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Abstract 

Overview: We here share a pre-registered analytic plan for a matched case-control study 

nested in a retrospective cohort of hospitalized patients with suspected sepsis. We will compare 

gut microbiota (measured near the time of admission) among patients with sepsis who do and 

do not develop sepsis-induced acute kidney injury.  

 

Rationale: Sepsis afflicts nearly 50 million people annually, and sepsis-induced acute kidney 

injury (AKI) is a frequent complication that contributes to morbidity, mortality, and increased 

healthcare costs. Despite the clinical significance of AKI in sepsis, we still do not understand 

why some patients with sepsis develop AKI while others do not. The gut microbiome has been 

implicated in other clinical features and sequelae of sepsis, but to date has not been studied in 

sepsis-induced AKI. 

 

Objective: To determine whether gut microbiota predict AKI in patients with suspected sepsis. 

 

Hypothesis: We hypothesize that among patients with suspected sepsis, gut bacterial density 

and identity (at the time of admission) predict the onset and severity of AKI. 

 

Study design: We will perform a matched case-control study nested in an observational cohort. 

The cohort includes patients admitted to the University of Michigan in 2016-2020 with suspected 

sepsis. We will divide patients into cohorts that did and did not develop AKI. We will derive 

matched cohorts based on relevant clinical covariates. We will characterize their gut microbiota 

using 16S rRNA gene amplicon sequencing of rectal swabs obtained within 24 hours of AKI 

onset. We will compare admission gut microbiota across these matched cohorts to test our 

primary hypothesis. 

  



Body 

Overview: We have designed a matched case-control study nested in a retrospective cohort of 

hospitalized patients with suspected sepsis. We will test the hypothesis that gut microbiota 

(measured near the time of admission) predict the onset and severity of acute kidney injury 

(AKI) among patients with sepsis. 

 

Rationale: Sepsis afflicts nearly 50 million people annually, and AKI is a frequent complication 

that contributes to morbidity, mortality, and increased healthcare costs1–4. Despite the clinical 

significance of AKI in sepsis, we still do not understand why some patients with sepsis develop 

AKI while others do not5, limiting our ability to predict and prevent its onset and outcomes.  

 

The gut microbiome represents a tremendous source of biological variation among hospitalized 

patients. In both animal models6 and observational human studies7, gut microbiota are 

correlated with the severity of systemic injury and risk of death in critical illness. Our research 

group has recently demonstrated that gut microbiota predict the severity of response (weight 

loss, temperature) in a murine model of sepsis, confirming the relationship between gut 

microbiota and heterogeneity in sepsis pathogenesis8.  

 

Relevant to the pathogenesis of sepsis-associated AKI (SA-AKI), the gut microbiome: 1) 

participates in the calibration of systemic immunity9, 2) is a metabolic “organ” that generates 

hundreds of systemically active metabolites10,11, 3) is a well-recognized source of uremic 

toxins12, 4) is a source of systemically translocated bacteria and bacterial products in sepsis13, 

and 5) provides colonization resistance against secondary (nosocomial) infections14. Several 

studies have demonstrated that gut microbiota participate in the pathogenesis of AKI caused by 

conditions other than sepsis (e.g., ischemia-reperfusion injury)15–19. Yet, the contribution of gut 



microbiota to the pathogenesis of SA-AKI has been unexplored to date, both in experimental 

models and in human cohort studies.  

 

Objective: To determine whether gut microbiota predict AKI in patients with suspected sepsis. 

 

Hypothesis: We hypothesize that among patients with suspected sepsis, gut bacterial density 

and identity (at the time of admission) predict the onset and severity of AKI. 

 

Study design (overview): We will perform a matched case-control study nested in an 

observational cohort. The cohort includes patients admitted to the University of Michigan in 

2016-2020 with suspected sepsis. We will divide patients into cohorts that did and did not 

develop AKI. We will derive matched cohorts based on relevant clinical covariates. We will 

characterize their gut microbiota using 16S rRNA gene amplicon sequencing of rectal swabs 

obtained within 24 hours of AKI onset. We will compare admission gut microbiota across these 

matched cohorts to test our primary hypothesis. 

