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ABSTRACT 
We used expression quantitative trait loci (eQTLs) and protein quantitative trait loci 
(pQTLs) to conduct genome-wide Mendelian randomization (MR) using 27,799 cases of 
heart failure (HF) with reduced ejection fraction (HFrEF), 27,579 cases of HF with 
preserved ejection fraction (HFpEF), and 367,267 control individuals from the Million 
Veteran Program (MVP). We identified 70 HFrEF and 10 HFpEF gene-hits, of which 58 
are novel. In 14 known loci for unclassified HF, we identified HFrEF as the subtype 
responsible for the signal. HFrEF hits ZBTB17, MTSS1, PDLIM5, and MLIP and novel 
HFpEF hits NFATC2IP, and PABPC4 showed robustness to MR assumptions, support 
from orthogonal sources, compelling evidence on mechanism of action needed for 
therapeutic efficacy, and no evidence of an unacceptable safety profile. We strengthen 
the value of pathways such as ubiquitin-proteasome system, small ubiquitin-related 
modifier pathway, inflammation, and mitochondrial metabolism as potential therapeutic 
targets for HF management. We identified IL6R, ADM, and EDNRA as suggestive hits for 
HFrEF and LPA for HFrEF and HFpEF, which enhances the odds of success for existing 
cardiovascular investigational drugs targeting. These findings confirm the unique value of 
human genetic studies in HFrEF and HFpEF for discovery of novel targets and generation 
of therapeutic target profiles needed to initiate new validation programs in HFrEF and 
HFpEF preclinical models.  
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1. INTRODUCTION  
Heart failure (HF) is classified into two major clinical subtypes based on the assessment 
of contractility as measured by the left ventricular ejection fraction (LVEF): HF with 
reduced ejection fraction (HFrEF), defined as LVEF less than or equal to 40%, and HF 
with preserved ejection fraction (HFpEF), defined as LVEF greater than or equal to 50%1. 
While significant advances in the therapy of HFrEF have improved outcomes over the last 
three decades, the morbidity and mortality contributed by this systemic condition remain 
high2. Additionally, treatment for HFpEF remains a major unmet global need, and with the 
exception of sodium glucose cotransporter 2 (SGLT-2) inhibitors that have been proven 
beneficial in HFpEF and HFrEF3, most drugs that have been tested for in HFpEF phase 
3 trials have not shown a clear benefit4,5. The therapeutic challenge of HFpEF is not 
surprising, considering the large difficulties in developing preclinical models that can 
faithfully reproduce human HFpEF, a heterogeneous phenotype6.  
  
Human genetics is a well-established strategy for identifying drug targets and causal 
pathways that can further inform drug discovery. Except for a genome-wide association 
study (GWAS) in HFrEF and HFpEF from the Million Veteran Program (MVP)7 conducted 
by our group8, most loci that have been identified have been derived from genetic studies 
on unclassified HF8–10. Despite its value in uncovering novel mechanisms in HF, the lack 
of genetic evidence specific to HFrEF and HFpEF presents a challenge in developing and 
validating preclinical models and in selecting drug targets to test. 
  
To overcome these limitations, we conduct a genome-wide Mendelian Randomization 
(MR) study that leverages MVP Release 4 GWAS data using 27,799 HFrEF and 27,579 
HFpEF11 cases with protein and expression quantitative trait loci (pQTLs and eQTLs). 
Specifically, we use pQTLs from the SOMAscan V4 assay covering 5,207 aptamers 
capable of measuring 4,988 unique human proteins available in deCODE12, Fenland13, 
and Atherosclerosis Risk in Communities (ARIC)14 studies, and eQTLs from GTEx V815 
and eQTLGen16. For every gene identified as a hit by MR, we triangulate MR findings with 
orthogonal sources of evidence to strengthen causal links from proteins to disease and 
create a therapeutic target profile covering efficacy, on-target safety, novelty of biological 
mechanism, druggability, and predicted mechanism of action (MoA) needed for a 
therapeutic solution. Finally, we conduct replication of hits using multi-ancestry datasets 
from BioVU and MVP containing 12,604 HFrEF cases, 11,486 HFpEF cases, and 
151,118 control individuals of African-American, Hispanic, and European-descent without 
history of any HF, and an alternative platform replication using the antibody-based Olink 
assay.  
 
