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ABSTRACT

Background: DNA sequences harbor vital information regarding various organisms and viruses.
The ability to analyze extensive DNA sequences using methods amenable to conventional computer
hardware has proven invaluable, especially in timely response to global pandemics such as COVID-
19. Objectives: This study introduces a new representation that encodes DNA sequences in unit
vector transitions in a 2D space, extracted from the 2019 repository Novel Coronavirus Resource
(2019nCoVR). The main objective is to elucidate the potential of this method to facilitate virus
classification using minimal hardware resources. It also aims to demonstrate the feasibility of
the technique through dimensionality reduction and the application of machine learning models.
Methods: DNA sequences were transformed into two-nucleotide base transitions (referred to as
’transitions’). Each transition was represented as a corresponding unit vector in 2D space. This coding
scheme allowed DNA sequences to be efficiently represented as dynamic transitions. After applying a
moving average and resampling, these transitions underwent dimensionality reduction processes such
as Principal Component Analysis (PCA). After subsequent processing and dimensionality reduction,
conventional machine learning approaches were applied, obtaining as output a multiple classification
among six species of viruses belonging to the coronaviridae family, including SARS-CoV-2. Results
and Discussions: The implemented method effectively facilitated a careful representation of the
sequences, allowing visual differentiation between six types of viruses from the Coronaviridae family
through direct plotting. The results obtained by this technique reveal values accuracy, sensitivity,
specificity and F1-score equal to or greater than 99%, applied in a stratified cross-validation, used
to evaluate the model. The results found produced performance comparable, if not superior, to the
computationally intensive methods discussed in the state of the art. Conclusions: The proposed
coding method appears as a computationally efficient and promising addition to contemporary
DNA sequence coding techniques. Its merits lie in its simplicity, visual interpretability and ease of
implementation, making it a potential resource in complementing existing strategies in the field.
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1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, with the first case
reported by the World Health Organization (WHO) on December 31, 2019. It rapidly spread worldwide, reaching
pandemic proportions that impacted all continents Zhang et al. [2023]. The WHO declared it a Public Health Emergency
of International Concern on January 30, 2020, and officially declared it a global pandemic on March 11 of the same
year, posing a significant challenge for governments globally and becoming the first modern pandemic of historical
proportions. Its impact on public health was overwhelming, straining healthcare systems and resulting in a staggering
number of severe cases and deaths globally. By December 2023, there were over 772 million confirmed cases, causing
nearly seven million deaths worldwide, as reported by the World Health Organization (WHO) WHO [2023].

Simultaneously, restrictive measures and business closures triggered an unprecedented socioeconomic crisis, leading to
massive job losses and a severe impact on the global economy, particularly affecting small businesses and informal
workers Vieira et al. [2021], Coccia [2023]. However, the consequences of the pandemic extend beyond health and the
economy. The closure of schools and universities disrupted the educational flow, exacerbating learning gaps, especially
for those without adequate access to digital resources Kostina and Orlova [2022]. To mitigate the devastating impacts of
the pandemic, global leaders and scientists have adopted various measures, including expanded vaccination campaigns
and hygiene initiatives. These actions play a crucial role in combating misinformation while strengthening collective
immunity and reducing the spread of more virulent variants and their ability to evade immune protection provided by
different vaccine types.

Genomic tracking and surveillance of the virus play a crucial role in pandemic management for several reasons. Firstly,
these efforts allow health authorities to quickly detect and respond to new outbreaks caused by emerging variants
Tosta et al. [2023]. By closely monitoring the virus’s spread and its variants, authorities gain crucial information about
transmission patterns, enabling more targeted interventions. Genomic sequencing of SARS-CoV-2 not only aids in
identifying new variants but also provides insights into their behavior, transmissibility, and response to COVID-19
treatments. This process plays a fundamental role in tracing virus transmission pathways, allowing specific interventions
such as the development and adjustments of diagnostic tests, both serological and molecular, as well as potential updates
in vaccine formulations and early detection of variants of concern (VOCs), variants of interest (VOIs), and variants
under monitoring (VUM) Tosta et al. [2023].

Global collective efforts in identifying and mitigating the disruptions caused by SARS-CoV-2 have led to the creation
of extensive open repositories of viral genomic sequences, shared globally. This has enabled the generation of an
unprecedented number of genomic sequences, facilitating the classification and study of this virus almost in real-time.
Viral classification provides a systematic framework supporting multidisciplinary research in epidemiology, virology,
and public health, contributing to the understanding of the virus’s characteristics and the implementation of specific
measures. Additionally, comprehensive tracking of these variants, fueled by a robust taxonomic classification, provides
valuable data for predictive modeling, establishing itself as an indispensable resource in anticipating and addressing
future pandemics Levi et al. [2024].

While sequencing SARS-CoV-2 is crucial for understanding the virus and its variants, it faces a series of challenges
Chiara et al. [2021], De Maio et al. [2020]. The substantial volume of data from sequencing can overwhelm existing
computational and analytical capabilities, especially when dealing with the highly mutable RNA virus, consisting of
approximately 30,000 base pairs. In bioinformatics, the practice of assigning a genomic sequence to a given group is
mostly based on similarities in the structure and organization of the genomes of the studied species, and this classification
contributes to their phylogenetic and functional understanding. Tasks such as alignment, assembly, and comparison of
long sequences require significant computational power Phan et al. [2015]. As the sequence length increases, traditional
algorithms may become computationally intensive and less effective Sf [1990], Hofstetter et al. [2019]. The National
Center for Biotechnology Information (NCBI) host a sequence alignment-based approach, BLAST Sf [1990], which
searches similarity in samples. This technique has been the main tool for genomics research in bioinformatics for the
last 30 years Shah et al. [2019]. However, BLAST exhibits certain limitations, as noted in the study Hofstetter et al.
[2019], which employed this tool to identify fungi collected in a protected beech forest in Montricher, Switzerland. The
research highlights that the accurate interpretation of results obtained through BLAST alignments demands extensive
taxonomic and molecular expertise. Additionally, it emphasizes that such analyses are excessively time-consuming for
routine application in future applications, exemplified by the two-month duration required for verifying approximately
20 identifications.

