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Abstract: A large body of electroencephalography (EEG) studies has characterized the spontaneous 

neural activity of premature neonates at different gestational ages. However, evaluation of normal and 

pathological fetal brain development is still a challenge due to the complexity of the extraction and 

analysis of fetal neural activity. Fetal magnetoencephalography (fMEG) is currently the only available 

technique to record fetal neural activity with a time resolution equivalent to that of EEG. However, the 

signatures and characteristics of fetal spontaneous neural activity are still largely unknown. Benefiting 

from progress in machine learning and artificial intelligence, we aimed to transfer premature EEG to 

fMEG, to characterize the manifestation of spontaneous activity using the knowledge obtained from 

premature EEG. 

In this study, 30 high-resolution EEG recordings from premature newborns and 44 fMEG recordings, 

both from 34 to 37 weeks of gestation (wGA) were used to develop a transfer function to predict the 

spontaneous neural activity of the fetus. After preprocessing, bursts of spontaneous activity were 

detected using the non-linear energy operator over both EEG and fMEG signals. Next, we proposed a 

CycleGAN-based model to transform the premature EEG to fMEG and vice versa and evaluated its 

performance with both time and frequency measurements on both forward and inverse conversions.   

In the time domain, the values were similar for the mean square error (< 5%) and correlation (0.91 ± 

0.05 and 0.89 ± 0.08) for the EEG to fMEG and fMEG to EEG transformations between the original data 

and that generated by CycleGAN. However, considering the frequency content, the CycleGAN-based 

model modulated the frequency content of EEG to MEG transformed signals relative to the original 

signals by increasing the power, on average, in all frequency bands, except for the slow delta frequency 

band. Our developed model showed promising potential to generate a priori signatures of fMEG 

manifestations related to spontaneous neural activity. Collectively, this study represents the first steps 

toward identifying neurobiomarkers of fetal brain development.  

 

Introduction 

Most of our knowledge on functional neurodevelopment in humans comes from low- or high-

resolution electroencephalography (EEG) of premature neonates recorded during the last trimester of 

gestation [1]. Fetal magnetoencephalography (fMEG), on the other hand, is the only available tool that 

can depict neural activity in the natural intrauterine environment and, thus, redefine the physiological 

and pathological functional maturation criteria of the fetus [2, 3, 4]. A considerable challenge in 

neurodevelopmental studies is to better understand initial cerebral development to better prevent 

neurodevelopmental dysfunction. It is known from decades of electroencephalography and event-

related potential studies on premature neonates during the third trimester of gestation that any 

disturbance in the fine-tuning of the early functional wiring can have dramatic impacts on the future 

cognitive and sensory-motor skills in the later development of the child [5, 6, 7]. Brain development in 

the last trimester of gestation is an extremely dynamic process [1, 8]. Functional maturation of neuronal 

circuits prior to 26 to 28 weeks gestational age (wGA) relies essentially on endogenous mechanisms 

linked, at least in part, to spontaneous electrical activity. Subsequently, when thalamic afferents relocate 

from the subplate to the cortical plate, maturation mechanisms become (at least partially) sensory 

driven.  
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Given the complex nature of brain maturation dynamics, it is likely that environmental changes 

between ex utero and in utero, such as exposure to sound, touch, and light, as well as various 

physiological/neurological factors, generate singularities in the organization and communication in 

neural circuits and structures between the fetus and premature newborn [9, 10]. Nevertheless, as with 

EEG studies in premature infants, MEG studies in the fetus have demonstrated that immature neural 

circuits are capable of encoding exogenous information, and notably discriminating auditory and visual 

stimuli [11, 12]. There is also evidence for relatively similar signatures of spontaneous activity in the 

EEG of premature newborn and the MEG of fetus at the same gestational age (although evidence is 

rare in fMEG). General knowledge, supported by animal models [13, 14], indicates that the resting state 

activity of the early developing neural networks is characterized by discontinuity, built around bursts of 

activity separated by quiescent periods, called Inter-burst intervals (IBIs), of a few seconds [1, 15, 16]. 