2. RESULTS  
General findings 
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Figure 1 illustrates the overall design. Of 15,253 evaluated protein-encoding genes, we 
identified ten genes for HFpEF and 70 genes for HFrEF that passed our Bonferroni 
correction threshold (p-value < 2.06	 × 10!"), including the cardiomyopathy-associated 
genes BAG3 and TCAP17. To define novelty of hits, we compared our findings against all 
previously published GWAS and MR studies in HF and HF subtypes8,9,18–23. For HFpEF, 
nine genes are novel, and one is a replication of prior reports8,9,18–23, while for HFrEF, 49 
are novel, 14 have not been previously reported for a specific HF subtype (“partially 
novel”), and seven are replications of prior reports 8,9,18–23; see Table 1 and Tables S1 to 
S3. At a false discovery rate (FDR) of 5% (p-value < 6.80 × 10!#), a total of 49 genes for 
HFpEF (10 of which also met Bonferroni) and 362 genes for HFrEF (70 of which met 
Bonferroni) passed our criteria for suggestive hits. Figure S1 illustrates the overlap 
between our hits and previously reported hits. As suggestive hits, we identified known 
cardiomyopathy genes ACTN2, FLNC, RIT1, and SGCD. No single gene passed the 
Bonferroni correction threshold for both subtypes. However, FTO was a hit for HFpEF 
and a suggestive hit for HFrEF, and MYOZ1 was a hit for HFrEF and a suggestive hit for 
HFpEF (Table S2). The genes with the strongest odds ratios (OR) against HF subtypes 
were ZBTB17, ERBB2, LAG3, and TCAP, all with OR higher than 1.5, and SORT1, 
TNFRSF6B, TCTA, C3orf62, PSRC1, and LTN1, all with OR lower than 0.67, suggesting 
a strong protective effect.  
 
MR assumptions 
Proposed instruments for our MR hits had a median (interquartile range, “IQR”) F-statistic 
of 76.08 (45.62, 177.32), suggesting weak instrument bias was unlikely to be observed 
(Figure 2). Multiple steps were conducted to assess confounding by linkage 
disequilibrium (LD). First, we performed genetic colocalization and observed a median 
(IQR) posterior probability of the shared causal variant hypothesis 4 (H4) of 0.85 (0.55, 
0.93) (Table S4). Three HFpEF and 44 HFrEF genes had strong evidence of 
colocalization (H4 ≥ 0.8), while four HFpEF and 10 HFrEF genes had suggestive evidence 
of colocalization (0.5 £ H4 < 0.8). Second, we investigated if there was a HF, HFrEF, or 
HFpEF GWAS or MR-hit (including our hits) within +/- 500KB in LD, defined as r2 > 0.4, 
with the cis-QTLs of our MR hits (Table S5). Twenty-four MR hits were not in LD, eight 
hits were in moderate LD (0.4 < r2 < 0.8) and 48 MR hits were in strong LD (r2 > 0.8). A 
total of five HFpEF hits in chromosome 17 (NSF, ARL17A, LRRC37A, LRRC37A2, and 
MAPT) covering a region of 466 MB were in moderate LD. We used SuSiE in this region 
for fine-mapping in the presence of multiple causal variants, but the signals could not be 
distinguished due to the large LD block in the region. No fine-mapping was attempted for 
hits in strong LD given the limited utility of available resources. We did not observe 
heterogeneity (Cochran’s Q p-value > 0.05) across IV estimates in 11 of 15 MR hits with 
two or more instruments; in all five MR hits with three or more instruments, the Egger 
intercept test had a p-value > 0.05 (Table 1). In 39 of 66 (60%) hits that used cis-eQTLs 
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as a proposed instrument, the Enformer CAGE value was ≥50% in tissues of the derived 
MR hit, confirming that a considerable number of our proposed instruments affected gene 
expression (Table S6).  
 
