. Traits with average rg < 0.20 

were excluded from gSEM models.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2024.04.06.24305166doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.06.24305166
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS OF PSYCHOPATHOLOGY SPECTRA… 

 7 

 Hierarchical Cluster Analysis. To evaluate whether traits clustered with their predicted 

spectrum, we conducted hierarchical cluster analysis of the rg matrix using the hclust() function 

in RStudio.46 We calculated a Euclidean distance matrix and used Ward’s agglomerative 

clustering algorithm47 to identify clusters. A plot of the within-cluster sum of squares was used to 

determine the optimal number of clusters.  

 Network Analysis. A network analysis of the rg matrix was performed using the igraph 

package in RStudio.48 The matrix was transformed into an undirected and weighted network 

graph, in which nodes represent each trait and the weights of the links between traits represent 

the magnitude of their genetic correlation. The optimal network community structure was 

determined by maximizing modularity, a measure of the quality of a clustering solution.  

Genomic Structural Equation Modeling 

 We fit four confirmatory factor analyses (CFAs) based on existing theories of 

psychopathology.49-51 First, we evaluated a correlated factors model with two factors 

representing externalizing and internalizing psychopathology. Next, we fit a bifactor model 

consisting of a general psychopathology factor on which all traits loaded, and two narrower 

externalizing and internalizing psychopathology factors. A higher-order model was also fit with 

two first-order factors representing externalizing and internalizing, and a second-order factor 

(EXT+INT) representing genetic effects shared by the two spectra. Finally, we fit a 

unidimensional, or p-factor, model where all traits loaded onto a single latent factor. In all CFA 

models, the residuals of the four SUDs were allowed to correlate; all other residuals were 

uncorrelated. We evaluated the models with chi-square, the Akaike information criterion (AIC), 

comparative fit index (CFI), and standardized root mean squared residual (SRMR) fit statistics. 
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We also inspected the results for low (< 0.35) or negative loadings as an indicator of each 

model’s appropriateness.  

 When preparing the data for GWAS, we excluded SNPs with MAF < 0.01 and 

imputation scores < 0.6. Coefficients and standard error values were standardized across 

summary statistics to ensure that effects were scaled similarly for all traits. Each SNP was 

regressed on the model latent variable(s) using diagonally weighted least squares estimation. 

After performing GWAS, we calculated factor-specific QSNP values by comparing the fit of a 

common pathway model to an independent pathway model.16 QSNP provides a measure of SNP 

heterogeneity, reflecting the extent to which a SNP exerts effects entirely through the common 

factor (i.e., common pathway model) or, instead, exerts effects differentially across a factor’s 

indicators (i.e., independent pathway model). SNPs with a Q chi-square p-value < 5x10-8 were 

filtered prior to conducting all subsequent analyses. Finally, to identify lead SNPs for each 

factor, we performed LD clumping in PLINK 1.952 using a range of 3 Mb and r2 > 0.10 with the 

EUR 1000 Genomes Phase 3 reference panel.44 

Biological Characterization 

 Gene-based tests, gene-set enrichment, and gene-tissue expression analyses were 

conducted using MAGMA53 in FUMA v1.6.054. We examined gene expression in BrainSpan55 

and GTEx v856 tissue samples. In FUMA, gene associations were identified based on their: (1) 

position, (2) expression quantitative trait loci (eQTLs) from PsychENCODE57 and GTEx v856 

brain tissue samples, and (3) chromatin interactions using Hi-C data from the dorsolateral 

prefrontal cortex, hippocampus, ventricles, and neural progenitor cells. We also analyzed gene 

expression at the cellular level in single-cell RNA sequencing (scRNA-seq) datasets from 15 

human brain cell expression profiles.58-61 For these analyses, we used a three-step approach: (1) 
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conducting gene-property analyses within each dataset, (2) identifying independent associations 

using within-dataset conditional analyses, and (3) identifying independent clusters of signals 

using cross-datasets conditional analyses.58 

Transcriptome Wide Association Studies 

 We conducted two transcriptome-wide association studies (TWAS) on each factor.62 

First, we used S-MultiXcan62, which prioritizes likely causal genes by jointly predicting gene 

expression across multiple tissues. S-MultiXcan produces an overall Z-score and p-value across 

all tissues, as well as values for the most and least associated tissues. We examined expression 

across the 13 brain tissues in GTEx v856 and identified the most associated tissue for each gene. 