Given the vast amount of genomic data available, scientists have leveraged the power of machine learning (ML) and
deep learning (DL) algorithms in various aspects, including sequence classification and pandemic monitoring, to assist
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in combating the virus’s spread Sahoo et al. [2023]. However, the complexity and variability of genomic data pose
significant challenges in extracting and interpreting features, as well as in the high computational cost required for
manipulation, often hindering the viable use of traditional machine learning algorithms Naeem et al. [2021], Singh et al.
[2021a]. The way genomic data is preprocessed and transformed before being fed into machine learning techniques
influences the classification results. The ViraMiner Tampuu et al. [2019] project is an example of the application of
sequences in text form, meaning that the proposed methodology uses raw DNA data to identify potential viral sequences
across human samples. The classification model employs two branches of convolutional neural networks (CNN) to
detect patterns and frequency patterns on metagenomics contigs, achieving a 0.923 area under the receiver operating
characteristic (ROC) curve, and precision of 90%. However, he work presented in Habib et al. [2020] introduced the
COVIDier software for virus classification. Instead of utilizing raw sequences, they employed a CounterVectorizer
function to convert the 1925 genome sequences of six species in the Coronavirus family into numeric information. The
machine learning algorithm used was the Multi-layer Perceptron Classifier, which achieved a precision of 99%.

Therefore, the quality of genomic data representation is crucial to obtain precise and meaningful insights through these
models de Souza et al. [2023], Naeem et al. [2021]. Various techniques are employed to represent this data before
applying these models, considering that nucleotides in sequences, represented by characters (usually A, T, G, and C),
must be numerically represented for subsequent processing de Souza et al. [2023]. Specific techniques in genomic
signal processing (GSP), a field of bioinformatics that utilizes algorithms from Digital Signal Processing and sequence
analysis, provide methods for representing, analyzing, and interpreting patterns in genetic data Mendizabal-Ruiz
et al. [2018], Adetiba et al. [2022]. These techniques find application in various bioinformatics tasks, including viral
classification de Souza et al. [2023], exon and intron sequence classification Abo-Zahhad et al. [2012], Bonidia et al.
[2021a], identification of biomarkers Kung et al. [2010], and identification of protein-coding regions. Considering this,
Naeem et al. [2021] applied the GSP techniques discrete Fourier transform (DFT), discrete cosine transform (DCT), and
seven moment invariants was employed for feature extraction from three species of human strains of the Coronavirus.
Two classifiers were utilized, namely KNN and the trainable cascade-forward backpropagation neural network. The
KNN model achieved accuracy and F1 score of 100%, training with only 46 complete genomes for each species. In
the study presented in Hoang et al. [2016], the authors employed Frequency Chaos Game Representation to convert
genome sequences into images. Additionally, they utilized DCT and Singular Values Decomposition to reduce the
dimensionality of the images into vectors. These vectors were then used for rapid sequence retrieval, the construction of
phylogenetic trees, and the classification of viral genomic data.

In the context of using GSP for the analysis and feature extraction of genomic sequences, the application of the Fourier
Transform to convert sequences from the time domain to the frequency domain stands out as one of the most popular
and powerful tools within GSP. The work described in Hoang et al. [2016] utilized Chaos Game Representation (CGR)
for analyzing the DNA sequences of various human-infecting viruses. It then applied the DFT to these sequences and
calculated the corresponding power spectra for each. To standardize the sequence lengths, an even scaling method was
applied across all sequences. The primary aim of this research was to construct phylogenetic trees to classify genes and
genomes of virus subtypes.

Applying machine learning techniques associated with GSP for viral classification, the work Randhawa et al. [2020]
mapped genomic sequences of the Riboviria realm virus into two-dimensional data using the CGR. Subsequently, it
obtained the magnitude spectrum of the signal through the DFT and constructed a pairwise distance matrix with the
Pearson Correlation coefficient. The ML algorithms used in this application were Linear Discriminant, Linear and
Quadratic SVM, Fine KNN, and Subspace Discriminant and Subspace KNN, with a 10-fold cross-validation. The
best model was Quadratic SVM, which achieved an accuracy of 94.9% in identifying the family and realm of the
SARS-CoV-2 virus. The work in de Souza et al. [2023] also applied this two concepts into their research, using CGR,
magnitude and phase spectrum of the DFT to propose a genome representation to map SARS-CoV-2 and other five
species from Coronaviredae family, obtaining three reduced signatures. Used a unidimensional CNN as classifier,
achieving a accuracy of 99.69%.

This manuscript introduces an innovative representation method that encodes viral DNA sequences into unit vector
transitions within a two-dimensional space. Engineered to optimize virus classification workflows, this strategy ensures
efficient and precise virus identification with minimal demands on hardware resources. Leveraging GSP techniques, the
manuscript unveils a novel approach for converting DNA sequences into two-dimensional numerical representations.
It aims to validate the efficacy of traditional machine learning models in accurately differentiating among six virus
types from the Coronaviridae family, including SARS-CoV-2. Characterized by its straightforwardness, visual clarity,
and ease of deployment, the proposed method is poised to refine existing viral classification frameworks and genetic
sequence analyses. Addressing the urgent need for rapid responses to global health crises like COVID-19, this research
contributes a computationally lean solution for the in-depth examination of DNA sequences, offering valuable insights
for practical deployment in various real-world contexts.
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The main contributions of this study are outlined as follows:

• Introduction of a Novel DNA Encoding Method: We introduce a pioneering approach that encodes viral
DNA sequences into unit vector transitions within a two-dimensional space, thereby enhancing the efficiency
and interpretability of genetic data analysis.

• Enhanced Virus Classification: The method’s efficacy in accurately distinguishing between six virus types
within the Coronaviridae family, including SARS-CoV-2, is demonstrated and supported by high-performance
metrics.

• Computational Efficiency: The study achieves notable computational efficiency by requiring minimal
computational resources for comprehensive genetic analyses and virus classification, making it particularly
valuable in resource-constrained settings and aiding in global viral outbreak surveillance and management.

• Simplicity and Accessibility: The method is characterized by its simplicity, interpretability, and ease of
implementation, making it accessible to a broad audience, including those without specialized knowledge in
GSP, and facilitating its adoption in various research and practical applications.

• Implications for Public Health and Bioinformatics: The contributions of this study are poised to significantly
influence both bioinformatics research and public health strategies for pandemic response. By providing an
efficient and precise tool for viral classification and DNA sequence analysis, the work enhances the capacity
for rapid viral identification and outbreak monitoring.

The structure of the article is outlined as follows: Section II provides a comprehensive description of the methodologies
and techniques employed in this research. In Section III, the findings are presented and discussed, including a
comparative analysis with existing state-of-the-art results. The article concludes with final remarks in Section IV.