The duration of the bursts and IBIs is modulated during development, and an excessively long 

discontinuity at a given age is an unfavorable prognostic factor. Within these bursts, specific EEG 

graphoelements specific to a gestational age are recorded: theta temporal activity in coalescence with 

slow-waves (TTA-SW) are recorded between 24 and 32 wGA, delta brushes (DB) between 28 and 36 

wGA, and frontal transients (FT) between 36 and 42 wGA [1, 17]. The absence of these EEG 

graphoelements, which are linked to spontaneous neural activities at both cortical and subcortical levels 

[18, 19, 20], and that may or may not be modulated by the environment [21, 22], is also an unfavorable 

prognostic factor [23]. Some of these specific features (discontinuities and DB) have also been 

described in the fetus by fMEG recording [24]. Previous studies have used automatic techniques to 

detect spontaneous neural activity [25, 26]. However, such information is scarce, as no systematic 

studies have been performed to determine the fetal manifestations of spontaneous activity. Therefore, 

the general patterns of spontaneous fetal neural activity are yet to be determined.   

We hypothesized that it is possible to evaluate fMEG signals using priori information derived 

from EEG signals of premature neonates of similar gestational age. We evaluated this hypothesis by 

combining two rare datasets: 30 high-resolution EEG recordings from premature newborns between 34 

and 37 wGA and 44 fMEG recordings from fetuses between 34 and 37 wGA. We used our knowledge 

from the EEG manifestations of the spontaneous activity in premature newborns to formulate a priori 

hypotheses of possible manifestations of spontaneous fMEG activity. Toward this, we developed an 

unpaired premature EEG-to-fMEG transfer function, which was trained on our datasets corresponding 

to the same period of gestational age. Transferring data from one class to another has garnered 

significant interest in recent years with the emergence of machine learning techniques. One early 

approach, called Neural Style Transfer [27, 28], utilized convolutional neural networks to extract and 

merge the content of one image with the style of another. This method was rapidly superseded by 

Generative Adversarial Networks (GAN) [29], due to their ability to generate realistic data. The latter 

consists of an unsupervised competitive process between an artificial neural network that creates data 

to mimic real data and another artificial neural network that evaluates the authenticity of the generated 

content. Building upon this technique, CycleGAN [30] was developed to learn the mapping between two 

different domains, eliminating the need for paired data. The main idea behind this architecture is that 

the translation of data from one domain to another and then back to the original domain should result 

in data close to the original data. Beyond the initial use of CycleGAN for style transfer and object 

transfiguration in images, this technique has also been adapted to audio [31] and time-series data [32]. 

There are also various applications in the medical field, like electrography denoising or transfer between 

magnetic resonance images and positron emission-computed tomography [33, 34, 35, 36]. We adapted 

this approach to develop an unpaired, unbalanced transfer function between premature EEG and fMEG, 

enabling the extraction of spontaneous fMEG neural activity. We hypothesized that, despite the 

physiological and environmental factors that can influence the dynamics of these signals, there are still 

shared manifestations of the spontaneous neural activity between them. Given the difficulties in 

searching for such spontaneous activity in fMEG, this approach allows the development of templates 

for further automatic search engines, to be trained on fMEG. As an initial step, we aimed to estimate 

how an EEG signal could be rendered in fMEG using CycleGAN. This strategy was applied to bursts of 

activity, in addition to two main neurobiomarkers, namely DB and FT. The transfer model was developed 

based on short periods of bursts, under the hypothesis that these periods capture the temporal and 

spectral dynamics of spontaneous neural activity. The organization of this study involves, first training 
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and validating the CycleGAN transfer function, followed by evaluating the performance on EEG to fMEG 

data that were not included in the training and validation phases.   

 

Methods 

Population 

We used high-resolution EEG recorded from 30 sleeping premature neonates between 34 and 

37 wGA (mean age 35.47 ± 1.09 wGA) in the neonatal intensive care unit of Amiens University Hospital 

(Amiens, France, Table 1). The duration of each EEG recording varied between 6.5 and 42.9 minutes, 

with an average of 22.9 ± 9.4 min. All infants had appropriate birth weight, size, and head circumference 

for their term age. They also had an APGAR score > 5 at 5 min and a normal clinical neurological 

assessment. None were considered to be at risk of brain damage. In particular, the results of a 

neurological examination at the time of the recordings had to correspond to those of the corrected 

gestational age, with no history of abnormal movements. The gestational age (estimated from the date 

of the mother’s last menstrual cycle and ultrasound measurements during pregnancy) corresponded to 

the degree of brain maturation (evaluated using EEG). The EEG evaluation in the follow-up at the time 

they left the neonatal intensive care unit had to be normal according to the EEG monitoring guidelines 

of the French Society of Clinical Neuroscience. One or both parents were informed about the study and 

provided their written informed consent. The local ethics committee (CPP Ouest I) approved the study 

(ID-RCB: 2021-A02556-35).  