 

Access to clinical data: To identify our cohort and perform matching, we used a structured 

language query of the University of Michigan’s Research Data Warehouse. We collected the 

following clinical information for patients meeting criteria for suspected sepsis (defined below) in 

2016-2020: demographics, past medical history, laboratory values, vital signs from nursing 

flowsheets, medical administration records, and admission metadata.  

 

Specimen acquisition: Biospecimens in this study are rectal swabs performed as a routine 

aspect of clinical care. These swabs were performed routinely for surveillance of Vancomycin-

Resistant Enterococcus (VRE) in patients admitted to any of seven high-risk inpatient units 

(Critical Care Medical Unit, Surgical Intensive Care Unit, Neurologic Intensive Care Unit, 



Coronary Care Unit, Trauma-Burn Intensive Care Unit, Cardiothoracic Surgery Unit, Intensive 

Care Step-down Unit), bone marrow transplant ward, or oncology ward. Rectal swab specimens 

were collected on admission by nursing staff with the BD™ ESwab Regular Collection Kit 

(Franklin, NJ). The prescribed practice at our institution during the study period was to acquire 

rectal swabs from patients in left lateral decubitus position. A rectal swab was inserted through 

the rectal sphincter 2-3 cm, rotated 360°, withdrawn and checked for the presence of fecal 

soilage. Following testing for VRE by the University of Michigan Clinical Microbiology 

Laboratory, the contents of the swabs are dislodged into a buffer solution with glycerol and 

stored at -80°C. These banked rectal swabs have been previously used for human microbiome 

studies8,20–22. 

 

Study population: The study population consists of adult subjects admitted to the University of 

Michigan in 2016-2020 with clinically suspected sepsis and a rectal swab collected close to 

admission available for analysis in a banked repository. We defined suspected sepsis based on 

a modification of the Rhee criteria23: patients were identified as having suspected sepsis if blood 

cultures were collected within 24 hours of admission and four consecutive days of antibiotic 

treatment was administered within ±2 days of the day of blood culture collection. We excluded 

organ failure from the Rhee criteria to ensure a wide range of disease severity and include a mix 

of subjects with and without organ failure. To ensure our analysis is representative of the gut 

microbiome around the time of AKI onset, we restricted our cohort to patients whose swab was 

collected no more than 24 hours after AKI onset. 

 

Because we are specifically interested in de novo AKI, we excluded patients with end-stage 

renal disease (ESRD) and chronic kidney disease (CKD). Because in many instances we could 

not determine if a patient had ESRD or CKD prior to admission, we also excluded patients with 

abnormal creatinine (>1.2 mg/dL) throughout their entire hospital stay, recognizing that this is a 



conservative threshold and will exclude some patients with non-resolving AKI. We also excluded 

patients if they were transferred from an outside institution, because 1) we lacked sufficient 

medical history for these patients (pertinent for the identification of covariates such as medical 

comorbidities) and 2) we could not be confident regarding timing of sepsis onset, AKI onset, and 

antibiotic exposures. Finally, we excluded the fourth or greater hospital readmission and any 

readmissions that were fewer than 90 days apart. 

 

Definition of AKI: We defined and staged AKI using the Kidney Disease Improving Global 

Outcomes (KDIGO) consortium definition of AKI, which defines AKI onset as a ≥ 50% increase 

in baseline serum creatinine within seven days of admission24. The KDIGO definition of AKI 

builds upon prior RIFLE25 and AKIN26 criteria for defining and staging AKI and has been used 

successfully in numerous studies. The National Kidney Foundation-Kidney Disease Outcomes 

Quality Initiative (NKF-KDOQI) supports the use of the KDIGO AKI guideline definition and 

staging strategy for epidemiologic comparisons across populations and over time27.  