2 Materials and Methods

This section delineates the methodology employed for encoding DNA sequences into a two-dimensional space, utilizing
twiddle factors obtained from the DFT representation. The procedural workflow is illustrated in Figure 1, providing a
succinct and clear overview.

cDNA
Sequences

Encoding
Nucleotide Base

Transitions

Mean-Average
Subsampling

Uniform X-Value
Redistribution

Pre-processing

Computing Features

Time Domain 
Features

Spectral Domain
Features

Post-processing and Analysis

Principal
Component

Analysis (PCA)

Machine Learning
Classifiers

Decision Tree Random Forest K-Nearest
Neighbors

Support Vector
Machine

Figure 1: Workflow of the proposed methodology for Gene sequence 2D transformation for virus classification.

2.1 Discrete Fourier Transform (DFT) Fundamentals and Twiddle Factors

The DFT is a mathematical tool extensively employed in signal processing to convert one-dimensional numerical
sequences into their frequency domain counterparts. The DFT is mathematically expressed as shown in Equation 1:
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X[k] =
N−1∑
n=0

x[n] ·W k·n
N (1)

In this equation, X[k] denotes the k-th complex frequency component of the DFT output, and x[n] represents the n-th
element of the input data sequence. The term N signifies the total number of data points in the sequence. Both indices
k and n range from 0 to N − 1, facilitating the enumeration of frequency components and data sequence elements,
respectively.

The DFT formula presented in Equation 1 is a symplyfied version, which use the concept of the twiddle factor WN .
The term twiddle factor is defined as in Equation 2:

WN = e−j(2π/N) (2)

In this representation, j is the imaginary unit (j2 = −1), and e is the base of the natural logarithm.The term W k
N

represents the twiddle factor raised to the power of k. For a specific k value ranging from 0 to N − 1, W k
N corresponds

to a complex number on the unit circle in the complex plane.

The magnitude |W k
N | is always equal to 1, indicating that it represents a unit vector on the complex plane. The phase

component ejθ determines the angle θ, which positions the complex number on the unit circle.

As k varies from 0 to N − 1, the angle θ changes, causing the complex number represented by W k
N to rotate on the unit

circle. For example, if N = 16 and k varies from 0 to 15, W k
N represents complex numbers on the unit circle with

different angular positions. The phase (angular values) of the W k
N vectors can be determined as θ = 2πk/N .

2.2 Representing Nucleotide Transitions with Twiddle Factors

In this study, we assert that transitions between nucleotide bases can be effectively represented by corresponding W k
N

complex values, which are unit vectors. This assertion constitutes a significant and foundational aspect of our encoding
method. For an illustration of the W k

N vectors, refer to Figure 2. The methodology for encoding DNA sequences into a
two-dimensional numerical space is summarized as follows:

• Sequence Transition: The DNA sequence of viruses, comprising a series of nucleotides, is initially translated
into a sequence of transitions. Each transition encapsulates a pair of consecutive nucleotides, capturing the
sequential information inherent in the DNA sequence.

• Mapping Transitions to Indices: Employing a predefined encoding scheme detailed in Table 1, each unique
nucleotide transition is allocated a distinct numerical index. This step converts the sequence of nucleotide
pairs into an index sequence, setting the stage for subsequent encoding steps.

• Applying Twiddle Factors: Twiddle factors, are then assigned to each numeric transition based on the index
derived from the encoding scheme. Figure 2 graphically represents these associations. These twiddle factors
are instrumental in transposing transitions into a two-dimensional numerical space.

• Encoding into 2D Space: Commencing from the origin (0,0) in the 2D space, the encoding process iteratively
applies the twiddle factor corresponding to each transition to navigate to the subsequent point. This recursive
addition of twiddle factors allows for the construction of a path through the 2D space, ultimately encoding the
entire sequence of transitions as a path in the 2D plane.

This representation is central to our methodology for encoding DNA sequences. Figure 3 outlines the novel encoding
technique, which forms the essence of our innovative approach. Panel A of Figure 3 depicts a complete DNA sequence
of a virus in two-dimensional space, illustrating the dynamic representation of the sequence and offering insight into its
underlying patterns and nucleotide transitions. Panel B presents a specific segment of the DNA sequence, detailing the
sequence of base transitions alongside their corresponding numerical indices, thereby shedding light on the foundational
mapping and conversion processes integral to our encoding strategy. Finally, Panel C demonstrates the conversion of a
DNA sequence segment into vectors within the two-dimensional plane, emphasizing the transformative aspect of our
approach which simplifies the visualization and analysis of complex genetic information.

In subsequent sections, we will harness this encoding method in conjunction with subsequent processing, further
dimensionality reduction and Machine Learning techniques to explore its effectiveness in distinguishing between six
viral species within the Coronaviridae family.
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Figure 2: Visualization of Twiddle Factors used in encoding transitions between nucleotide bases. Panel A visually
depicts the twiddle factors as vectors in the complex plane, annotated with their respective k values. Panels B and C
exhibit the real and imaginary components of these twiddle factors, respectively.

2.3 Pre-processing

2.3.1 Encoding Nucleotides Base Transitions

In molecular biology, nucleotide bases are commonly represented as character vectors, with each letter corresponding
to adenine (A), cytosine (C), guanine (G), or thymine (T). Consequently, there are only 16 possible transitions between
these bases, as outlined in Table 1. It is essential to highlight that encoding specific nucleotide base transitions to
particular indexes k = 0, 1, 2 · · · 15 encompasses numerous possible combinations. In this study, a selective combination
is employed with the aim that transitions from one base to another should not use consecutive indexes; for instance,
C → A is assigned an index of 5, C → C an index of 1, C → G an index of 9, and C → T an index of 13. However,
although exploring all possible combinations is beyond the scope of this study, alternative strategies for encoding base
transitions to indexes remain a promising area for future research.