Therapeutic target profile 
We then performed follow-up analyses for each hit to create a therapeutic target profile 
composed of supporting data on efficacy, novelty of biological mechanism, on-target 
safety, predicting MoA needed for a therapeutic solution, and druggability annotations. 
Orthogonal sources for efficacy included data from knockout (KO) mice models, putative 
loss of function (pLOF) variants identified at p-value < 5 × 10!$	from UK Biobank (UKBB), 
OMIM/ClinVar, and 29 cardiac MRI (CMR) parameters as proxies of structural heart 
disease. Sources utilized for safety included FDA warnings for drugs covering identified 
targets and MR results on 24 traits covering common causes of drug toxicity (cardiac, 
renal, and hepatic), as well as safety events typically included in phase 3 HF trials. The 
p-value threshold for follow-up analysis was 5 × 10!$ (0.05 / number of CMR, HF risk 
factors and safety traits tested).  
 
Orthogonal sources supporting efficacy on HFrEF and HFpEF 
Structural Heart Disease    
Seven of 10 HFpEF genes and 43 of 70 HFrEF genes had an association (p-value < 
5 × 10!$) with at least one of the 29 evaluated CMR traits (Table S7). In 123 of 180 
(68.3%) gene-CMR associations, the directionality of the MR on the CMR trait was 
concordant with the MR directionality on HFrEF or HFpEF. Interestingly, 21% of 
discordant associations were accounted for by LVMVR, which may be explained by 
uncertainty in the directionality of this metric with HF.24 We noticed that ATP6V1F, 
KLHDC8B, ZBTB17, LTN1, C3orf62, and TCTA showed strong associations with CMR 
traits, defined as greater than two standard deviations from the mean beta coefficient of 
the MR betas on CMR traits for the hits.  
 
Evidence from KO mice models, pLOF burden test in the UKBB, and OMIM/ClinVar 
on HF risk factors, HF, and cardiomyopathy-related traits 
HFrEF hits BAG3 and TCAP had orthogonal supporting evidence on HF or 
cardiomyopathy from KO mice models and OMIM/ClinVar, while ARIH2, CCDC92, 
CDKN1A, ERBB2, INPP5F, MED1, MLIP, PDLIM5, PHIP, PNMT, and QRICH1, all HFrEF 
hits, and PABPC4, a HFpEF hit, had orthogonal supporting evidence on HF or 
cardiomyopathy from only KO mice models (Table S8). An additional 13 gene-hits had 
orthogonal supporting evidence on HF risk factors from KO mice models or pLOF burden 
test (p-value < 5 × 10!$	) from UKBB25 (Figure 3).  
 
Supportive evidence from orthogonal sources of efficacy on secondary genes 
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Given that genes exhibit their downstream effects through biological networks, we 
identified all genes directly linked to our MR hits, referred to as secondary genes, using 
protein-protein interactions (PPI) networks, as described by MacNamara26. For every 
secondary gene, we retrieved data from KO mice models, pLOF burden test in the UKBB 
(p-value < 5 × 10!$), and OMIM/ClinVar on HF and cardiomyopathy-related traits and 
reported a score that considered the number of secondary genes linked to an MR hit. MR 
hits with the highest scores were MLIP, MED1, MYOZ1, TCAP, MST1R, ZBTB17, 
SERPINF2, RHOA, HSPA4, and BAG3, all HFrEF hits (Figure 3 and Table S9). 
 
Novelty of mechanism  
Six HFpEF and 30 HFrEF genes had a novel biological mechanism defined as neither 
being the target nor being linked to a gene-target of HF drugs nor sharing a biological 
pathway with genes encoding targets for HF drugs. A closer inspection revealed that 31 
of the 44 gene-hits judged as not novel were classified as such due to their link to the 
androgen receptor (AR), one of the two targets of spironolactone, which is unlikely to be 
the target explaining the benefits of this drug on HF27. The number of novel targets did 
not decrease after limiting the analysis to gene-hits for which >80% of their MR 
associations were with HF risk factors judged modifiable by existing cardiovascular drugs 
(coronary heart disease (CHD), LDL-C, blood pressure (BP), NT-proBNP, and type 2 
diabetes mellitus (T2DM)) or by successful public health measures (smoking) (Table 
S10).  
 