We also used fMEG recorded from 44 fetuses between 34 and 37 wGA (mean age 35.34 ± 

1.10 wGA) in the Tuebingen Hospital (Tuebingen, Germany, Table 1). The duration of each fMEG varied 

between 6 and 27 min, with an average of 22.1 ± 8.1 min. Participants were recruited from Tübingen 

and its surrounding areas. All mothers had uncomplicated singleton pregnancies. The recordings were 

approved by the local ethics committee of the Medical Faculty of the University of Tübingen and the 

consent to participate was signed by the mother (511/2015BO1 and 330/2010BO1). They received 10 

euros per hour for their participation. 

 

EEG and MEG acquisition 

 High-resolution EEG recordings were made in the incubator, while the premature 

neonates were asleep, using a 64 or 124-channel HydroCel Geodesic Sensor Net with an Electrical 

Geodesic NetAmps 200 amplifier passing a digitized signal to Electrical Geodesics Net Station software 

(version 5) and were DC–50 Hz filtered. EEG was digitized at a 1000 Hz sampling rate, with a Cz vertex 

electrode as the reference. The electrode impedance was maintained below 5 kΩ.  

The fMEG recordings were made using a SARA (SQUID Array for Reproductive Assessment, 

VSM MedTech Ltd., Port Coquitlam, Canada) system installed at the fMEG Center at the University of 

Tübingen. The system was developed to adapt the established technique of MEG to the special 

requirements of fetal measurements. It includes 156 primary magnetic sensors, which are distributed 

over a concave array, shaped to match the form of the gravid abdomen. The system also includes 29 

reference sensors. Data were recorded at a sampling rate of 610.352 Hz. To attenuate the influence of 

external magnetic fields, the system is installed in a magnetically shielded room (Vakuumschmelze, 

Hanau, Germany). 

 

Preprocessing 

The preprocessing steps for both EEG and fMEG, presented in the following subsections, are 

summarized in Figure 1. All steps were conducted using MNE 1.2.1 for Python 3.10.6. 

 

EEG recordings were zero-phase band-pass filtered (0.5-20 Hz). Next, the spatial resolution 

was reduced from 64/128 channels to a low-resolution 10 bipolar-channel montage used in the clinic to 

fit the number of MEG channels with brain activity [37, 38, 39]. The 10 reconstructed EEG channels 

covered the whole head (‘Fp2-C4', 'Fp1-C3', 'C4-O2', 'C3-O1', 'Fp2-T4', 'Fp1-T3', 'T4-O2', 'T3-O1', 'Fz-

Cz', and 'Cz-Pz'). Artifacts were removed using an amplitude threshold of 500 μV. A 0.5-s window prior 

to and after the detected artifacts was removed.  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.25.24304480doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.25.24304480


 

4 

For MEG signals, the first step consisted of removing maternal and fetal cardiac artifacts that 

interfered with the measurement of brain activity (Figure 1A), using the orthogonal projection method 

[2, 40]. Briefly, this technique projects out physiological interference by constructing the orthogonal 

projection operator from signal space vectors, corresponding to the interfering components. Given the 

presence of two distinct interfering components (maternal and fetal cardiac activity) in the signal, the 

method was applied twice consecutively. The first projection minimized the cardiac artifact from the 

mother (Figure 1A, middle) and the second projection, that from the fetus, which was much smaller in 

amplitude than that of the mother (Figure 1A, bottom). The number of projectors for each step was 

manually selected between 1 and 3 for each phase, to achieve optimal performance (evaluated through 

visual inspection), while retaining what we considered as background neural activity. After cardiac 

artifact removal, the fMEG signals were zero-phase band-pass filtered (0.5 and 20 Hz). Finally, we 

conducted a visual inspection of the channels and removed any noisy ones to prevent errors in the 

burst-detection phase. Any remaining artifacts were removed using an amplitude threshold of 2000 fT. 

A 0.5-s window prior to and after the artifact was removed.  