To complement this approach, we used S-PrediXcan63 and weights trained on transcriptional 

differences in the frontal and temporal cortices of psychiatric cases and controls64 from 

PsychENCODE.65 A Bonferroni correction was applied to identify significant associations. 

Associations with Brain Phenotypes 

 We used BrainXcan66 to examine associations between the psychopathology spectra and 

327 brain image-derived phenotypes (IDPs) from structural (T1-weighted) and diffusion 

magnetic resonance images (dMRIs) using ridge regression. Effect sizes and p-values were 

adjusted using LD block-based permutation, and Bonferroni correction was used to account for 

multiple testing (T1: 0.05/109 = 4.59 x 10-4; dMRI = 0.05/218 = 2.29 x 10-4). We also conducted 

bidirectional Mendelian randomization (MR) analyses for the most significantly associated brain 

IDPs. Because the significance of the IDP-factor association was used to identify pairs on which 

to perform MR, the resulting MR p-values were used to discern the possible direction of 

association, rather than to evaluate significance.66 

Drug Repurposing 
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 To identify gene targets for drug repurposing, we used five different gene annotation 

approaches: (1) MAGMA,53 (2) chromatin interactions, (3) eQTL, (4) S-MultiXcan, and (5) S-

PrediXcan.62,63 To avoid unreliable associations, we queried the subset of druggable genes67 

identified by multiple biological annotation sources using the Drug-Gene-Interaction Database 

(DGIdb).68 For the first-order factors, we limited drug repurposing analyses to genes that showed 

specificity of association with either externalizing or internalizing. 

Causal Mixture Models (MiXeR) 

 Univariate MiXeR analyses69 were conducted to estimate each factor’s polygenicity (i.e., 

the number of causal variants required to explain 90% SNP heritability) and discoverability (i.e., 

the average effect size of causal variants).70 Next, bivariate models were used to identify the 

proportion of unique and shared causal variants for the externalizing and internalizing spectra. In 

contrast to genetic correlations, MiXeR accounts for polygenic overlap regardless of whether 

causal variants have the same or opposite direction of effect.  

Genetic Correlations 

 Using the Complex Trait Genetics Virtual Lab71, we calculated batch genetic correlations 

between each factor GWAS and 1,437 phenotypes from publicly available GWAS. GWAS that 

were used as an input for the gSEM models were excluded. Genetic correlations were calculated 

using LDSC42 and EUR 1000 Genomes Phase 3 data44 as LD references. To account for multiple 

testing, a Benjamini-Hochberg false discovery rate (FDR) correction was applied to each set of 

genetic correlations.  

Generalized Summary-data-based Mendelian Randomization 

 To evaluate potentially causal impacts of externalizing and internalizing genetic risk on 

physical health, we conducted Generalized Summary-data-based Mendelian Randomization 
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(GSMR)72 using 15 health traits as outcomes. Traits were chosen across four domains—(1) pain, 

(2) general health, (3) cardiovascular disease, and (4) chronic illness—each of which has 

demonstrated associations with psychopathology.73-75 We used summary statistics from GWAS 

of pain intensity,76 multisite chronic pain,77 and back pain.78 General health indices included 

GWAS summary statistics from the UK Biobank for longstanding illness, disability, or infirmity; 

hospitalization; and age at death. We selected five cardiovascular GWAS: (1) heart failure,79 (2) 

stroke,79 (3) myocardial infarction,80 (4) hypertension (http://www.nealelab.is/uk-biobank/), and 

(5) abdominal aortic aneurysm.79 Finally, we selected four GWAS of chronic illnesses: (1) type 2 

diabetes,81 (2) inflammatory bowel disease (IBD),82 (3) chronic obstructive pulmonary disease 

(COPD),79 and (4) asthma.79 Genetic instruments with significant pleiotropic effects on both the 

exposure and outcome were removed using the heterogeneity in dependent instruments outlier 

(HEIDI) method.72 A Bonferroni adjusted p-value was applied to identify significant effects 

(0.05/45 = 0.001). 