Integration of human genetics sources to infer MoA for HFrEF and HFpEF hits  
Except for LAG3, all hits had at least one MR association at a p-value < 5 × 10!$ with a 
CMR trait, HF risk factor, pLOF burden in UKBB, support by OMIM/ClinVar, or animal 
genetics. We then used this data to infer the MoA needed for efficacy by comparing the 
directionality (not expected to be affected by power) of findings on HFrEF or HFpEF 
against the orthogonal sources supporting efficacy. The concordance with HFrEF or 
HFpEF findings was 88% for HF risk factors (Table S11), 73% for CMR (73%), 50% (2 
out of 4) pLOF burden test in the UKBB and OMIM/ClinVar, and 43% for KO mice models 
positive for HF (6 out of 14). The median (IQR) of the percentage of concordance, across 
gene-hits, between HFrEF and HFpEF findings with HF risk factors or CMR was 83% 
(67%, 100%), supporting MR as a valid strategy to infer MoA. Genes to highlight due to 
the high number of concordant associations with CMR and HF risk factors include the 
HFrEF hits CDKN1A, BAG3, ZBTB17, MTSS1, MMP11, PDLIM5, MLIP, LTN1, CCDC92, 
MST1, and MST1R and the HFpEF hits FTO, NFATC2IP, and genes in the chromosome 
17 cluster (NSF, ARL17A, LRRC37A, and LRRC37A2) (Table S12). 
 
Given the unmet clinical need in HFpEF, we also report on CMR and HF risk factor 
associations for the 39 HFpEF suggestive hits (Table S13). Interestingly, the MR beta for 
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HFpEF was highly correlated with the MR beta for BMI (𝜌 = 0.79) and T2DM (𝜌 = 0.89) 
across both Bonferroni and suggestive MR hits (Figure 4). 
 
Safety  
Of 1,920 gene-safety trait comparisons conducted, only 64 gene-safety traits (3.3%) had 
both a p-value < 5 × 10!$ and an MR beta coefficient direction of effect that was 
suggestive of a safety signal (Figure 5; Table S14). The most common safety signals 
were for liver (n=28), QT interval (n=21), renal (n=6) and cancer (n=8) traits. Interestingly, 
for 103 gene-safety trait comparisons, although they met a p-value < 5 × 10!$, the 
direction of the beta coefficient was indicative of a potential beneficial effect, instead of a 
safety event. In addition, we searched for FDA warnings reported for drugs whose only 
target was a protein encoded by our hits and identified tyrosine kinase inhibitors (e.g. anti-
ERBB228) and LAG3 inhibitors that belong to the class of immune checkpoint inhibitors, 
both known for their cardiotoxicity29. None of our HFrEF and HFpEF hits were directly 
linked to the KCNH2/hERG gene associated with long QT prolongation syndrome30. 
 
Druggability  
Twenty-seven HFrEF hits and five HFpEF hits were considered potentially druggable by 
small molecules or antibodies31–33, according to Open Targets (release 2021-03-08). We 
identified 30 drugs where the HFrEF hits ROCK2, TNFSF12, CA9, ERBB2, LAG3, and 
MST1R and HFpEF hits MAPT and FTO were the only efficacy target and hence have 
some translational opportunities. Of these 30 drugs, only Narnatumab, a neutralizing 
monoclonal antibody that blocks the MST1 ligand from binding MST1R (both MR hits), 
had a MoA that matched the MR findings on HFrEF for MST1 and MST1R and had no 
reports on cardiotoxicity34. Narnatumab was discontinued after a Phase 1 trial in patients 
with advanced solid tumors, as it did not observe changes in pharmacodynamic 
biomarkers and antitumor activity (Table S15).   
 