  

EEG/MEG burst detection  

 To automatically detect bursts in premature EEG and fMEG recordings, a nonlinear energy 

operator (NLEO) was used [41, 42]. Briefly, to characterize the bursts, NLEO combines the amplitude 

and spectral content of the signal at each time point. For each sample 𝑖 of the signal, the NLEO index 

was calculated as 

 

𝑁𝐿𝐸𝑂(𝑥(𝑖)) = 𝑥(𝑖)𝑥(𝑖 − 3) − 𝑥(𝑖 − 1)𝑥(𝑖 − 2) 
 

where 𝑥 represents the signal amplitude. To calculate the NLEO index, the signal was 

resampled to 256 Hz. To achieve better characterization of the dynamic changes, the absolute value of 

the NLEO index was smoothed by calculating the average over a sliding window of 384 samples 

(equivalent of 1.5 s) [41]. Next, a threshold was applied to each channel, distinguishing between signals 

above the threshold as bursts of activity and those below as IBIs. The threshold was manually and 

individually optimized for each subject through visual inspection. The mean threshold values for the 

EEG and MEG signals were 0.81 ± 0.23 µV2 and 17.0 ± 6.4 fT2, respectively.  

From previous reports [43, 44], and considering the fetal head diameter at this gestational age 

(~10 cm) [45], we expected to detect the manifestations of spontaneous neural activity on only a small 

number of MEG channels. Therefore, a region of interest comprising 10 channels was defined based 

on the spatial amplitude distribution of smoothed MEG NLEO signals. The center of the region of interest 

was determined by the maximum amplitude of the smoothed MEG NLEO signal. Next, the nine closest 

channels were selected to obtain the 10 fMEG channels, likely to present signals corresponding to 

neural activity. The spatial distribution of the NLEO mean amplitude over the channels is illustrated in 

Figure 2. 

 

For both EEG and fMEG signals, a burst was finally marked if it occurred simultaneously over 

at least half of the electrodes/channels. Otherwise, the period was marked as an IBI. Consecutive bursts 

separated by an IBI shorter than 2 s were merged. Only burst periods were considered for further 

analyses. EEG and MEG bursts were resampled to 64 Hz to reduce the number of features provided 

as input to CycleGAN, while preserving data quality. The bursts of each signal were divided into 5 s 

segments with a 2.5-s overlap to increase the data segments for CycleGAN. Remaining bursts with a 

duration of less than 5 s were discarded from further analyses. The amplitude of both EEG and fMEG 

segments were normalized to [-1,1], using the maximum and minimum values of the whole dataset and 

by calculating: 

 

𝑥𝑛𝑜𝑟𝑚 = 2
𝑥 −  𝑚𝑖𝑛(𝐸𝐺)

𝑚𝑎𝑥(𝐸𝐺)  −  𝑚𝑖𝑛(𝐸𝐺)
− 1 
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where 𝑥𝑛𝑜𝑟𝑚  is the normalized signal amplitude and 𝑥 the signal amplitude before normalization. 

𝑚𝑖𝑛(𝐸𝐺) and 𝑚𝑎𝑥(𝐸𝐺) are the minimum and maximum amplitude values of the whole 5s segment 

datasets (EEG or MEG). Finally, the datasets were divided into train (80%) and test (20%) subsets 

(Table 2).  

 

CycleGAN 

CycleGAN is a machine-learning model developed for unpaired data translation, specifically 

image-to-image transformation from painting to real photo [30, 46]. This model is also employed in the 

medical field [33, 34, 35, 36]. By adapting the original model to accommodate time-series instead of 

images, as carried out in [32], the characteristics of this approach fit well with the case of EEG to fMEG 

transformation, in which the two signals do not correspond to the same participant and do not originate 

from the same modality, despite the fact that both provide manifestations of spontaneous neural activity 

at the same gestational age. 

The architecture of CycleGAN used in this study is shown in Figure 3. It consists of two 

conditional GANs, one for data transformation from EEG to MEG and the other from MEG to EEG. Each 

GAN is made up of two sub-networks, the first being a generator, which takes a data item from the 

source domain and aims to produce a data item that is both realistic and similar to the target domain. 