Table 1: Transitions between Nucleotide Bases

A C G T
A A→A0 A→C4 A→G8 A→T12

C C→A5 C→C1 C→G9 C→T13

G G→A6 G→C10 G→G2 G→T14

T T→A7 T→C11 T→G15 T→T3

2.3.2 Mean-average subsampling

After transforming the DNA sequences into numerical points in 2D space, a subsequent processing step known as "mean-
average subsampling" is applied to enhance the data representation. This step aims to encapsulate the broader trends of
the sequences in the 2D numerical space, allowing minor details, such as backward transitions, to be deprioritized. In
this context, the sequences in the 2D space are organized in ascending order based on their x-values (abscissa), ensuring
a coherent progression in the data representation.
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Figure 3: Transformation of DNA sequences into 2D vector transitions. Panel A presents a complete DNA sequence of
a virus, dynamically unfolded in a two-dimensional space, revealing intricate patterns and relational nuances inherent
in the sequence. Panel B focuses on a segment of the DNA sequence, disclosing individual base transitions and their
corresponding sequential indices, elucidating the core mechanics of our encoding strategy. Panel C showcases the
conversion of a DNA sequence segment into expressive vectors in the two-dimensional domain, highlighting the
innovative transformation process that simplifies the visualization and analysis of complex genetic data.

In the mean-average subsampling process, a window encompassing M points is utilized. The operation commences
from the second point in the sequence, keeping in mind that each frequency originates from the point (0,0). The window
moves across the sequence, and within each window, the mean average of the points is computed, yielding a single point
representative of that window. It’s crucial to note that the window moves without overlap; each subsequent window
begins after the end of the previous window, ensuring unique sets of points for each calculation. This step repeats
iteratively, traversing through the sequence until all points are processed.

The result of the subsampling process is a collection of new numerical sequences that have been derived through
subsampling from the original data. These refined sequences maintain the fundamental attributes of the initial data, yet
they exhibit a dimensionality reduction. This streamlined dimensionality facilitates enhanced simplicity and efficiency
in subsequent analyses, as well as more coherent visual representations in the 2D space.

2.3.3 Uniform X-Value Redistribution

In the data preprocessing phase, a uniform x-value redistribution technique was applied to the 2D numerical sequences.
This method aimed to equalize the intervals of x-values (abscissae) across the entire sequence, ensuring a more
systematic and uniform distribution. Each x-value was recalculated based on a mean interval value, resulting in a
sequence that spans uniformly from the initial to the final original x-value.

The y-values (ordinates) of the sequence remained unaltered during this process, maintaining the integrity of the original
data. This step ensures that the redistributed sequences are more analyzable, offering a consistent basis for subsequent
data interpretation and analysis in the 2D space.
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2.4 Computing Features from ’Time’ and ’Spectral Domain’

Dimensionality reduction strategies, which encompass both feature selection and feature extraction, have been advanced
to address the complexities inherent in genomic data Afshar and Usefi [2020], Bonidia et al. [2021b]. These strategies
are pivotal when working with high-dimensional datasets, such as those derived from genomic sequencing.

In this context, features for classifying virus sequences were computed using the two-dimensional space representations
of preprocessed sequences. These representations were obtained subsequent to the application of mean-average
subsampling (Section 2.3.2) and Uniform X-Value Redistribution (Section 2.3.3). The primary objective of this
computation is not merely to optimize feature extraction but to underscore the effectiveness of our DNA sequence
encoding methodology. Our focus is to derive features that unequivocally illustrate the capacity of our encoding strategy
for efficient low-dimensional representation, facilitating tasks such as virus classification and visual discrimination.

Two distinct categories of features were extracted for this purpose: time-domain features and spectral-domain features.
Each category is elucidated in the following sections, providing insights into their computation and relevance to the
overarching goal of the study.

2.4.1 Time Domain Features

Time domain features are derived directly from the preprocessed sequences in the 2D space. Observing the curves, we
can see clear differences in the transitions between various viruses. To get these features, a second-degree polynomial
fit and Linear Predictive Coding (LPC) Spratling [2017] with three coefficients were applied. LPC, often used in speech
processing, helped in obtaining useful features directly from the sequence curves. These features are organized into a
matrix that will be used later for dimensionality reduction and classification.

2.4.2 Spectral Domain Features

Spectral domain features were also extracted to complement the time domain features, the DFT was employed for this
purpose. Before applying DFT, the sequences were adjusted to meet its assumptions. Specifically, the y-values from the
sequences in the 2D space were manipulated to represent a period of a supposed periodic sequence. This adjustment
involved flipping the sequence and concatenating it with the original, preparing the sequences adequately for DFT
application. Upon the application of DFT, we retained the magnitudes of the coefficients at specific positions, choosing
indices one to three, while the zero index was disregarded because it contains merely the mean value information.

Following the extraction of spectral and time domain features, a comprehensive representation is created, which
streamlines the subsequent stages of analysis and classification. Post feature extraction, Principal Component Analysis
(PCA) is employed to reduce the dimensionality of the feature space Howley et al. [2006], mapping each sequence
to a unique point in a new, simplified space. This refined representation facilitates enhanced visualization and the
application of conventional Machine Learning (ML) techniques for more effective classification in subsequent analyses.

2.5 Experimental Setup

In this section, we elucidate the methodology adopted in our experiments, describing the datasets, machine learning
models, evaluation metrics, and validation strategies that constitute the backbone of our research.

2.5.1 Datasets:

Our experiments leverage datasets composed of gene sequences meticulously sourced from various viruses. It contains
12,467 viral sequences from six species of the Coronaviridae family, namely Severe Acute Respiratory Syndrome-related
Coronavirus (SARS-CoV-2), Betacoronavirus 1, Middle East Respiratory Syndrome-related Coronavirus (MERS-CoV),
Human Coronavirus NL63 (HCoV NL63), Human Coronavirus 229E (HCoV 229E), and Human Coronavirus HKU1
(HCoV HKU1). Encompassing a spectrum of virus types, each contributing to a comprehensive repository, which
is instrumental for a robust and extensive analysis. These samples were obtained from the National Genomics Data
Center (NGDC), and contain sequences from 67 countries with a genome length ranging from 26000 to 32000 bases par
(bp). A filter was applied to select only complete samples with an N’s number less than 0.01%. This carefully curated
collection of gene sequences is pivotal in ensuring the accuracy and reliability of our experimental outcomes.