Rediscovery of drugs approved or under development for HF management  
At nominal p-value, we rediscover genes encoding targets of HF approved drugs, such 
as ADRB1 for beta-blockers, SCNN1A for diuretics, NR3C2 for mineralocorticoid receptor 
antagonist, CACNA1D for calcium channel blockers, and SLC5A2 for SGLT2 inhibitor 
(Table S16). As suggestive hits (p-value < 6.80 × 10!#) for HFrEF, we identified LPA, 
IL6R, ADM, and EDNRA, all associated with investigational drugs for cardiovascular 
disorders. Specifically, LPA is the target of several liver-targeted RNA-based therapies 
(coinciding with the liver GTEx tissue source of the MR) in development for cardiovascular 
disorders35. We further investigated LPA using 67 variants derived from a GWAS on Lp(a) 
from UKBB36. We replicated the association with HFrEF (p-value = 6.89 × 10!%), and 
showed a suggestive association with HFpEF (p-value = 1.67 × 10!#) (Table S17). 
Similar associations with HFrEF and HFpEF were observed when using MR-pQTL from 
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Olink UKBB (Table S18). Based on the 94% reduction in Lp(a) levels observed with 75 
mg olpasiran37, the OR on HFrEF is expected to decrease by 25% and on HFpEF by 
15%. IL6R, whose ligand (IL6) is the target of Ziltivekimab, is being tested for progression 
of HFmEF (heart failure with mid-range ejection fraction) and HFpEF in the HERMES 
Phase 3 trial38. To confirm these findings, we used 22 cis-IL6R variants associated with 
CRP levels as proxy of IL6R blockade and showed a stronger association with HFrEF (p-
value < 3.41 × 10!%) but a null effect on HFpEF (p-value = 0.47) (Table S19). ADM, target 
of Enibarcimab, is being tested for cardiogenic shock. Although there are several dual 
endothelin receptor antagonists, our findings on HFrEF with EDNRA suggest selective 
ETA antagonists as a potential target for HF management.  
 
Replication of findings 
After conducting a multi-ancestry meta-analysis on African-American, Hispanic, and 
European-descent individuals from the BioVU and MVP, including 12,604 HFrEF and 
11,486 HFpEF cases that were not included in the discovery phase (Table S20), we 
conducted MR using cis-QTLs utilized in the MVP European-descent discovery dataset. 
A total of 31 HFrEF hits and 4 HFpEF hits had a p-value < 0.05, and of these, 94.3% were 
also directionally concordant with the discovery dataset (Table S21). As an additional 
replication, we used Olink Explore 3072 assay from the UK Biobank. We conducted MR 
using 1,682 cis-pQTL, covering the same number of genes, against HFrEF and HFpEF. 
A total of seven genes passed the Bonferroni correction threshold (p-value < 2.97 × 10!$), 
of which six were a replication (ZBTB17, CELSR2, TNFRSF6B, LRRC372A2, and MST1 
for HFrEF and LPA for HFrEF and HFpEF) and one, MUC2, was a new discovery for 
HFpEF (details in Table S18).   
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3. DISCUSSION 
 
Our analysis explored the causal roles of the human proteome and transcriptome on the 
largest HFrEF and HFpEF genetics dataset and identified 58 novel targets8,9,18–23, for 
which we developed a therapeutic target profile encompassing efficacy, safety, and 
novelty of mechanism to help inform early drug discovery programs for HFrEF and 
HFpEF.   
 
The novelty of our findings comes from multiple avenues. First, we accounted for 
pathophysiologic differences between HFrEF and HFpEF to explore genetic signals 
reported as hits for unclassified HF and, in some cases, strengthen the supporting 
evidence as HF drug targets. Second, we identified several genes, discussed below, as 
potential targets for HFrEF or HFpEF with low likelihood of confounding of genetic 
evidence by LD, significant support from orthogonal sources on efficacy, compelling 
evidence around the MoA needed for therapeutic efficacy, and no evidence for an 
unacceptable safety profile. Third, we identified several biological pathways as potential 
therapeutic targets for HF management.  
 
We report new evidence relevant to drug discovery for MTSS1 and ZBTB17, previously 
reported hits for HF. For MTSS1, we refined the association to HFrEF. Second, using 
different resources compared to previous reports (GTEx instead of MAGNet and CMR 
instead of echocardiography)39, we showed that the cis-variant rs7461129/MTSS1 which 
is associated with increased mRNA expression in LV tissue was associated with 
increased risk in HFrEF. In addition, we report ten associations with LV and RV MRI 
parameters, nine of which are directionally concordant with HFrEF findings, suggesting 
an inhibitor as a therapeutic agent. This MoA is also supported by animal genetics where 
ablation of MTSS1 gene showed a beneficial HF profile39.  
 