Here, the generator consists of a convolutional neural network architecture that applies a series of 

convolutional and transposed convolutional layers to the input signal, transforming it into a signal from 

the target domain. The second sub-network is a discriminator, the aim of which is to evaluate the realism 

of the generated data in relation to the target domain, and thus provide feedback to the corresponding 

generator during the training process. This is achieved by passing a signal through a series of 

convolutional layers to obtain a score. The aim of the discriminator is to produce high probability scores 

when the input signals are the original signals and low probability scores when the input signals are 

produced by the generator. In addition, two main loss functions are applied. The first consists of 

adversarial loss (Figure 3, "Control Discriminator"), which links the generator and discriminator of the 

same domain. On the one hand, the generator tries to minimize loss by generating signals that are 

indistinguishable from the ‘real’ data, i.e., successfully ‘fooling’ the discriminator. On the other hand, the 

discriminator tries to maximize loss by correctly classifying the signals as ‘real’ or ‘generated’. The 

second loss function, specific to CycleGAN, is the cycle-consistency loss (Figure 3, "Control Cycle"). 

The idea is that when a signal is translated from one domain to the other, and then translated back to 

the initial domain, the resulting signal must be similar to the original signal. This constraint thus ensures 

that the content and structure of the signal are preserved during translation. During the training process, 

the two generators and two discriminators work in tandem. The generators aim to create convincing 

translations, while the discriminators strive to better distinguish between real and generated signals. 

Over time, through adversarial training and cycle-consistency, the generators improve their ability to 

generate semantically correct signals for the target domain. 

All the calculations related to CycleGAN were conducted on the UPJV MatriCS computing 

platform. 

 

Performance evaluation 

For the first step of the evaluation process, we compared the generated and reconstructed 

signals, for both EEG and fMEG. More precisely, we evaluated the performance of the CycleGAN-

based model to generate/reconstruct data (from EEG to MEG and vice versa), using measurements 

from both the time and frequency domains on the test dataset to study the temporal structure and 

spectral content of the signals. In the time domain, we calculated the mean square error (MSE) and 

cross correlation between the original and reconstructed signals. In the frequency domain, we 

compared the frequency content of the original and reconstructed signals. Toward this, we first 

calculated the spectrum of each segment (reconstructed and original signals) by applying a discrete 

Fourier transform and producing a spectrum with a frequency resolution of 0.2 Hz. We limited the 

spectral analyses to the 0.5-20 Hz spectral window, as, based on the literature, the cortical 

manifestations of the spontaneous activity at this gestational age are mostly limited to this frequency 

range [1]. Next, the average spectrum was calculated for each participant. For further statistical 
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analyses, the spectra were divided into four frequency bands, namely delta (0.5-3 Hz), theta (3-8 Hz), 

alpha (8-12 Hz), and lower beta (12-20 Hz). The average value of each band was calculated for each 

participant. A two-sample two-tailed t-test was carried out to compare the spectral content of the 

reconstructed and original signals at each frequency band, for both EEG and fMEG. In addition to 

evaluating the ability of CycleGAN to adapt to the novel data, the MSE was also calculated for the test 

dataset and the ratio between the mean absolute value of the original signal and the MSE was 

compared using a two-sample two-tailed t-test for the train and test datasets. 

For the second step of the evaluation process, we studied the fMEG signals generated from 

the EEG signals. First, 10 clear DB and FT were selected from EEG signals for three random 

participants by an expert (F.W.). The EEG to fMEG CycleGAN model was then applied to the selected 

events. The obtained fMEG signals were visually evaluated to test the fMEG manifestations of specific 

spontaneous neural activity. Second, we compared the average characteristics of the EEG-based 

generated fMEG signals and the original fMEG signals. Toward this, we first calculated the spectral 

power of the original fMEG signals and the fMEG signals generated from EEG for each segment by 

applying a discrete Fourier transform, and then averaged over segments for each participant. The 

frequency resolution was 0.2 Hz and the spectral window was limited to 0.5-20 Hz, as carried out in the 

previous step. After division into frequency bands and averaging for each participant, a two-sample two-

tailed t-test was carried out to compare the power content of each frequency band corresponding to the 

original fMEG and the generated fMEG signals. 

 

Results 

Evaluation of CycleGAN 

After the training phase, EEG signals (Figure 3A) were transformed into fMEG signals (Figure 

3B), using the CycleGAN model. Next, the EEG signals were reconstructed (Figure 3C) from the 

generated (transformed) fMEG signals. Similarly, fMEG signals (Figure 3D) were transformed into EEG 

signals (Figure 3E), and then reconstructed (Figure 3F). The signals reconstructed by CycleGAN were 

evaluated in three different ways using the test dataset: MSE, correlation, and spectral analysis. 