Results 

 Based on previous GWAS of externalizing and internalizing14,15,83 and existing theory,7,9 

we considered a total of 18 externalizing and internalizing traits for inclusion in the analyses 

(Supplementary Figure 1). We excluded two traits (automobile speeding propensity and anorexia 

nervosa) that were weakly associated with the others in the model (mean rg < 0.20). Network 

analysis and hierarchical agglomerative cluster analysis both revealed two clusters that 

correspond to externalizing and internalizing spectra (see Figure 1).  

 Using the 16 traits, we tested several CFA models (see Figure 2 and Supplementary 

Figures 2 and 3). A general psychopathology factor model did not provide adequate fit to the 

data (�2(98) = 8965.28, AIC = 9041.28, CFI = 0.79, and SRMR = 0.15), although standardized 
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loadings were all significant and > 0.35. A bifactor model comprising a general psychopathology 

factor and two specific factors representing externalizing and internalizing spectra fit the data 

well (�2(81) = 2527.19, AIC = 2637.19, CFI = 0.94, and SRMR = 0.05). However, the model led 

to several weak (< 0.35) and one negative standardized loading, possibly from overfitting the 

data. Thus, despite its good fit, we did not perform GWAS on factors from this model because 

they would be difficult to interpret. Two CFA models provided adequate fit and had strong factor 

loadings: (1) a correlated-factors model and (2) a higher-order factor model. Fit statistics for both 

models were �2(97) = 3877.82, AIC = 3955.82, CFI = 0.91, and SRMR = 0.09. To ensure 

identification in the higher order model, the loadings of externalizing and internalizing onto the 

second-order factor were constrained equal to the square root of the genetic correlation between 

the externalizing and internalizing factors.84  

Multivariate GWAS of Psychopathology Spectra 

 Using a QSNP analysis, 228 independent SNPs exhibited heterogeneous effects across the 

externalizing spectrum (Supplementary Figure 4). Among the associations of these SNPs within 

the input GWAS (Supplementary Table 2), a plurality was most strongly associated with age at 

first sexual intercourse (37.23%), followed by TUD (23.38%). After filtering heterogenous 

SNPs, a multivariate GWAS of externalizing identified 409 GWS independent lead SNPs 

(Supplementary Table 3). Of these, 92 (22.49%) were not identified or within �1000 kb of SNPs 

identified by any of the input GWAS, and four were not previously associated with any 

externalizing trait using the same threshold. Three of the four novel SNPs were on chromosome 

4 (rs1961547, rs9316, and rs7682762), with the fourth on chromosome 22 (rs1473811). These 

SNPs showed phenotypic associations with chronotype, schizophrenia, and social support, 

among other traits (Supplementary Table 4).  
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 For internalizing, 222 independent SNPs exhibited significant heterogeneity 

(Supplementary Figure 5), with most (86.49%) showing the strongest associations with MDD 

(Supplementary Table 5). After filtering heterogeneous SNPs, there were 85 GWS independent 

lead SNPs (Supplementary Table 6). Of these, 23 (27.06%) were not identified or within �1000 

kb of SNPs identified by the input GWAS, and two were not previously associated with any 

internalizing trait. The two novel associations were on chromosomes 3 and 4 (rs1381763 and 

rs4698408, respectively). Novel SNPs had phenotypic associations with neuroticism and 

depression (Supplementary Table 7). 

 In the GWAS of genetic effects shared across externalizing and internalizing (EXT+INT 

factor), there were 130 lead SNPs that exhibited heterogeneous effects (Supplementary Figure 6). 