2.5.2 Machine Learning Models:

In our study, we employ a selection of machine learning models to classify virus sequences, each with its unique
foundational principles and computational mechanics.
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Decision Tree (DT): A Decision Tree is a supervised learning algorithm widely used in data mining due to its simplicity
and ease of interpretation Loyola-González et al. [2023]. This algorithm operates on a set of logical rules, requiring
minimal parameter tuning to process diverse data types effectively Su and Zhang [2006]. The construction of a Decision
Tree begins with selecting an initial criterion, such as entropy reduction or information gain, to determine the best
splitting attribute for the root node Somvanshi et al. [2016]. Based on this attribute, the training data is segmented into
subsets, each corresponding to a branch leading to a decision node. The algorithm continues this attribute selection
process, data segmentation, and node splitting, progressively expanding the tree with new branches and nodes. This
iterative process culminates in forming leaf nodes, each representing a class label—effectively the algorithm’s decision
output Su and Zhang [2006], De Ville [2013]. By iteratively partitioning the data in this manner, the Decision Tree
algorithm efficiently classifies the input data, making it a powerful tool for predictive modeling.

Random Forest (RF): An Ensemble of Decision Trees - stands as a robust ensemble method, particularly adept for both
regression and classification tasks, including scenarios with multiple classes. It’s renowned for its straightforward and
swift deployment, making it a favored choice in handling datasets characterized by high dimensionality and substantial
volume Breiman [2001]. Within the realm of classification, the algorithm sets its sights on crafting a predictive function
f(X), with X representing the input vector and Y denoting the anticipated output. The essence of the algorithm lies in
minimizing the discrepancy between Y and f(X), quantified by the error function L(Y, f(X)). This is achieved by
amalgamating a suite of base learners, essentially individual decision trees h1(x), . . . , hj(x), that collectively cast their
votes to predict the most likely class for a given input x ∈ X Cutler et al. [2012]. The predictive function f(X) for
classification is thus formulated as:

f(x) = argmax
i

N∑
j=1

I(y = hj(x)) (3)

Here, argmax identifies the class index i that maximizes the sum, N signifies the total number of classes, and I is the
indicator function, which assigns a value of 1 when the condition y = hj(x) holds true for y ∈ Y , and 0 otherwise. This
collaborative voting mechanism of the decision trees enhances the algorithm’s accuracy and reliability in predictions,
showcasing the power of ensemble learning.

K-Nearest Neighbors (KNN): KNN is a non-parametric, instance-based learning algorithm. It classifies a data
point based on how its neighbors are classified, utilizing distance metrics, such as the Euclidean distance, to obtain
dissimilarities between examples in a given feature space. The class to which a test example ri belongs will be
determined through a majority vote among the K nearest neighbors, as seen in:

y(ri) = argmax
k

∑
xj∈kNN

y(xj , ck) (4)

where xj is a k nearest neighbor of the training set, and y(xj , ck) indicates if xj belongs to the ck class Sun and Huang
[2010]. KNN is inherently adaptive, capable of updating its classification decision as the dataset evolves, providing a
level of flexibility that is essential when dealing with dynamic gene sequence data.

Support Vector Machine (SVM): SVM is a powerful model known for its effectiveness in classification tasks. It
operates by finding the hyperplane that distinctly classifies data points in a multi-dimensional space, ensuring the
maximization of the margin between classes. The equation for the optimal hyperplane is given by:

wTx+ b = 0 (5)

where w is the adjustable weight vector, x is the input vector, and b is a bias, where the algorithm has to find w and
b that will make the hyperplane best separate the data. The algorith SVM is renowned for its capacity to manage
high-dimensional data, making it especially pertinent for the classification of intricate gene sequences Huang et al.
[2018].

2.5.3 Evaluation Metrics:

Our experiment’s integrity and the reliability of results are fortified by employing a comprehensive set of evaluation
metrics such as accuracy (Equation 6), precision (Equation 7), recall (Equation 8), and F1-score (Equation 9) Sokolova
and Lapalme [2009]. These metrics furnish a multi-dimensional perspective, allowing for a meticulous assessment of
the models’ performance in classifying virus sequences.

Accuracy quantifies the overall correctness of a model across all classes, offering a broad perspective on the model’s
efficacy based on the ratio of correct predictions to the total number of predictions. It encapsulates the model’s precision
in generating optimistic predictions and its proficiency in minimizing false positives. On the other hand, Recall
emphasizes the model’s success in identifying all true positives, thereby underscoring its effectiveness in reducing
false negatives. The F1-score, calculated as the harmonic mean of precision and Recall, balances these two metrics. It
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emerges as a pivotal metric when there is an imperative to harmonize sensitivity with precision. Specifically, in the
context of viral classification, a high recall value indicates the model’s adeptness at accurately identifying actual positive
cases, crucially mitigating the incidence of false negatives. Such accuracy is paramount in curbing the dissemination of
diseases by enhancing the detection of actual viral infections. The Accuracy, Precision, Recall, and F1-score can be
expressed as:

Accuracy =
TP

TP + TF
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score = 2× Precision×Recall

Precision+Recall
(9)

where TP corresponds to the number of true positive samples, FP to the number of false-positive samples, FN number
of false negative specimens and TN number of true negative specimens.

2.5.4 Validation Strategy

For the training phase, the dataset was segregated into training and validation subsets following an 80% to 20% ratio,
with a keen focus on maintaining class stratification. This stratification is crucial, especially for datasets that exhibit
class imbalances. Stratified cross-validation was the chosen method, with a ten-fold (k = 10) approach determined to
be most effective after evaluating various fold configurations for optimal model performance.

Regarding hyperparameters, extensive tuning was considered unnecessary, as the default settings offered by the
scikit-learn library were suitable for most models. The settings for the model hyperparameters are outlined as follows:

• Random Forest (RF): Settled on using 10 trees in the ensemble, with a requirement of at least 2 samples to
split an internal node. This configuration aims to balance model complexity with generalization capability.

• K-Nearest Neighbors (KNN): Opted for k = 3, meaning the classification of a sample is influenced by the
three nearest neighbors, employing the Euclidean distance to measure closeness.

• Decision Tree (DT): Imposed a maximum depth of 5 levels for the tree and required a minimum of 5 samples
per node to curb the model’s complexity, enhancing its generalization to new data.

• Support Vector Classifier (SVC): Adopted a radial basis function (RBF) kernel, with the gamma parameter
set to ’auto’, facilitating an adaptable decision boundary that adjusts to the data’s intrinsic distribution without
manual tuning.

These model-specific configurations were strategically chosen to optimize performance while ensuring the models
remain robust and generalizable to unseen data. Learning curves for each model were generated to observe their
behaviors during the training process as the number of samples increased, as shown in Figure 4.