 

When determining how to define baseline creatinine for AKI staging, we considered three 

options: 1) outpatient creatinine measured prior to hospitalization, 2) minimum creatinine 

measured within 7 days prior (“rolling window”), and 3) absolute minimum creatinine measured 

during hospitalization. Although using outpatient creatinine measurements would be a rigorous 

approach, nearly 30% of patients in the cohort did not have outpatient creatinine information 

available, limiting our ability to use this definition. Using the “rolling window” approach fails to 

capture patients who already had developed AKI by the time of their presentation, while the 

absolute minimum creatinine approach is able to capture patients with resolving AKI. When 

modeling the “rolling window” approach, we observed that numerous patients with AKI were 

misclassified as not having AKI compared to patients as defined by the absolute minimum 

approach. We thus decided to define baseline creatinine as the patient’s absolute minimum 



creatinine throughout their hospitalization, recognizing that an inherent limitation of this 

approach is potential omission of patients who present with AKI that does not resolve during 

hospitalization. While we considered a “hierarchical” approach in which outpatient creatinine is 

used when available and minimum inpatient creatinine is used in all other patients, we elected 

to use a uniform definition for the sake of standardization and minimization of bias across the 

entire cohort. 

 

Identification of cohort: From the initial 17,952 patients, 1,458 met inclusion criteria (Figure 

1). We defined cases as patients who met KDIGO criteria for stage 2 or 3 AKI (≥ 100% or ≥ 

200% increase in baseline creatinine within 7 days, respectively) and controls as patients that 

did not develop AKI. We chose to exclude stage 1 AKI in our definition of both AKI cases and 

controls, because stage 2 and 3 AKI are associated with relatively higher risk of major adverse 

kidney events and death28,29, and we sought to ensure sufficient clinical separation between 

cases and controls. We used coarsened exact matching to match cases and controls 1:2 by age 

(age was discretized and binned into tertiles), gender, and unit of admission. We chose to 

match on age and gender because these are predictors of AKI30,31 and unit of admission as a 

partial proxy for admission diagnosis and provider practice. We did not match on antibiotic 

treatment because antibiotics directly alter gut microbiota; thus matching on this exposure would 

obscure the very source of variation we intend to study. We chose not to match on baseline 

kidney function (eGFR) because 1) the calculated eGFR is based on variables already 

incorporated into our matching strategy (age, sex, creatinine)32 and 2) cases and controls are 

already similar in eGFR (Table 1). From the cohort, 435 patients were matched (145 cases, 290 

controls). The matched variables, baseline kidney function (eGFR), and burden of medical 

comorbidities are evenly distributed among cases and controls (Table 1). This balance of 

baseline patient demographics and underlying kidney function demonstrated an equivalent 

susceptibility to AKI between cases and controls.  



 

 

Figure 1 | Cohort Overview. We identified a cohort of 1,458 patients with suspected sepsis 

admitted to the University of Michigan in the years 2016-2020. We excluded the fourth or 

greater admission and any readmissions less than 90 days apart. We also excluded patients 

with known end-stage renal disease or an abnormal creatinine (>1.2 mg/dL) throughout their 

hospitalization. 



 

Sample size considerations: We included all available cases and two matched controls from 

our cohort. Study sample size was thus governed by rectal swab collection and AKI incidence. 

We used a 1:2 (case:control) matching strategy to improve statistical power. To confirm the 

plausibility of our detecting a significant difference in gut microbiome composition between 

patients who develop AKI and those who do not, we performed a formal power calculation. 

Based on preliminary data generated from 116 swabs from this same repository8,20–22, relative 

abundance of Lachnospiraceae (a prominent bacterial family associated with sepsis severity in 

animals and humans) was 6.5% ± 7.4%8. Thus, assuming an alpha of 0.05, we anticipate the 

following minimum detectable difference according to various estimated power thresholds: 

Estimated Power Minimum Detectable Difference (%) 
80% 2.1% 
90% 2.4% 

Table 1 Cohort demographics  
 No AKI AKI p Value 
n 290 145  

Male 150 (51.7) 75 (51.7) 1 
Age, years 55.62±16.74 56.12±16.69 0.767 
Unit   1 
   BICU 2 (0.7) 1 (0.7)  

   BMT 18 (6.2) 9 (6.2)  

   CCU 20 (6.9) 10 (6.9)  

   CVC 14 (4.8) 7 (4.8)  

   MICU 72 (24.8) 36 (24.8)  

   ONC 96 (33.1) 48 (33.1)  

   SICU 44 (15.2) 22 (15.2)  

   STEP_DOWN 24 (8.3) 12 (8.3)  