Of these (Supplementary Table 8), a plurality (47.69%) was most strongly associated with age at 

first sexual intercourse, followed by AUD (17.69%). There were 256 GWS independent lead 

SNPs associated with EXT+INT (Supplementary Table 9), 38 of which (14.84%) were not 

identified or within �1000 kb of SNPs identified by any of the input GWAS. All significant loci 

were previously associated with at least one externalizing or internalizing phenotype (Figure 3).  

Biological Characterization 

 MAGMA identified 493 genes significantly associated with externalizing, including 

CADM2 and DRD2 (Supplementary Table 10). Gene-property analysis showed enriched 

expression during prenatal brain development (Supplementary Figure 7). Gene expression was 

significantly enhanced in almost all brain tissues, with the top associations being with the 

cerebellar hemisphere, cerebellum, and frontal cortex (Supplementary Figure 8). A gene-set 

related to mRNA binding was the only significant association with externalizing (pbon = 0.04; 

Supplementary Table 11). Using scRNA-seq datasets, externalizing was significantly associated 
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with dopaminergic and GABAergic neurons and neuroblasts from embryonic brain samples 

(GSE76381), human cortical neurons and hybrid cells that display characteristics of neurons and 

astrocytes (GSE67835), and pyramidal neurons from the cornu ammonis (CA1) hippocampal 

region60. After conditional analyses, independent significant associations remained for 

GABAergic neurons, cortical neurons, and hippocampal neurons (Supplementary Figure 9).  

 There were 146 genes significantly associated with internalizing, including several on 

chromosome 8 (BLK, XKR6, and C8orf12) that were previously associated with neuroticism 

(Supplementary Table 12).85 Gene expression was not significantly enhanced at any 

developmental stage (Supplementary Figure 7), but predominated in the brain, with the frontal 

cortex and anterior cingulate cortex most strongly associated (Supplementary Figure 8). 

Although no gene-sets were significant after Bonferroni correction, the top associations were 

with genes involved in synaptic assembly and transmission (Supplementary Table 11). In 

scRNA-seq analyses, the only significant cell-type association was with GABAergic neurons 

(GSE76381), which was not independently significant after conditional analyses.  

 There were 321 genes significantly associated with EXT+INT (Supplementary Table 13). 

The top hits were for FAM120AOS, DCC, and P4HTM, all of which have previously been 

associated with both internalizing and externalizing traits. Gene expression was enhanced in 

brain tissue during prenatal developmental (Supplementary Figure 7), and genes associated with 

the broad spectrum of psychopathology were predominantly expressed in the brain 

(Supplementary Figure 8). No gene sets were significant after Bonferroni correction, but like 

internalizing, the top sets comprised genes involved in synaptic activity (Supplementary Table 

11). Using scRNA-seq, EXT+INT showed significant associations with dopaminergic neurons 
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(GSE76381), GABAergic neurons (GSE76381), and cortical neurons (GSE67835), though these 

associations were not independently significant.  

Transcriptome-Wide Association Analysis 

 Using S-MultiXcan to predict the effects of SNP variation on gene expression across 13 

brain tissues revealed 352 significant gene associations for externalizing, 141 for internalizing, 

and 238 for EXT+INT (Figure 4, Supplementary Tables 14-16, and Supplementary Figure 10). 

TWAS using PsychENCODE data for S-PrediXcan identified 207 significant genes for 

externalizing, 52 for internalizing, and 124 for EXT+INT (Supplementary Tables 17-19 and 

Supplementary Figure 11). Forty-five genes were identified by both S-MultiXcan and S-

PrediXcan for externalizing, 21 for internalizing, and 36 for EXT+INT, with gene-property 

analyses showing these genes to be consistently upregulated across brain tissues (Supplementary 

Figures 12-14), and three (C1QTNF4, DPYSL5, and SLC12A5) were almost exclusively 

upregulated in brain tissues.  