It is observed that the training and validation scores remain high (above 90%) in all models. With each iteration,
validation scores tend to improve as more training data is incorporated with the exception of the 4(a) curve where
there is a slight drop in its score as the amount of interaction and samples increases, however, the validation curve
quickly approaches the training curve. The training curve obtained through the DT model (see Figure 4(c)), presents a
subtle fluctuation between its validation curve even with the increase in the number of samples, which may indicate
potential saturation of the model. All curves indicate that there is a good compensation between bias and variance
and indicate that the quantities of samples used in model training would be sufficient, considering that the models
stabilize with a considerable number of samples. The results of the analysis of the learning curves indicate a robust
and promising performance of the evaluated models. The consistency of high scores in both training and validation
suggests an effective learning and generalization capability. The identification of potential saturation points in certain
models, particularly notable in the training curve of the DT model, indicates the need to consider additional strategies to
optimize performance as the complexity of the problem increases or with the expansion of data. The absence of signs of
overfitting and the minimal difference between the training and validation curves reinforce the reliability of the models
to accurately generalize to new datasets.
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(a) Training curve referring to the RF model.
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(b) Training curve referring to the KNN model.
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(c) Training curve referring to the DT model.
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(d) Training curve referring to the SVM model.

Figure 4: Training curves referring to the ML models adopted in this paper.

3 Results and Discussion

Figure 5 presents the two-dimensional encodings of DNA sequence samples from five distinct viruses. Each panel
within the figure corresponds to a different virus type and illustrates a subset of the randomly chosen samples to facilitate
comparative analysis. The patterns of transitions in the sequences exhibit notable inter-class variations and consistent
intra-class similarities. This observation aligns with the expectation, underscoring the method’s capability to effectively
capture and represent the intrinsic information of various DNA sequences associated with different virus types.

Intrigued by the distinctive 2D spatial characteristics, we explored temporal feature extraction as depicted in Figure 6.
Polynomial fitting (degree N = 2) and Linear Predictive Coding (LPC) were employed to ascertain features commonly
associated with the time domain. This initiative aimed to gauge the method’s viability and effectiveness as a precursor
to further dimensionality reduction procedures. The sequences were also subject to Discrete Fourier Transform (DFT),
retaining coefficients ranging from 1 to 3, following the preprocessing steps outlined in section 2.3.

Subsequently, PCA was applied for dimensional reduction, utilizing the computed matrices from both temporal and
spectral domain features. The results are visually encapsulated and presented in Figure 7. The outcomes presented
in Figure 7 are highly promising. A clear observation is that applying PCA to both temporal and spectral domain
features facilitates robust discrimination among virus classes. Not only does it allow for effective differentiation, but it
also reveals that the three most interrelated virus families appear close to each other within the PCA projection space,
underscoring the method’s ability to maintain inherent relational proximities among the virus representations.

3.1 Results of ML Models Used for Classification

Several performance metrics were employed to assess the efficacy of ML models in a multiclass classification challenge
involving six distinct virus types from the Coronaviridae family—including SARS-CoV-2—. These include accuracy,
precision, sensitivity, and F1-score, derived from both temporal and spectral data generated through the methodology
introduced in this study. Utilizing k-fold cross-validation with k set to 10, we computed the mean of these metrics
across each fold for the training dataset. The outcomes, showcasing the models’ performance based on spectral data,
are detailed in Table 2.
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Figure 5: Illustration of encoded DNA sequences from six different virus types. Each panel represents a distinct virus
type, displaying five randomly chosen samples for enhanced visual comparison.

Table 2: Performance metrics regarding test spectral data.

Models Accuracy Recall Precision F1-score
DT 0.997 0.988 0.991 0.987
RF 0.997 0.996 0.993 0.993

KNN 0.998 0.999 0.998 0.999
SVM 1.000 1.000 1.000 1.000

The SVM demonstrated superior performance among the evaluated models, achieving optimal results across all metrics.
This suggests its ability to differentiate all six viral subtypes in the training dataset. Following closely, the KNN
model showcased near-optimal performance, with an accuracy of 99.99%, precision of 99.8%, recall of 99.9%, and an
F1-score. The RF model also exhibited commendable performance, exceeding 99% across all metrics. Despite the
DT model achieving accuracy and precision rates above 99%, it exhibited a marginal decline in recall (98.8%) and
F1-score (98.7%) compared to the RF and KNN models. This indicates that the DT model might possess a slightly
reduced capacity to identify all positive instances accurately. Thus, the KNN and SVM models display optimal and
nearly optimal performance across all metrics. In contrast, the DT and RF models show minor reductions in recall,
precision, and F1-score values for the training data.

Beyond the traditional performance metrics, standard deviation emerges as a vital statistic for assessing models’
variability, consistency, and stability throughout their training phase. For the RF, K-KNN, DT, and SVM models,
the standard deviation values of accuracy were recorded as 0.00476, 0.00357, 0.00476, and 0.00, respectively. The
SVM demonstrated a zero standard deviation, signaling uniform performance across all training folds, underpinning
its exemplary metrics. Conversely, the KNN model presented the subsequent lowest standard deviation (0.00357),
showcasing a high level of performance consistency during training. This low variability suggests that KNN’s
performance metrics were notably stable across different training folds, contributing to the model’s overall reliability.

Regarding the RF and DT models, both achieved standard deviation values of 0.00476, reflecting comparable levels of
consistency in their performance variability. This consistency suggests that these models and the previously mentioned
KNN demonstrate stable prediction accuracy and are less prone to variations in the training data sets. Although the
SVM recorded the lowest standard deviation (0.00), indicating unparalleled stability across training folds, this perfect
uniformity may also hint at the model’s susceptibility to overfitting. To mitigate this risk and enhance the SVM’s ability
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Figure 6: Depiction of a second-degree polynomial fit applied to samples representing each virus type, following a
series of preprocessing steps, including Moving Average and uniform sampling.

Figure 7: PCA Projection for Dimensionality Reduction. Panel A illustrates the application of PCA to the temporal
domain features, demonstrating how data points are distributed in the principal component space. Panel B depicts the
application of PCA to spectral domain features, showcasing the dispersion and grouping of data points in the reduced
feature space.

to generalize across different data sets, a review and adjustment of its hyperparameters or an expansion of the training
data might be warranted to diminish potential biases.