CycleGAN showed good performance for the reconstruction of both EEG and fMEG signals, with a MSE 

ratio of < 5% between the original and reconstructed signals in both train and test phases (Table 3). 

The MSE ratios (normalized to the mean absolute value of the signals) were not statistically different 

between the train and test datasets (t = 1.10 and p = 0.27 for EEG, t = -0.46 and p = 0.64 for fMEG). 

This suggests that the trained CycleGAN model was able to successfully generalize the transformation 

developed during the training phase to the test dataset (not seen during the training phase). 

 

The linear correlations between the original and reconstructed signals were calculated for the 

test dataset for both the EEG and fMEG signals. The cross-correlation (Figure 4) showed a highly 

significant correlation between the original and reconstructed EEG and MEG signals, 0.91 ± 0.05 (p < 

0.001) and 0.89 ± 0.08 (p < 0.001), respectively, at 0 lag. 

 

The frequency content of the reconstructed signals was evaluated and compared to that of the 

original signal for the test subset (Figure 5). CycleGAN modified the spectral content of the 

reconstructed signal compared to the original signal. More precisely, for the EEG signals, the spectral 

power of the reconstructed signal was significantly lower than that of the original in the theta (t = -6.11, 

p < 0.001) and alpha (t = -4.35, p < 0.001) bands (Figure 5A and 5C). However, the spectral power of 

the reconstructed EEG signal was not significantly different in the delta (t = 0.21, p = 0.84) or low beta 

(t = 1.2, p = 0.095) bands. For the fMEG signals, there were no significant differences in the spectral 

power (Figure 5B and Figure 5.D) between the original and reconstructed signals for any of the 

frequency bands: delta (t = -0.25, p = 0.80), theta (t = 0.10, p = 0.92), alpha (t = 1.23, p = 0.22), and 

low beta (t = 1.19, p = 0.24). 

 

Evaluation of fMEG signals generated from EEG 
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As the brain activity of the newborn is also characterized by specific features such as DB and 

FT, it is interesting to evaluate the abilities of CycleGAN in the EEG-to-MEG transfer of these two 

specific types of activities. This was carried out here only through visual inspection over a small number 

of events. A sample event corresponding to DB and a sample event corresponding to FT are shown in 

Figure 6. For the DB event, the CycleGAN transfer function replicated the slow dynamics of the EEG 

signal in the fMEG signal, whereas the relatively faster nested oscillations were modulated in the 

generated fMEG signals. For the FT, the transform kept the slow oscillation intact. Visual inspection of 

the results suggests that for both examples, the transform added high frequency oscillations of small 

energy to the fMEG signal.  

 
For further evaluation of the CycleGAN-based generation of fMEG signals, we considered the 

power spectra of the original and generated fMEG signals for the test data subset. Visual inspection of 

the spectral power (Figure 7A), as well as the mean spectral power (Figure 7B), revealed a close 

resemblance in the slow frequency content, corresponding to the delta band, between the original and 

generated fMEG signals. However, the CycleGAN model modified the higher frequency contents in 

theta, alpha, and beta bands. This observation fits with the induced high frequency activity observed 

over the generated MEG signals, as well as the modulation of the fast oscillation nested in the DB in 

Figure 6. Two-sample two-tailed t-tests showed that there was no significant difference between the 

spectral content of the original fMEG and generated fMEG signals over the delta band (t = 1.24, p = 

0.22). However, the spectral content of the generated fMEG signal was significantly higher than that of 

the original fMEG signal in the theta (t = 2.58, p = 0.011), alpha (t = 3.33, p = 0.0012), and low beta (t 

= 3.66, p < 0.001) bands. 

 

Discussion 

In this study, we developed a CycleGAN-based model to transform premature EEG to fMEG 

signals. We generated prototypical fMEG manifestations of spontaneous neural activity by creating a 

priori representations derived from premature EEG recordings. In general, the performance of 

CycleGAN was better in transforming the low-frequency content of the EEG signals into fMEG signals, 

suggesting more reliable evaluation of the low-frequency content in the generated fMEG signals.  

The fMEG is the only tool that allows investigation of the function and dysfunction of immature 

neuronal networks of the fetus with high temporal resolution. This is crucial as it addresses public health 

concerns and has the potential to help in the identification and management of high-risk pregnancies. 