Associations with Brain Phenotypes 

 After Bonferroni correction of the LD-adjusted p-values, 8 T1 (Supplementary Figure 15) 

and 12 dMRI IDPs (Supplementary Figure 16) were significantly associated with externalizing 

(Supplementary Table 20), including positive associations with gray matter volume in the 

thalamus, caudate nuclei, and occipital pole, and negative associations with the right ventral 

striatum and left amygdala. From dMRIs, there were significant associations with intra-cellular 

volume fraction or orientation dispersion indices (ODI) in the medial lemniscus, cerebral 

peduncle, and middle cerebellar peduncle, among others. The only significant association for 

internalizing was with lower gray matter volume in the left subcallosal cortex (Supplementary 

Table 21 and Supplementary Figures 17-18). Genetic factors shared across externalizing and 
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internalizing spectra were significantly negatively associated with gray matter volume in the left 

amygdala and left subcallosal cortex (Figure 5), positively associated with ODI in the medial 

lemniscus and left cerebellar peduncle, and negatively associated with ODI in the right external 

capsule (Supplementary Table 22 and Supplementary Figures 19-20).  

MR analyses showed potential bidirectional relationships between externalizing and gray 

matter volume in the right ventral striatum and left thalamus (Supplementary Table 23). There 

was greater evidence that reduced gray matter volume in the left subcallosal cortex was causally 

related to internalizing than vice versa (p = 0.008 vs. 0.401; Supplementary Table 24). Evidence 

was mixed regarding the direction of causal effects for the second-order externalizing and 

internalizing factor (Supplementary Table 25). 

Drug Repurposing 

 Among the 1,759 unique genes identified for externalizing using biological annotation 

tools, 308 were druggable targets.67 Sixty of these genes were identified by at least two 

biological annotation tools, and 52 exhibited specificity for externalizing (i.e., were not 

associated with internalizing). When queried in DGIdb, these genes yielded 492 drug-gene 

interactions (Supplementary Table 26), including with dextroamphetamine (used to treat 

ADHD), phenobarbital (used to prevent withdrawal symptoms from benzodiazepines and 

alcohol), baclofen (used to treat AUD), naltrexone (used to treat AUD and OUD), naloxone 

(used to reverse opioid overdose), and methadone (used to treat OUD). Gene interactions with 

antimigraine, anti-inflammatory, and anticonvulsant drugs (e.g., topiramate and lamotrigine) 

were also identified. Most of the identified drugs had regulatory approval (64.84%).  

Biological annotation identified 454 unique genes associated with internalizing, 60 of 

which were druggable targets.67 Fifteen of these were identified by at least two biological 
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annotation tools and seven exhibited specificity for internalizing, yielding 292 drug-gene 

interactions (Supplementary Table 27). Drug targets included antidepressants and antipsychotics. 

Unlike externalizing, most identified drugs (82.33%) were not currently approved, suggesting 

potential candidates for use in treating internalizing psychopathology.  

For EXT+INT 1,138 unique genes were identified using the five biological annotation 

tools, nearly one-fifth (17.93%, n = 204) of which were druggable targets, with 47 of those 

implicated by more than one biological annotation method. Using DGIdb, we identified 460 

unique drug-gene interactions (Supplementary Table 28), many of which were also present in the 

internalizing or externalizing results. As with internalizing, most of these drugs (75.52%) were 

not currently approved. 

Causal Mixture Models (MiXeR) 

 The externalizing and internalizing spectra displayed similar levels of polygenicity, with 

an estimated 12,600 and 13,200 causal variants, respectively. However, internalizing had lower 

discoverability (���
2 = 1.40 x 10-5) than externalizing (���

2 = 1.44 x 10-4), suggesting that SNPs 

that influence internalizing traits may exert smaller effects and thus require larger samples to 

detect. Despite a MiXeR-estimated genetic correlation of 0.37, almost all causal variants 

(96.83% of externalizing and 92.42% of internalizing; Supplementary Figure 21) overlapped 

across the two spectra, with more overlap than predicted by genetic correlation alone (AIC = 

12.30, BIC = 4.06, where positive values indicate that the predicted model explains the data 

better than the genetic correlation alone). In fact, the models do not exclude the possibility that 

causal variants for externalizing were a subset of those for internalizing. Of the shared causal 

variants, 62.92% were estimated to be concordant in direction of effect.  