Non-Caucasian 52 (17.9) 21 (14.6) 0.458 
eGFR*  94.19±21.43 93.21±32.91 0.711 
APACHE IV 45.87±21.27 70.74±26.38 <0.001 
Hospital Death 26 (9.0) 18 (12.4) 0.339 
Charlson Index  3.40±3.16 3.20±3.27 0.539 
   Myocardial Infarction 22 (7.6) 17 (11.7) 0.213 
   Congestive Heart Failure 43 (14.8) 22 (15.2) 1 
   Peripheral Vascular Disease 11 (3.8) 16 (11.0) 0.006 
   Chronic Pulmonary Disease 71 (24.5) 33 (22.8) 0.781 
   Mild Liver Disease 26 (9.0) 21 (14.5) 0.113 
   Moderate-severe Liver Disease 13 (4.5) 12 (8.3) 0.166 
   Diabetes  54 (18.6) 39 (26.9) 0.063 
*eGFR was calculated with the CKD-EPI creatinine equation (2021) 
Data are presented as n, mean±SD or n (%). APACHE: Acute Physiology and Chronic Health 
Evaluation 

 



95% 2.7% 
99% 3.2% 

 

Alternately, we consider the Shannon Diversity Index (an integrative index of community 

richness and evenness). In the same pilot study of 116 rectal swabs from a similar human 

cohort, the mean Shannon Diversity Index was 2.7 ± 0.668. We thus anticipate the following 

minimum detectable differences for Shannon Diversity Index: 

Estimated Power Minimum Detectable Difference (%) 
80% 0.188 
90% 0.218 
95% 0.243 
99% 0.288 

 

We thus anticipate we will have adequate statistical power for our primary comparisons. 

 

Generation of microbiome data  

Bacterial DNA Isolation: We will extract genomic DNA from rectal swabs resuspended in 360 μL 

ATL buffer (Qiagen DNeasy blood and tissue kit) and homogenized in fecal DNA bead tubes. 

We will include multiple negative control specimens (unused swabs, isolation controls, AE 

buffer, sterile water, blank wells) to identify potential procedural and sequencing contamination. 

We will use the ZymoBIOMICS Microbial Community DNA Standard (Zymo Research) as a 

positive control. We anticipate having to use multiple extraction kits, we will use the fewest 

possible and keep track of which kits were used to determine any potential batch effects.  

 

Bacterial Density Quantification: We will quantify extracted bacterial DNA from rectal swabs 

using a QX200 Droplet Digital PCR System (BioRad, Hercules, CA) as previously described20,21. 

Primers and cycling conditions will be performed according to a previously published protocol33. 

To summarize, we will use primers 5′-GCAGGCCTAACACATGCAAGTC-3′ (63F) and 5′-

CTGCTGCCTCCCGTAGGAGT-3′ (355R). The cycling protocol is as follows: 1 cycle at 95°C for 



5 min, 40 cycles at 95°C for 15 s, and 60°C for 1 min, 1 cycle at 4°C for 5 min, 1 cycle at 90°C 

for 5 min, all at a ramp rate of 2°C/s. We will use the BioRad C1000 Touch Thermal Cycler for 

PCR cycling and detect droplets using the automated droplet reader (BioRad, catalog no. 

1864003), using Quantasoft™ Analysis Pro (version 1.0.596) for quantification. Both sterile 

water controls, as well as isolation controls will be run alongside rectal swab specimens.  

 

16s rRNA gene sequencing: We will amplify the V4 region of the 16S rRNA gene from extracted 

genomic DNA using published primers and the dual-indexing sequencing strategy as described 

previously34. We will use the Illumina MiSeq platform (San Diego, CA) with a MiSeq Reagent Kit 

V2 (500 cycles), according to the manufacturer’s instructions with modifications found in the 

standard operating procedure of the laboratory of Patrick Schloss34,35. Given the cohort size, 

samples will be sequenced over multiple sequencing runs. To account for batch effect, we will 

randomize samples across runs (to avoid false clustering, e.g. false clustering of sequentially 

collected specimens) and include the ZymoBIOMICS Microbial Community DNA Standard 

(positive control) and negative controls to assess run-to-run variation. We will retain the run 

number as a variable in our analysis and use this to compare α- and β-diversity between runs to 

assess batch effects. If batch effects are large, we will use run number as a variable in our 

multivariate logistic regression analyses. 