Our previous MVP GWAS on HF subtypes identified rs371236917 as a hit for HFrEF; 
however, both ZBTB17 and HSPB7 genes were considered candidate genes. Using 
eQTLGen and subsequently confirmed by Olink (5𝑥10!&#, with same directionality), we 
now show that ZBTB17 had the strongest MR association with HFrEF and a substantial 
increase in LVESV and reduction in LVEF. These findings suggest an inhibitor as the 
MoA for a therapeutic solution, which agrees with in-vitro, neonatal rat cardiomyocytes, 
and in-vivo mouse models where overexpression of ZBTB17 led to cardiac hypertrophy40. 
In-vitro experiments have also suggested that ZBTB17 binds to both calcineurin and 
NFATC2 known factors in both cardiac remodeling and HF; these are mechanisms that 
could explain associations with HF observed in human and animal genetics40.  
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Among the nine novel genes for HFpEF, it is important to highlight the NFATC2 interacting 
protein (NFATC2IP) and poly(A) binding protein cytoplasmic 4 (PABPC4) genes. MR 
findings on NFATC2IP showed both an increase in risk on HFpEF and higher LVM. 
Increase in HFpEF risk was also concordant with increased levels of systolic BP, CRP, 
and BMI, increased risk of T2DM, renal failure, and pulmonary heart disease, and a 
decrease in HDL-C levels—traits highly relevant for HFpEF. rs3768321/PABPC4 variant, 
which increases mRNA expression of PABPC4 in multiple tissues showed a reduction in 
HFpEF risk. This result was directionally concordant with MR findings showing a reduction 
in levels of BMI, risk of T2DM, and renal failure, and an increase of HDL-C levels. In 
agreement with the MR findings, genetic ablation of PABPC4 in mice showed a reduction 
in HDL-C and free fatty acids and an increase in heart weight41. The concordance in the 
directionality of the findings between human and animal genetics studies supports an 
agonist for HFpEF prevention. Further support for the role of PABPC4 on HFpEF comes 
from GWAS studies, where our cis-instrument rs3768321/PABPC4 has been reported as 
a hit for metabolic traits such as basal metabolic rate, whole body fat free mass, FEV1, 
and peak-expiratory flow, reinforcing the role of PABPC4 on cardiometabolic fitness31.  
 
Among our novel HFrEF gene-hits that are important to highlight are PDZ, LIM domain 5 
(PDLIM5), and muscular LMNA interacting protein (MLIP). PDLIM5 is a cytoskeleton-
related protein, highly expressed in heart tissue, that interacts with multiple sarcomeric 
components, protein kinases, and transcription factors and is involved in cell proliferation 
and cardiomyocyte physiology42. Our MR findings showed that an increase in mRNA 
expression of PDLIM5 exhibited a protective effect against HFrEF and cardiomyopathy in 
MVP participants. These findings were directionally concordant with a reduction in 
diastolic BP and an improvement in renal function, proxied by reductions in creatinine and 
cystatin C levels and an increase in eGFR levels. In support of this, global and cardiac 
specific ablation of PDLIM5 gene in mice resulted in dilated cardiomyopathy phenotype, 
all of which indicates that agonism of PDLIM5 is the MoA for a HFrEF therapy 43.  
 
MLIP gene, highly expressed in heart tissue, interacts with LMNA, an established 
cardiomyopathy gene. MLIP protein appears to regulate cardiac homeostasis and protect 
against cardiac hypertrophy. In agreement with these mechanistic findings, we observed 
that a cis-variant associated with an increase in mRNA expression of MLIP showed a 
protective effect on HFrEF and cardiomyopathy in MVP. In support of this, MLIP 
overexpression in mice models abrogates adverse cardiac remodeling and preserves 
cardiac function, while ablation of MLIP showed a rapid progression from hypertrophy to 
HF44. 
 
It did not escape our attention that genes we identified together with those previously 
reported converged on pathways such as ubiquitin-proteasome system (UPS), small 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.22.24304728doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.22.24304728
http://creativecommons.org/licenses/by/4.0/


12 

ubiquitin-related modifier (SUMO) pathway, inflammation, and mitochondrial metabolism 
known to play a role on HF etiology.  
 