Genetic Correlations 
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 Applying a Bonferroni-adjusted p-value (0.05/1368 = 3.65 x 10-5), there were 413 

significant genetic correlations with externalizing (Supplementary Table 29 and Supplementary 

Figure 22). Tobacco phenotypes were among the most strongly correlated (current smoking: rg = 

0.79, SE = 0.02; maternal smoking around birth: rg = 0.71, SE = 0.03; and ever smoked: rg = 

0.62, SE = 0.02), along with lower socioeconomic status, including Townsend deprivation index 

(rg = 0.68, SE = 0.03), living in housing supplied by a local authority or housing association (rg = 

0.66, SE = 0.03), experiencing financial difficulties (rg = 0.58, SE = 0.03), and lower educational 

attainment (rg = -0.44, SE = 0.02). After Bonferroni correction, 311 phenotypes were 

significantly genetically correlated with internalizing (Supplementary Table 30 and 

Supplementary Figure 23). Among the strongest correlations were psychiatric phenotypes, such 

as mood swings (rg = 0.90, SE = 0.01), neuroticism (rg = 0.89, SE = 0.01), and feeling fed-up (rg 

= 0.82, SE = 0.01). Internalizing was also significantly genetically correlated with several types 

of pain (abdominal: rg = 0.60, SE = 0.04; facial: rg = 0.51, SE = 0.08; chest: rg = 0.49, SE = 0.03; 

and multisite chronic pain: rg = 0.49, SE = 0.03, among others). There were 474 significant 

genetic correlations with EXT+INT, with most being like the first-order factors (Supplementary 

Table 31 and Supplementary Figure 24).  

Generalized Summary-data-based Mendelian Randomization  

 Externalizing had significant positive causal effects on all physical health traits 

examined, except age at death and IBD. Internalizing was significantly causally associated with 

all traits except age at death and abdominal aortic aneurysm. Additionally, internalizing had 

protective effects on IBD (bxy = -0.32, SE = 0.09, p = 0.0004) and stronger positive associations 

than externalizing with all three pain phenotypes, all five cardiovascular diseases, and three of 
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four chronic illnesses (Figure 6). Like externalizing, EXT+INT had significant positive effects 

on all physical health traits except age at death and IBD (Supplementary Table 32).  

Discussion 

 Comparing candidate factor structures of psychopathology, we found support for 

hierarchical models consistent with the HiTOP framework. Our models, which included 

symptom-level (e.g., risk tolerance and irritability) and disorder-level (e.g., TUD and MDD) 

manifestations of psychopathology, indicated that these traits could be organized onto higher 

dimensions representing externalizing and internalizing spectra, which were themselves 

subsumed under a broader umbrella of psychopathology genetic risk. Leveraging GWAS 

summary statistics that included over 1.5 million individuals, our findings also show that 

although there is shared variance across forms of psychopathology, the commonality does not 

manifest as a single overarching dimension (i.e., p-factor). Rather, the genetic architecture of 

psychopathology was better captured by a model that distinguished between specific dimensions 

while recognizing their interrelatedness. 

 Our findings also demonstrated connections between psychopathology and RDoC 

domains10 in downstream analyses that encompassed multiple RDoC units of analysis. For 

example, at the cellular level, externalizing-related variants were associated with RNA 

expression in pyramidal hippocampal neurons, which are implicated in RDoC’s cognitive control 

construct. For internalizing, analyses revealed molecular-level associations with drugs targeting 

serotonin and dopamine, which align with RDoC’s negative valence systems domain. Integrating 

