A APPENDIX - PREDICTING GRAFT AND PATIENT OUTCOMES FOLLOW-ING KIDNEY TRANSPLANTATION USING INTERPRETABLE MACHINE LEARNING MODELS

A.1 Estimation of eGFR

Estimated glomerular filtration rate (eGFR) is a score that represents the kidney filtration rate and is derived from various measurements such as creatinine. It can be derived according to the following formulas. Adult (older than 16 years old) eGFR [1] is derived from the formula

$$\begin{split} \mathrm{eGFR}_{\mathrm{adult}} &\stackrel{\mathrm{def}}{=} 142 \\ & \times \min\left(\frac{\mathrm{creatinine}}{0.7\delta_{\mathrm{f}} + 0.9(1 - \delta_{\mathrm{f}})}, 1\right)^{-0.241\delta_{\mathrm{f}} - 0.302(1 - \delta_{\mathrm{f}})} \\ & \times \max\left(\frac{\mathrm{creatinine}}{0.7\delta_{\mathrm{f}} + 0.9(1 - \delta_{\mathrm{f}})}, 1\right)^{-1200} \\ & \times 0.9938^{\mathrm{age}} \times 1.012^{\delta_{\mathrm{f}}}, \end{split}$$

where δ_f is equal to 1 if the patient is female, or 0 else. The creatinine measurements need to be expressed in mg/dl and the provided measurements be expressed in μ mol/l, the latter is first converted as follows:

$$\operatorname{creatinine}_{mg/dl} \stackrel{\text{def}}{=} 113.1222 e^{-4} \times \operatorname{creatinine}_{\mu mol/l}$$

Pediatric eGFR [2] is given by

$$eGFR_{pediatric} \stackrel{\text{def}}{=} 0.413 \times \frac{\text{height}}{\text{creatinine}},$$

where creatinine is also in mg / dl, and height in cm.

Figure 1: Features densities. A density of 1 means that the corresponding feature is always present; conversely, a density of 0 means that this feature is always missing. Orange columns highlight features with no missing value at all.

A.2 Features

Figure 1 shows the proportion of non-missing values for each feature in the data after cleaning. Features with a density lower than 0.5 are not displayed.

The following is a statistical overview of the data after cleaning. For each feature, this overview includes a display of the feature's distribution and its density. If a feature is numerical, we also provide its minimum, maximum, mean values, and its standard deviation. When a categorical feature is binary, we include the mapping between the labels and $\{0, 1\}$. We limit this overview to the 35 features resulting from the feature selection process (see section "Methods", subsection "Model Training and Validation"). Similarly, we also add a description of the targets at the end of this overview.

To enhance readability, each feature and target is presented on its own page.

17500 -			mean=1.040536839222133 mean ± std; std=0.7055773 min=0.0, max=2.0	3074924249
15000 -				
12500 -				
12500				
10000 -				
7500 -				
5000 -				
2500 -	 			
0	 0	1		2

Figure 2: Feature distribution: amm.

amm

Description: Number of mismatches at A locus.

Type: Numerical

Density: 1.0

Mininimum: 0.0

Maximum: 2.0

Mean: 1.0

Standard deviation: 0.7

Figure 3: Feature distribution: bmm.

\mathbf{bmm}

Description: Number of mismatches at B locus.

Type: Numerical

Density: 1.0

Mininimum: 0.0

Maximum: 2.0

Mean: 1.0

Standard deviation: 0.6

Figure 4: Feature distribution: crf_tx.

 crf_tx

Description: Calculated reaction frequency at transplant.

Type: Numerical

Density: 1.0

Mininimum: 0.0

Maximum: 100.0

Mean: 20.4

Standard deviation: 33.3

Figure 5: Feature distribution: d_a_hom.

d_a_hom

Description: Donor homozygous at A locus.

Type: Categorical

- Heterozygous : 0
- Homozygous : 1

Figure 6: Feature distribution: d_b_hom.

d_b_hom

Description: Donor homozygous at B locus.

Type: Categorical

- Heterozygous : 0
- Homozygous : 1

Figure 7: Feature distribution: d_dr_hom.

d_dr_hom

Description: Donor homozygous at DR locus.

Type: Categorical

- Heterozygous : 0
- Homozygous : 1

Figure 8: Feature distribution: dage.

dage

Description: Donor age.

 $\mathbf{Type:} \ \mathbf{Numerical}$

Density: 1.0

Mininimum: 1.0

Maximum: 85.0

Mean: 48.8

Standard deviation: 15.5

Figure 9: Feature distribution: dbmi.

dbmi

Description: Donor BMI.

 $\mathbf{Type:} \ \mathbf{Numerical}$

Density: 1.0

Mininimum: 10.5

Maximum: 64.6

Mean: 26.6

Standard deviation: 5.6

Figure 10: Feature distribution: dcmv.

\mathbf{dcmv}

Description: Donor CMV test result.

Type: Categorical

- Negative : 0
- Positive : 1

Figure 11: Feature distribution: dcod.

dcod

Description: Donor cause of death.

Type: Categorical

Figure 12: Feature distribution: degfr_base.

$degfr_base$

Description: Donor eGFR – first measure.

Type: Numerical

Density: 1.0

Mininimum: 4.0

Maximum: 296.6

Mean: 90.0

Standard deviation: 24.0

Figure 13: Feature distribution: degfr_max.

$degfr_max$

Description: Maximum value for donor eGFR.

Type: Numerical

Density: 1.0

Mininimum: 10.2

Maximum: 431.5

Mean: 99.8

Standard deviation: 23.1

Figure 14: Feature distribution: dial_days.

dial_days

Description: Patient time on dialysis (days).