Such risks include prematurity, in utero asphyxia, preeclampsia, fetal growth retardation, exposure to 

neurodevelopmental toxins, fetal cerebral suffering, and other pathologies/causes likely to impact the 

dynamics of fetal cerebral functioning [47]. The prenatal assessment of neural activity necessitates the 

identification of fetal neurobiomarkers of neurodevelopment, similar to what is carried out using EEG in 

premature newborns as part of clinical routine, aimed at evaluating the normality of brain function at 

different periods of development and predicting neurodevelopmental outcomes [1, 48]. Our proposed 

approach represents the first steps toward this ambitious goal by transferring the clinical knowledge 

acquired using EEG in premature neonates to fMEG, before identifying the neurobiomarkers of brain 

development in the fetus by MEG. 

 

CycleGAN: an approach for unpaired signal transfer 

CycleGAN is a novel generative neural network method mainly developed for image 

transformation, such as horse to zebra or photo to painting [30, 46]. However, it has also been applied 

to signals, for instance in voice conversion [49] or in the medical field for fetal ECG extraction [33]. A 

general challenge with generative techniques is the evaluation of the quality of the generated data [50].  

Our evaluation of the transformation of EEG signals to fMEG signals and vice versa using 

CycleGAN showed good performance in the temporal domain, with similar MSEs and high correlations 

between the original and reconstructed signals for both EEG and fMEG. However, in the frequency 

domain, CycleGAN showed better performance in the reconstruction of low-frequency content. Indeed, 

the high frequencies, which lower energy in the neural signals, visible also in the power spectra, were 

modified in the reconstructed signals. We have two hypotheses about the origin of this modulation. One 
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reason behind this modulation might be related to the characteristics of the CycleGAN based models. 

In line with this hypothesis, evidence suggests that CycleGAN does not completely preserve the color 

composition in image reconstruction, as it favors the dominant colors [30]. In our case, the spectral 

content of the neural data is determined by the temporal fractal and nested oscillations that manifest in 

the 1/f power law function form of the spectra [51]. This suggests that the energy of the spectral content 

decreases with an increase in frequency. The observed results suggest that CycleGAN gave more 

weight to the low spectral content of the signal in the cost functions to reduce the prediction error, as 

shown by the MSE. This is also visible in the high correlation values between the original and predicted 

signals, which again is driven by the high amplitude, low spectral content of the signals. This probably 

indicates an instance of mode collapse, a well-known drawback of GANs [52]. Briefly, this means that 

due to the adversarial nature of GAN training, the generators may specialize themself on reproducing 

certain aspects, named “modes” (here, the low frequency content) of the training data and not others 

“mode collapse” (here, the high frequency content) [53, 54]. In CycleGAN, we employed a linear 

combination of the losses with the same weight. However, each part can have a different impact and it 

can be necessary to define different weights manually or automatically [55]. In addition, to overcome 

this issue in future studies and with the aim to create better predictions of high spectral content, it might 

be possible to develop parallel models to predict the low and high spectral content separately with a 

mixing unit for weighted superposition of the outputs following a power law function. Another reason 

behind the observed modulation of the high frequency content might be related to the nature of the 

fMEG signals. As depicted in Figure 5, the fMEG signals show less conformity to the 1/f power law form 

observed in the spectrum of EEG signals, and instead exhibit a relative increase in the high frequency 

power compared to EEG signals. This might lead to the observed modulations in the results; precisely, 

that the EEG to fMEG transformation adds to the high frequency content of the signal, and that the 

fMEG to EEG transformation reduces the high frequency content.  

 

Transfer of neurobiomarkers from EEG to fMEG 

The principal interest of EEG/fMEG transfer is the visualization of fMEG signals, to provide 

insights of what the early aspects of fetal spontaneous activity recorded by MEG would look like. In this 

study, we focused on two particular endogenous neurobiomarkers that are present at this gestational 

age: DB and FT [1]. The slow waves of the FT and DB had similar forms in the original EEG and 

generated fMEG. However, the DB lost their fast nested activity in the transform. This suggests that 

without knowing the transformation of fast activities, it may be preferable to focus on low-frequency 

content (the slow waves) in future automatic algorithms for fMEG detection of these neurobiomarkers.   

 

Conclusion 

Our CycleGAN-based model offers the opportunity to transform premature EEG into fMEG 

signals and allows visualization of fMEG representations of various EEG templates and types of activity, 

including those used in the clinical applications for the evaluation of neurodevelopment. It provided a 

good representation of the low-frequency content of the signals but modified the high-frequency content. 