 

16S gene amplicon analysis: We will process and analyze sequence data using the software 

mothur1 according to the standard operating procedure for MiSeq sequence data2,3. We will 

follow the mothur standard operating procedure without deviation. To summarize, we will use 

the VSEARCH4 algorithm to detect chimeras using abundant sequences as our reference. We 

will remove sequences flagged as chimeric from all samples. We will use the SILVA rRNA 

database5 as a reference for sequencing alignment and perform pairwise alignment with the 

Needleman-Wunsch6 algorithm. We will pass a distance matrix to the OptiCLUST clustering 



algorithm7 with a 97% distance threshold to cluster sequences into “operational taxonomic units” 

(OTUs). We will classify OTUs using the mothur implementation of the Ribosomal Database 

Project (RDP) classifier and RDP taxonomy training set 18 (trainset18_062020.rdp.fasta, 

trainset18_062020.rdp.tax), available on the mothur website. 

 

After clustering and classification of sequencing data, will perform all analyses in R. We will 

evaluate differences in community structure with permutational multivariate analysis of variance 

(PERMANOVA) using the vegan package in R45. We will also perform resampling of multiple 

generalized linear models with the mvabund46 package in R to look for individual OTU 

differences between communities. We will compare the community structure of negative 

controls to rectal swab specimens and confirm statistically significant differences using 

orthogonal techniques of hypothesis testing (PERMANOVA and mvabund). If we find that 

negative-control specimens are dominated by a single OTU (indicating the presence of true 

contamination rather than stochastic sequencing “noise”47), we will perform our primary 

analyses with and without exclusion of that OTU as a sensitivity test to determine the influence 

of contamination on our findings.  

 

We will not reflexively perform a “background subtraction” step, as is sometimes performed in 

low-biomass microbiome studies. Our rationale is that 1) many 16S-classified taxa present in 

negative control specimens may also represent “true” taxa present in lower gut specimens, 2) 

well-to-well contamination is a known phenomenon on Illumina sequencers, thus introducing 

“true” signal into negative control specimens48, 3) given the compositional nature of microbiome 

data, removal of any OTU directly results in the “inflation” of all other taxa, including possible 

contaminants not detected in negative control specimens, and 4) the presence of background 

taxa in specimens may be an indirect proxy for low bacterial density, which is itself a biologically 

and clinically significant feature of microbial communities20. For these reasons, we will instead 



prioritize transparency, reporting all taxa detected in both specimens and negative controls. We 

will make our sequencing data (and all relevant metadata) publicly available prior to submission 

of our first manuscript so that reviewers and readers can directly compare taxa detected in our 

specimens and negative controls. We will use absolute 16S rRNA gene quantification (using 

ddPCR as above) as an additional, orthogonal measurement to discriminate “true” and “false” 

microbial signal in our specimens. 

 

Primary hypothesis: In hospitalized patients with sepsis, the community composition of gut 

microbiota differs among those who develop AKI as compared to those who do not.  

 

Analytic approach: We will use PERMANOVA to compare community composition of cases and 

controls, stratified by matched pair. We will use the Bray-Curtis dissimilarity index as our 

measure of compositional dissimilarity. We will perform our analysis at both the OTU and family 

level of taxonomic classification. We will use 10,000 permutations for each execution of 

PERMANOVA. We will interpret a P value of < 0.05 as indicative of a significant difference in 

community composition. 

 

Should PERMANOVA reveal no difference in community composition across cases and 

controls, we will interpret this as falsification of our primary hypothesis (i.e., as evidence that 

within our cohort, the community composition of gut microbiota does not differ among septic 

patients that do and do not develop AKI). Wherase should PERMANOVA analysis identify a 

global difference in gut community composition between case and control subjects, we will 

determine the family-level differences in community composition that explain this difference 

using a random forest classification model built with the ranger package49. We will run the 

random forest model 100 times using Mean Decrease in Accuracy as our index of feature 

importance. We will construct two models using this method: one using relative abundance of 



bacterial taxa and the other using absolute abundance (relative * bacterial density) of bacterial 

taxa. We will correct for feature importance bias and assign significance values to key bacterial 

taxa with a permutation importance heuristic (PIMP)50 and identify bacterial taxa that meet a 

threshold of significance p<0.01.  