HiTOP’s dimensional framework with RDoC’s etiological approach makes it possible to 

evaluate the extent to which psychopathology spectra show etiologically consistent associations 

across domains of functioning and units of analysis. 
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 Although externalizing and internalizing were better represented as correlated but distinct 

factors and had only a small-to-moderate genetic correlation, bivariate causal mixture models 

estimated extensive overlap in causal variants between the two spectra. This pleiotropy suggests 

that there are shared biological pathways that underpin externalizing and internalizing 

psychopathology. Through GWAS and downstream analyses, we identified potential neural 

mechanisms of this shared risk. Broad psychopathology genetic risk was associated with 

structural and functional differences in the brain, including reduced gray matter volume in the 

left amygdala and subcallosal cortex. Reduced left amygdala volume has been shown to mediate 

the relation between childhood threat exposure and the development of externalizing and 

internalizing symptoms.86 Similarly, reduced left subcallosal cortical volume is a potential 

mediator of associations between personality and various emotional states (e.g., subjective well-

being) and psychiatric disorders (e.g., alcohol dependence).87 Psychopathology liability was also 

related to alterations in the organization and microstructure of white matter fibers, reflected by 

changes in orientation dispersion indices, which may signify disruptions in neural 

communication that contribute to various manifestations of psychopathology.88 In summary, we 

identified neural mechanisms that operate at varying levels of specificity,89 with some correlates 

linked specifically to externalizing or internalizing and others linked to broad psychopathology 

liability. 

 Extending these findings beyond mental health, MR analyses showed that liability to 

psychopathology exerted potentially causal effects on adverse physical health outcomes. Of note, 

internalizing generally showed stronger associations with pain, general health, cardiovascular 

disease, and chronic illness than externalizing. Previous research also supports likely causal 

effects of genetic risk for internalizing traits/disorders on localized pain90,91 and various disease 
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outcomes.92 An unexpected finding here was that internalizing was protective for IBD after 

removing pleiotropic variants. Although some studies demonstrated causal effects of MDD on 

risk for IBD,93 studies of other internalizing disorders (e.g., anxiety) have not.94 Thus, more 

research is needed to disentangle the complex relations of internalizing and inflammatory, 

autoimmune conditions such as IBD. Finally, although the impact of internalizing liability on 

physical health was particularly pronounced, both externalizing and broad psychopathology 

liability also showed potentially causal effects across physical health domains. These findings 

underscore the contribution of psychopathology liability to the emergence of co-occurring 

physical health conditions.  

 A limitation of the present study is its inclusion of only European-ancestry individuals. 

Data adequate to explore a broad liability to internalizing and externalizing disorders and 

subclinical features in other ancestry groups were not available. Although data from GWAS of 

externalizing and internalizing-related disorders are available for some other non-European 

ancestry groups, more precise, non-disorder psychiatric phenotypes are limited in these 

populations. Nonetheless, some research suggests that a similar factor structure applies in 

African-ancestry individuals. At the disorder level, a gSEM of African-ancestry individuals 

(unpublished data) identified substance use and psychiatric disorder factors that roughly aligned 

with externalizing and internalizing, respectively. Additionally, the analyses showed that a 

higher-order factor accounted for genetic variance shared by substance use and psychiatric 

disorders, which to a degree corresponds to our EXT+INT factor. With the growth of diverse 

biobanks95 and deep phenotyping96, more direct replication in other ancestries should soon be 

possible and given high priority. 
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In conclusion, our findings supported a hierarchical structure of psychopathology, 

recognizing correlated externalizing and internalizing dimensions subsumed under a broader 

psychopathology liability. By discerning genetic variants and neural mechanisms operating at 

varying levels of specificity, the findings revealed the utility of applying a dimensional, 

hierarchical genetic approach to investigate psychopathology, which could augment existing 

categorical frameworks. Developing a more nuanced understanding of underlying biological 

mechanisms across forms of psychopathology could aid in constructing a more precise and 

comprehensive psychiatric nosology, providing a foundation on which to improve treatment and 

clinical outcomes. 
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Figures 

Figure 1. Exploratory analyses of internalizing and externalizing traits. 