This aspect is important for the study of neurobiomarkers, especially DB. Moreover, by extending this 

study to younger premature infants and fetuses, the same issue is likely to occur for theta temporal 

slow-wave activity, in which fast nested activities are locked to the trough of the delta wave [21]. This 

modification of high-frequency signals is related to the tendency of GANs toward mode collapse. Recent 

approaches, such as diffusion [56], are known to mitigate mode collapse. Therefore, a promising 

research direction would be to extend our model with the application of diffusion models instead of 

GANs.  
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Figures 

 
Figure 1. Preprocessing and processing steps for EEG (left, blue) and fMEG (right, red) signals. Circular boxes represent 

inputs and outputs, and rectangular boxes represent processing steps. A) Example of an orthogonal projection: top - 

before applying the orthogonal projection, middle - after removing the maternal cardiac artifact, and bottom - after 

removing the fetal cardiac artifact. Examples of normalized EEG (B) and fMEG (C) after processing. 
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Figure 2. Spatial amplitude distribution of smoothed NLEO for one participant. The head of the mother is located on the 

left of the figure, her left on the top and her right on the bottom. The selected region of interest is shown with black 

circles. In this case, the centroid is localized around the center of the lower abdomen of the mother. 

 

 
Figure 3. CycleGAN. The EEG signals are shown in blue, the fMEG signals in red, the neural networks in green, and the 

decision in yellow. The “Generation” boxes are the elements of CycleGAN that generate data from the original EEG and 

MEG data as input and the generated MEG and EEG data as output. The “Control Cycle” boxes correspond to the 

validation of the reconstruction and generation of the signal. The “Control Discriminator” boxes evaluate the ability to 

discriminate between the original and generated signals. A) original EEG, B) generated MEG, C) reconstructed EEG, D) 

original MEG, E) generated EEG, and F) reconstructed MEG. 
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Figure 4. Correlation between the original and reconstructed signals. The solid line corresponds to the average and the 

shaded area to the standard deviation. The EEG signal is plotted in blue and the fMEG signal in red. 

 

 
Figure 5. Spectral power of EEG and fMEG signals (original EEG in blue, reconstructed EEG in green, original fMEG in 

red, reconstructed fMEG in yellow). ★ indicates a significant difference and ‘ns’ indicates no significant difference. A) 

Spectral power of EEG signals, and B) Spectral power of fMEG signals. The solid lines correspond to the average and 

the shaded areas to the standard deviation. C) Mean spectral power over the frequency bands for EEG, and D) fMEG. 
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Figure 6. Examples of the transformation of neurobiomarkers from EEG to fMEG. A) FT transformation. B) DB 

transformation. The original EEG segment is shown in blue (TOP) and the generated fMEG segment is shown in red 

(BOTTOM). The neurobiomarkers are indicated by the shaded areas. 

 

 
Figure 7. A) Spectra of fMEG signals (original in red, CycleGAN based generated in orange). The solid line corresponds 

to the average and the shaded area to the standard deviation. B) Mean spectral power over different frequency bands. 

★ indicates a significant difference and ‘ns’ indicates no significant difference. 
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Tables 

Table 1. Number of participants for premature high-resolution EEG and fMEG according to their gestational age at the 

recording date. 

Signal 
wGA 

Total 
34 35 36 37 

EEG 7 9 7 7 30 

MEG 13 11 12 8 44 

 
Table 2. Number of EEG and MEG burst segments in the train and test subsets 

Number of 

burst segments 
Train Test Total 

EEG 8542 2090 10632 

MEG 7684 1873 9557 

 
Table 3. The mean absolute value (calculated for each 5 s) of the original signals, the MSE values between the original 

and reconstructed signals, and the ratio between the mean absolute values and MSE values for both the train and test 

datasets for both the EEG and fMEG signals. All values are expressed as averages ± standard deviations. 

 EEG train EEG test MEG train MEG test 

Mean absolute value (10-3) 129 ± 122 129 ± 122 141 ± 131 143 ± 133 

MSE (10-3) 7.16 ± 11.3 6.96 ± 11.3 8.72 ± 17.7 9.04 ± 17.3 

Ratio (%) 4.46 ± 4.67 4.34 ± 4.43 4.78 ± 5.86 4.84 ± 5.69 
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