Compensatory mechanisms relevant to HF, such as LV hypertrophy, are associated with 
both an increase in protein synthesis and degradation. Impairments to UPS, essential in 
protein degradation, may lead to an increase in abnormal proteins, which is detrimental 
to the heart given its limited self-renewal capacity45. PSMG1, RNF123, LTN1, ARIH2, 
FBXL20, and FBXO32 gene-hits and FBXO31 and WWP1 suggestive gene-hits all belong 
to the UPS pathway. All of these genes were associated with HFrEF. Evidence from 
protein-coding variants supporting the role of UPS in HF comes from LOF variants in the 
FBXL4 gene, known to cause mitochondrial DNA depletion syndrome, which includes 
hypertrophic cardiomyopathy within its phenotypic expression46. In support of these 
human genetic findings on UPS genes, large-scale KO-mice studies from the 
International Mouse Phenotyping Consortia identified additional F-box proteins (FBX10, 
15, 22, 24, 36, 38) as hits for measures of structural heart disorders using cardiac 
ultrasound47. Evidence from human and animal genetics adds to the growing mechanistic 
evidence from preclinical and clinical studies suggesting a role for UPS in HF48. However, 
recent cardiotoxicity findings associated with proteasome inhibitors (targeting 38 proteins 
that compose the 26S-proteasome) licensed for management of plasma cell dyscrasias49, 
suggests that determining the specific target of intervention within UPS, MoA, and dosing 
are critical gaps to be surmounted to achieve beneficial effects on HFrEF50. 
 
SUMO system is composed of two processes, SUMOylation and deSUMOylation, 
involved in the regulation of cardiac development, metabolism, and stress adaptation, all 
central mechanisms to HF50,51. SUMOylation is a process by which SUMO proteins 
(SUMO1, 2, 3, and 4) are conjugated to target proteins through a pathway controlled by 
the enzymes, E1 activating, E2 conjugation, and E3 ligases. Overexpression in mice of 
SUMO1 and 2 was associated with HF phenotypes51, while high plasma levels of SUMO3 
have been reported in prevalent HF in the AGES Reykjavik study52 and SUMO2 is 
associated with HF progression53. In support of this, our analysis identified UBA6, UBA7 
(E1 activating enzymes), and UBE2E3 (E2 conjugation enzyme) genes as suggestive hits 
for HFrEF. DeSUMOylation is the reverse process by which SUMO-specific peptidases 
(SENP) remove SUMOs from protein targets. Our analysis identified SENP3 and SENP7 
as hits for HFrEF, while mice models overexpressing SENP2 and SENP5 were 
associated with cardiac hypertrophy and dilated cardiomyopathy51. Hence, our data 
suggests the potential benefit of targeting the SUMO pathway for benefit in HFrEF. 
 
After the post-hoc analysis of the CANTOS trial, which evaluated the IL1β inhibitor 
canakinumab, showed a trend towards dose-dependent reduction in hospitalization for 
HF or HF-related mortality54, efforts for novel anti-inflammatory targets in HF have 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.22.24304728doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.22.24304728
http://creativecommons.org/licenses/by/4.0/


13 

focused on the NOD-like receptor pyrin domain-containing protein 3, cryopyrin 
(NLRP3)/IL1/IL6 signaling pathway38,55,56. From upstream of the pathway, we identified 
the coiled-coil domain containing 92 (CCDC92) gene, encoding an interferon stimulated 
protein, as a hit for HFrEF. Genetic ablation of CCDC92 in mice, after a high fat diet, is 
associated with a reduction in NLRP3 and IL1β serum levels and metabolic traits such as 
obesity and insulin resistance57. Associations of CCDC92 gene with metabolic and 
inflammatory traits have also been observed by GWAS studies, using the missense 
variant rs11057401/CCDC92, and by our MR downstream analysis using cis-eQTLs from 
LV and adipose tissues in strong LD (r2=0.9) with rs1105740158. IL1 receptor associated 
kinase-1 binding protein (IRAK1BP1) gene, identified by us as a hit for HFrEF, is a 
component of the IRAK1 molecule involved in IL1R proximal signaling. Further down the 
pathway, the IL6R gene, reported as a MR hit for unclassified HF,9,18 was identified by us 
as a suggestive hit for HFrEF, but not for HFpEF. The specificity of the association of 
IL6R with HFrEF (p-value < 3.41 × 10!%), instead of with HFpEF (p-value = 0.47), was 
strengthened when using 22 cis-IL6R variants associated with CRP levels, as a proxy of 
downstream IL6R blockade.59 The IL6R findings specific to HFrEF contrast with the target 
population being evaluated in the HERMES trial (HFmEF/HFpEF) testing a mAb-targeting 
IL638. Post-IL6R, several signaling molecules (such as IL6ST, STAT1 and STAT3, and 
TRAF3) have been reported as hits by GWAS or MR studies for unclassified HF9,10,18. 
Though the human genetic evidence for the NLRP3-IL1-IL6 signaling pathway on HF is 
compelling, the evidence from general population biobanks emulates a primary 
prevention trial on HF, as opposed to trials on HF progression. Hence, further human 
genetic studies that use biobanks such as MVP, which emulate HF progression trials, are 
needed. 
 