 

a) network analysis results where colors represent clusters, the size of nodes indicates centrality, 
and the width of the edges between nodes represents the genetic correlation between traits, b) 
agglomerative hierarchical clustering using Ward’s criterion to identify clusters, and c) genetic 
correlations for the sixteen traits that were retained for Genomic Structural Equation Modeling. 
PTSD = posttraumatic stress disorder, TUD = tobacco use disorder, CanUD = cannabis use 
disorder, AUD = alcohol use disorder, OUD = opioid use disorder, ADHD = attention deficit 
hyperactivity disorder, AgeSex = age at first sexual intercourse (reverse coded), ASB = 
antisocial behavior, NumSex = number of sexual partners. Wellbeing is reverse coded. 
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Figure 2. Confirmatory factor analysis models used for Genomic Structural Equation Modeling.  
 

 
 

a) results of the correlated factors model. Model fit: ��(97) = 3877.82, AIC = 3955.82, CFI = 
0.91, SRMR = 0.09, b) results of the higher order factor model. Model fit: ��(97) = 3877.82, 
AIC = 3955.82, CFI = 0.91, SRMR = 0.09. EXT = externalizing, INT = internalizing, ADHD = 
attention deficit hyperactivity disorder, AgeSex = age at first sexual intercourse (reverse coded), 
NumSex = number of sexual partners, ASB = antisocial behavior, AUD = alcohol use disorder, 
CanUD = cannabis use disorder, OUD = opioid use disorder, TUD = tobacco use disorder, SWB 
= subjective wellbeing, PTSD = posttraumatic stress disorder, MDD = major depressive disorder, 
ANX = anxiety. Alternative models considered can be found in Supplementary Figures 2 and 3. 
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Figure 3. Manhattan plots of GWAS results. 

a) depicts results for the externalizing (EXT) GWAS, b) for the internalizing (INT) GWAS, and c) for the second order EXT + INT 
GWAS. Green diamonds denote lead SNPs not identified in any of the input GWAS for the spectrum, and yellow diamonds denote 
lead SNPs not previously identified in association with any of the input traits for a spectrum based on a GWAS Catalog search. 
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Figure 4. Transcriptome wide association study (TWAS) results for the second order externalizing and internalizing factor across 13 
brain tissues using S-MultiXcan. 

 
 
The gene names for the top 25 significant associations are annotated. Significance was determined using a Bonferroni-adjusted p-
value of 3.73 × 10-6 (0.05/13,406 tests). The dashed line at 5.43 indicates the significance level (-log10(3.73 x 10-6). A total of 236 
associations were significant after multiple testing correction. Full TWAS results for all the factors can be found in Supplementary 
Tables 14-19.  
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Figure 5. Partial results of BrainXcan association analysis for the second order externalizing + 
internalizing factor. 

Associations shown are for image-derived phenotypes from structural (T1) magnetic resonance 
imaging. Full results from BrainXcan are in Supplementary Figures 15-20 and Supplementary 
Tables 20-22. Blue colors represent reduced volume, and orange represents increased volume. 
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Figure 6. Representative results of generalized summary-data-based Mendelian Randomization (GSMR) across four domains of 
physical health. 

Pain intensity results: INT: bxy = 0.48, SE = 0.04, p = 1.11E-28; EXT: bxy = 0.31, SE = 0.01, p = 1.44E-155. Longstanding illness, 
disability, or infirmity results: INT: OR = 1.12, SE = 0.01, p = 9.83E-33; EXT: OR = 1.05, SE = 0.002, p = 2.27E-75. Myocardial 
infarction results: INT: OR = 1.27, SE = 0.07, p = 0.0003; EXT: OR = 1.24, SE = 0.02, p = 6.32E-38. Type 2 Diabetes results: INT: 
OR = 1.72, SE = 0.06, p = 7.28E-20; EXT: OR = 1.19, SE = 0.02, p = 6.94E-28. All results depicted are significant at a Bonferroni 
corrected p-value of 0.001. In all analyses, INT/EXT is the exposure, and the physical health trait is the outcome. INT = internalizing, 
EXT = externalizing, OR = odds ratio. Full results of GSMR analyses, including results for EXT+INT, can be found in Supplementary
Table 32. 
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