Figure 8 displays the confusion matrices for the test datasets of the models applied in this study, specifically for
spectral data analysis. These matrices enable a direct visualization of the models’ generalization capabilities on data not
encountered during the training phase. Importantly, this analysis encompasses all viral subtypes included in the database
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for the training phase, thereby illustrating the models’ ability to classify a broad range of viral genetic signatures
accurately.
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(a) Confusion matrix referring to test data from the RF
model for the six predicted classes.
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(b) Confusion matrix referring to test data from the kNN
model for the six predicted classes.
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(c) Confusion matrix referring to test data from the DT
model for the six predicted classes.
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model for the six predicted classes.

Figure 8: Confusion matrices for virus classification using spectral features. Each panel (a) through (d) corresponds to a
different machine learning model—RF, kNN, DT, and SVM—and displays the predictive accuracy for six virus classes.

The proficiency of the RF and KNN models in accurately classifying all samples is prominently illustrated in the
confusion matrices for the test data, as shown in Figure 8 a) and b)). This outcome underscores the efficacy of these
models in differentiating between virus samples within the same viral family and correctly categorizing each sample
into its respective class. The confusion matrix for the DT model, depicted in Figure 8 c), reveals a minor error where
the model misclassified a single SARS-CoV-2 sample as Beta-CoV-1. This model achieved an accuracy of 99.50%,
precision of 99.43%, recall of 99.83%, and an F1-score of 99.62% on the test data, aligning with its average training
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performance. Such a misclassification could stem from structural similarities between the virus classes, potentially due
to shared genetic features that led to the model’s ambiguous interpretation. Figure 8 d) presents the confusion matrix
for the SVM, which also faced challenges in accurately classifying a SARS-CoV-2 sample. On the test data, the SVM
recorded slightly lower metrics compared to its training performance, with an accuracy of 99.50%, precision of 99.43%,
recall of 99.83%, and an F1-score of 99.62%.

The same models previously utilized were applied to the temporal analysis data under the same training conditions as
the previous phase. The performance metrics values for all models in this experiment can be viewed in Table 3.

Table 3: Performance metrics regarding test spectral data.

Models Accuracy Recall Precision F1-score
DT 0.995 0.996 0.995 0.995
RF 0.996 0.995 0.990 0.991

KNN 0.998 0.999 0.998 0.999
SVM 0.998 0.991 0.994 0.991

Similar to the outcomes observed with spectral data analysis, all models demonstrated robust performance across
all evaluated metrics, with accuracy, recall, precision, and F1-score ranging between 99.5% and 99.9%. However,
the RF model exhibited slightly lower accuracy than the other models, yet it still managed to accurately identify a
high percentage of actual positive instances. The standard deviation values associated with model training, reflecting
accuracy, were 0.01430 for the DT, 0.00546 for RF, and 0.00357 for both KNN and SVM. KNN and SVM displayed
identical standard deviation values, indicating consistent accuracy throughout their training. DT showed the highest
standard deviation (0.01430), suggesting a more significant fluctuation in its accuracy than the other models.

The confusion matrices for the test dataset concerning temporal data are depicted in Figure 9. In contrast to the spectral
data results, DT inaccurately classified samples from the MERS-CoV and SARS-CoV-2 classes, achieving accuracy,
recall, precision, and F1-score of 99%, 96.09%, 99.51%, and 97.61%, respectively. Like the spectral analysis findings,
RF and KNN accurately classified all samples, reaching peak performance metrics for the test data. Conversely, SVM
misclassified a single sample (as shown in Figure 9 d)), achieving an accuracy of 99.43% on its test data.

The evaluated models, DT, RF, KNN, and SVM, exhibited outstanding performance in a multiclass classification
challenge involving six virus types from the Coronaviridae family, including SARS-CoV-2. With performance metrics
exceeding 99%, these results underscore the proficiency of these models in differentiating among the various viral
subtypes within the test datasets, as illustrated in Figure 7. This analytical representation enabled the identification of
distinct characteristics among the evaluated classes despite their shared viral family lineage. It demonstrates that the
employed genomic sequence processing technique effectively retains the unique attributes of each subgroup, affirming
the method’s capability to accurately capture and represent the genetic diversity within the Coronaviridae family.

The remarkable proficiency of RF and KNN in accurately classifying all samples within the test data underscores their
effectiveness, especially given the genetic similarities among the viral subtypes. While achieving accuracy and precision
rates above 99%, the DT model experienced a minor reduction in recall and F1-score compared to RF and KNN. This
indicates a potential limitation in its capacity to identify all positive cases, a capability that is vitally important in
clinical scenarios where accurately distinguishing between various viral variants is critical for determining the correct
treatment and intervention strategies. The spectral data analysis observed the highest training metrics and lowest
standard deviation values, raising questions about the SVM’s ability to generalize. Across both spectral and temporal
analyses, KNN and RF maintained low and consistent standard deviation values, aligning closely with the test data
metrics. Interestingly, both SVM and DT misclassified a SARS-CoV-2 sample as belonging to the Beta-CoV-1 class.
A closer examination of the spatial distribution of samples through principal component analysis (Figure 7) reveals
a SARS-CoV-2 sample positioned near the Beta-CoV-1 class in both temporal and spectral domains. This proximity
highlights the models’ nuanced understanding and utilization of characteristic data to make precise predictions despite
the challenges presented by the genetic similarities among viruses.

Among studies utilizing ML models like K-KNN, SVM, RF, DT, and Extreme Gradient Boosting (XGBoost) for
addressing SARS-CoV-2 viral classification challenges, accuracy rates spanned from 67% to 98%. This range under-
scores the adaptability and efficiency of these models in viral classification endeavors Dlamini et al. [2020], Singh
et al. [2021b], Habib et al. [2020]. Specifically, in Dlamini et al. [2020], a perfect 100% performance across all metrics
was observed for binary classification tasks among viruses of distinct species such as dengue, Ebola, tuberculosis, and
some coronaviruses. This outcome was anticipated, given the significant phylogenetic differences between these groups.
However, when extending the classification to a multiclass framework involving viruses from the same species but
different continents, accuracy dropped to only 67.5%. This decline highlights the inherent challenges in differentiating
between genetically similar entities.
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(a) Confusion matrix referring to test data from the DT
model for the six predicted classes.
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(b) Confusion matrix referring to test data from the RF
model for the six predicted classes.
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(c) Confusion matrix referring to test data from the KNN
model for the six predicted classes.
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model for the six predicted classes.

Figure 9: Confusion matrices for virus classification using temporal features. Each panel (a) through (d) corresponds
to a different machine learning model—RF, kNN, DT, and SVM—and displays the predictive accuracy for six virus
classes.