Type: Numerical

Density: 0.6

Mininimum: 0.0

Maximum: 23317.0

Mean: 1426.6

Standard deviation: 1238.9

Figure 15: Feature distribution: dial_type.

dial_type

Description: Most recent type of dialysis regarding transplantation.

Type: Categorical

Figure 16: Feature distribution: dpast_alcohol_abuse.

dpast_alcohol_abuse

Description: Donor history of alcohol abuse.

Type: Categorical

- No : 0
- Yes : 1

Figure 17: Feature distribution: dpast_cardio_disease.

$dpast_cardio_disease$

Description: Donor cardio disease.

Type: Categorical

- No: 0
- Yes : 1

Figure 18: Feature distribution: dpast_diabetes.

dpast_diabetes

Description: Donor diabetes.

Type: Categorical

- No : 0
- Yes : 1

Figure 19: Feature distribution: dpast_hypertension.

$dpast_hypertension$

Description: Donor hypertension.

Type: Categorical

- No : 0
- Yes : 1

Figure 20: Feature distribution: dpast_smoker.

$dpast_smoker$

Description: Donor smoker.

Type: Categorical

- No : 0
- Yes : 1

Figure 21: Feature distribution: drmm.

\mathbf{drmm}

Description: Number of mismatches at DR locus.

Type: Numerical

Density: 1.0

Mininimum: 0.0

Maximum: 2.0

Mean: 0.5

Standard deviation: 0.6

Figure 22: Feature distribution: dsex.

dsex

Description: Donor sex.

Type: Categorical

- Male : 0
- Female : 1

Figure 23: Feature distribution: dtype.

dtype

Description: Type of donor.

Type: Categorical

- DBD : 0
- DCD : 1

Figure 24: Feature distribution: durine_output_24hrs.

durine_output_24hrs

Description: Donor urine output within the last 24 hours (ml).

Type: Numerical

Density: 0.6

Mininimum: 0.0

Maximum: 50000.0

Mean: 3150.7

Standard deviation: 1910.1

Figure 25: Feature distribution: graft_no.

graft_no

Description: Number of kidney transplants.

Type: Categorical

- First graft : 0
- Second graft or more : 1

Figure 26: Feature distribution: matchbty.

matchbty

Description: Matchability.

Type: Numerical

Density: 1.0

Mininimum: 1.0

Maximum: 10.0

Mean: 6.2

Standard deviation: 2.3

Figure 27: Feature distribution: offer_wait.

offer_wait

Description: Recipient waiting time (days), from registration to offer.

Type: Numerical

Density: 1.0

Mininimum: 0.0

Maximum: 10920.0

Mean: 990.9

Standard deviation: 895.4

Figure 28: Feature distribution: prd.

\mathbf{prd}

Description: Primary renal disease.

Type: Categorical

Figure 29: Feature distribution: r_dr_hom.

r_dr_hom

Description: Recipient homozygous at DR locus.

Type: Categorical

- Heterozygous : 0
- Homozygous : 1

Figure 30: Feature distribution: rage.

rage

Description: Recipient age.

Type: Numerical

Density: 1.0

Mininimum: 18.0

Maximum: 85.0

Mean: 50.2

Standard deviation: 13.5

Figure 31: Feature distribution: rbg.

 \mathbf{rbg}

 $\ensuremath{\textbf{Description:}}\xspace$ Recipient blood group.

Type: Categorical

Figure 32: Feature distribution: rbmi.

\mathbf{rbmi}

Description: Recipient BMI.

Type: Numerical

Density: 0.6

Mininimum: 11.0

Maximum: 64.5

Mean: 26.6

Standard deviation: 4.9

Figure 33: Feature distribution: rcmv.

\mathbf{rcmv}

Description: Recipient CMV test result.

Type: Categorical

- Negative : 0
- Positive : 1

Figure 34: Feature distribution: rethnic.

$\mathbf{rethnic}$

Description: Recipient ethnicity.

Type: Categorical

Figure 35: Feature distribution: rhosp.

rhosp

Description: Anonymised unit that received and transplanted the organ.

Type: Categorical

Figure 36: Feature distribution: rsex.

\mathbf{rsex}

Description: Recipient sex.

Type: Categorical

- Male : 0
- Female : 1

Figure 37: Target distribution: gcens.

gcens

Description: Graft censoring indicator.

Type: Categorical

- Censored : 0
- Graft failure : 1

Figure 38: Target distribution: gsurv.

gsurv

Description: Graft survival time (days).

Type: Numerical

Density: 1.0

Mininimum: 0.0

Maximum: 8086.0

Mean: 2379.9

Standard deviation: 1936.7

Figure 39: Target distribution: pcens.

pcens

Description: Patient censoring indicator.

Type: Categorical

- Censored : 0
- Patient death : 1

Figure 40: Target distribution: psurv.

\mathbf{psurv}

Description: Patient survival time (days).

Type: Numerical

Density: 1.0

Mininimum: 0.0

Maximum: 8137.0

Mean: 2569.3

Standard deviation: 2003.8

References

- A. S. Levey, L. A. Stevens, C. H. Schmid, et al., "A new equation to estimate glomerular filtration rate," Ann Intern Med, vol. 150, no. 9, pp. 604–612, 2009.
- [2] G. J. Schwartz, A. Munoz, M. F. Schneider, et al., "New equations to estimate eGFR in children with CKD," J Am Soc Nephrol, vol. 20, no. 3, pp. 629–637, 2009.