 

We will then use a multivariable conditional logistic regression model (conditioned on matched 

pair) to determine if the relative and absolute abundance characteristics are independently 

associated with the onset of AKI. We will include the abundance of the bacterial families that 

meet a threshold significance of p<0.01 identified by random forest and the following covariates: 

APACHE IV score, Charlson comorbidity index, and the administration of known nephrotoxins 

and vasopressors. 

 

We will also test the relative abundance of key (pre-specified) bacterial taxa across cases and 

controls. In pilot studies of a murine model of sepsis, we identified Lachnospiraceae, 

Ruminococcaceae, Lactobacillaceae, Enterobacteriaceae, and Clostridiaceae as bacterial 

families associated with sepsis severity. We will use the Wilcoxon signed-rank test to compare 

both relative and absolute abundance of the above bacterial families, as well as those that meet 

a threshold significance of p<0.01 identified by random forest, between cases and controls. 

Given the exploratory nature of this analysis, we will adjust for multiple comparisons using the 

Bonferroni correction.  

 

Secondary hypotheses: 

1. In hospitalized patients with sepsis, the density of admission gut microbiota is higher 

among those who develop AKI as compared to those who do not.  

Approach: Our lab has demonstrated that the bacterial density of rectal swabs is highly 

variable, and that this variability is of clinical significance20. We will use the log-



transformed number of 16S copies per rectal swab (quantified using ddPCR as above) 

to determine the bacterial density of admission rectal swabs. We will compare the 

bacterial density between case and control subjects using paired t-testing to determine if 

there is a significant difference between the groups. We will interpret a P value of <0.05 

as indicative of a significant difference in bacterial density. 

 

2. In hospitalized patients with sepsis, the diversity of admission gut microbiota is lower 

among those who develop AKI as compared to those who do not.  

Approach: In a systematic review of 69 studies on gut microbiota composition in patients 

with chronic kidney disease, more than half of the studies reported that gut diversity is 

significantly decreased in CKD (from early to advanced stages) compared to healthy 

individuals51. We will thus calculate the Shannon Diversity Index (a measure of both 

evenness and richness), the Chao1 Index (a measure of richness), and the dominance 

(a measure of evenness) of admission rectal swabs using the vegan package in R to 

establish whether the evenness and richness of the gut microbiome is associated with 

AKI onset. We will compare these three complementary indices between case and 

control subjects using paired t-testing and interpret a P value of <0.05 as indicative of a 

significant difference in bacterial diversity. 

  

3. Differences in both density and diversity of baseline gut microbiota contribute to the 

onset of AKI in septic patients.  

Approach: We know that variability in gut bacterial density and diversity is clinically 

significant20,51, but we do not know which of these features of the microbiome are more 

influential in determining AKI onset. Using a multivariable conditional logistic regression 

model (conditioned on matched pair) we will determine if both bacterial density and 

diversity are independently associated with the onset of AKI. The multivariable logistic 



regression model will include a primary outcome of AKI with the covariates APACHE IV 

score, Charlson comorbidity Index, administration of known nephrotoxins and 

vasopressors, gut bacterial density, and gut bacterial diversity. Including gut bacterial 

density and diversity in the logistic regression will inform us which feature of the 

microbiome matters more for the onset of AKI in septic patients.  

 

Exploratory analyses 

This project will generate the largest dataset to date for hospitalized patients with suspected 

sepsis that contains both gut microbiome data and patient-matched clinical exposure and 

outcome data. It will thus be a robust source of data for use in hypothesis-generating analyses. 

In exploratory analyses, we will compare the relationship between antibiotic exposure, gut 

microbiota, and important outcomes: mortality, ventilator-free days, and organ failure-free days. 

All correlations identified via these exploratory (non-AKI) analyses will be considered provisional 

until validated in independent cohorts, animal models, and other subsequent investigations.
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