While achieving outstanding performance metrics, the study utilized dinucleotide frequencies to characterize the
virus, potentially limiting the model’s sensitivity in specific experiments. The research conducted by Singh et al.
[2021b] employed 1,582 cDNA sequences from human, mammalian, and avian coronaviruses, alongside digital signal
processing techniques, to undertake a binary classification task distinguishing between SARS-CoV-2 and non-SARS-
CoV-2 samples. This analysis involved 615 SARS-CoV-2 and 967 non-SARS-CoV-2 samples, applying KNN, SVM,
DT, and RF models. The Random Forest model exhibited the highest precision, achieving 98% for the training set
and 97.47% for the test set, indicating superior performance. In contrast, the SVM showed reduced capacity for
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generalization. Notably, despite RF recording the third lowest performance in our investigation, the SVM demonstrated
accuracy exceeding 99% for training and test datasets, showcasing its practical application in viral classification tasks.

In their study, Habib et al. [2020] tackled a multiclass classification challenge involving the same viral subtypes
discussed in this paper, leveraging genomic sequences for analysis. They utilized a DL approach, specifically a
Multi-layer Perceptron classifier, to achieve precision and recall metrics ranging from 1 to 0.99. While potent in its
predictive capabilities, this DL model incurs a significantly higher computational cost than traditional ML techniques.
A total of 1925 genome sequences were analyzed, with data preprocessing employing a natural language processing
(NLP) method. This method converts textual information into a vector, relying on the frequency (count) of each word
appearing in the text. While effective in many contexts, this approach may pose challenges in accurately capturing viral
mutations, as the evolutionary dynamics of viruses can alter their genomic sequences.

In their investigation, Murugaiah and Ganesan [2022] employed a signal processing technique for preprocessing to
classify seven coronavirus strains, analyzing 1000 data samples across six different classifiers. The models evaluated
included the Convolutional Neural Network (CNN), Artificioal Neural Network (ANN), KNN, and SVM, with the latter
two yielding the most impressive accuracy rates of 97.96%, 93.60%, 92.80%, and 91.84%, respectively. A separate
study by Randhawa et al. [2020] utilized six ML algorithms to classify entities at various taxonomic levels, achieving an
outstanding 98.1% accuracy with the SVM model for classifying between four genera, based on a dataset comprising
only 208 sequences from the coronaviridae family. However, the relatively small dataset size may pose challenges in
terms of model generalization and performance across broader applications.

Numerous studies on multiclass classification within the coronaviridae family’s viral subtypes have leveraged the
same database as this current investigation, showcasing results surpassing 90% accuracy. These studies predominantly
utilized DL methodologies or concentrated on determining the presence or absence of SARS-CoV-2 Singh et al. [2021b],
Tampuu et al. [2019], Murugaiah and Ganesan [2022], Dlamini et al. [2020]. Among these, the technique proposed in
this paper achieved superior and more consistent outcomes, with Habib et al. [2020] being a notable exception, where a
100% accuracy was reached for the same classification challenge using DL approaches. Despite their effectiveness,
DL techniques are known for their significant computational demands, surpassing those of more straightforward ML
methods like KNN, SVM, and RF. Furthermore, DL models often necessitate larger datasets for training or more
detailed representations of the viral genomes to perform optimally.

Overall, the selection of preprocessing techniques such as frequency-based methods, GSP, NLP, and the approach
proposed in this study (Dlamini et al. [2020], Habib et al. [2020], Murugaiah and Ganesan [2022]) might not fully capture
the intricacies involved in classifying viruses within the same species. For a more equitable assessment, additional
factors should be considered, including the preprocessing time of sequences and models and the often omitted details of
model hyperparameters, which are crucial for enabling the replication and testing of methodologies. Enhancing the
model’s generalization capability necessitates an expansion of the dataset size, particularly for underrepresented virus
subtypes. Nonetheless, open genomic databases face a notable constraint: they predominantly feature sequences related
to SARS-CoV-2 due to the pandemic, resulting in a scarcity of sequences for other coronaviridae family subtypes. This
significant limitation must be considered when interpreting the findings and applying these methodologies to broader
and more complex classification challenges, such as distinguishing viruses across different taxonomic levels.

4 Conclusion

The complexity and variability inherent in genomic data introduce significant challenges in extracting and interpreting
features, not to mention the considerable computational demands required for processing. The way genomic data
is pre-processed and transformed prior to application in standard machine learning techniques directly impacts the
outcomes of classification efforts. Thus, the quality of genomic data representation is crucial for generating precise and
meaningful insights from these models. This study presents a novel approach to encoding cDNA sequences into unit
vector transitions in a two-dimensional space. Our primary objective is to illuminate the potential of this method to
enhance the application of conventional machine learning models in the classification of six virus types from the same
viral family. By requiring minimal hardware resources and achieving performance metrics between 96% and 99%,
the proposed encoding method is a computationally efficient and promising enhancement to current DNA sequence
encoding techniques. Its advantages include simplicity, visual interpretability, and ease of implementation, making it a
potentially invaluable complement to existing strategies in the field.

The significance of the proposed method in advancing virus classification and gene sequence analysis cannot be
overstated. It offers a robust tool for scientists and researchers, simplifying the complexities of genomic data and
improving the efficacy and efficiency of machine learning models in genomic studies. This innovative data representation
method marks a notable leap forward in our ability to classify viruses accurately, showcasing high accuracy in
distinguishing between different types within the coronaviridae family. Furthermore, by substantially reducing the

17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2024. ; https://doi.org/10.1101/2024.03.12.24304158doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.12.24304158
http://creativecommons.org/licenses/by-nc/4.0/


Gene Sequence to 2D Transformation for Virus Classification A PREPRINT

computational resources needed for such analyses, this method makes advanced genomic analysis accessible, even in
environments constrained by limited resources.

The practical implications and potential benefits of adopting this novel approach are far-reaching, especially in real-
world scenarios where rapid and accurate virus detection is crucial for effective disease management and outbreak
control. The method’s simplicity and computational efficiency make it particularly suitable for quick viral classification,
aiding in timely decision-making during public health emergencies. By bridging the gap between complex genomic
data and the applicability of machine learning, this study contributes significantly to bioinformatics and public health,
offering a vital resource in the ongoing efforts to understand and combat viral diseases. The comparison with other GSP
techniques further validates the effectiveness of the proposed method, underscoring its importance as a cutting-edge
tool in the scientific community’s arsenal against viral outbreaks.
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