A growing number of clinical studies that evaluated energetics in HF patients have pointed 
towards a mitochondrial dysfunction affecting patients with HFrEF and HFpEF60,61. In 
support of this, inherited mitochondrial disorders, caused by a growing list of rare variants 
in mitochondrial-related genes, are known to cause cardiomyopathy, in the absence of 
established HF risk factors, as part of its multi-morbidity60. However, whether alterations 
in those genes through cis-variants affecting expression or cognate protein levels are 
relevant for common forms of HF has remained elusive. Our current study identified three 
genes involved in mitochondrial translation and assembly. MRPL35 and NDUFAF3 (hits) 
and MRPS21 (suggestive) are associated with HFrEF and structural measures of heart 
disease in our study. This provides further support to the consensus statement that has 
identified mitochondrial function as a therapeutic target for HF61. 
 
Strengths from the current analysis include the large number of HFrEF and HFpEF cases 
in a uniformly phenotyped cohort allied with multiple orthogonal approaches to establish 
causal relations of druggable protein targets. We undertook extensive analytical steps to 
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reduce the likelihood of confounding by LD, and our analyses have a low chance of weak 
instrument bias, as reinforced by the finding that six out of ten of the MR hits used cis-
instruments, judged by Enformer to be true positive variants affecting cis-transcription in 
the same tissue used by MR. Given that some of the MR assumptions are unverifiable62, 
we triangulate our MR findings with orthogonal sources, vulnerable to different biases, to 
prioritize detected MR hits. Our emphasis on concordance of the directionality of findings 
between HFrEF/HFpEF, HF risk factors, and CMR allowed us in several cases to infer 
MoA for targets identified with confidence. We conducted multiple steps to increase the 
replicability of our findings to other studies and ancestries using BioVU and MVP and the 
Olink platform.  
 
There are important limitations to our study. A considerable number of our MR hits were 
in strong LD with themselves and with published hits from GWAS/MR studies on HF, 
HFrEF, HFpEF, or cardiomyopathy genes. In situations with strong LD (r2>0.8), fine-
mapping methods have low value to resolve this. Hence, we triangulated with orthogonal 
sources, exposed to different biases; however, this was uninformative in multiple cases. 
De-novo experimental studies are needed to resolve confounding by strong LD observed 
in some cases and to provide some biological insight for hits with low biological prior 
evidence, but we considered this to be out of scope for our current analysis. In addition, 
no single cell model (e.g. iPSC cardiomyocyte) will prove suitable for all our hits. 
Furthermore, for several hits we deemed it to be unlikely that such experimental evidence 
will drastically change the likelihood of hits being relevant to HF given the existing 
evidence we identified from orthogonal sources. Although we included non-European 
ancestry samples in our replication datasets, the eQTL/pQTL instruments for MR were 
not ancestry-specific and assumed transportability across ethnicities. This highlights the 
need for resources such as GTEx to include non-European individuals.  
 
In conclusion, we identified several genes as plausible targets for HFrEF and HFpEF and 
found evidence from orthogonal sources to support their efficacy and inform on the MoA 
needed for a therapeutic solution. We anticipate this knowledge to be of value in the 
generation of novel therapeutic opportunities for HFrEF and HFpEF. 
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4. METHODS 
 
4.1 Clinical and demographic characteristics of HF genomic datasets 
The discovery dataset consisted of 422,645 participants of European-descent (27,799 
patients with HFrEF, 27,579 with HFpEF, and 367,267 control individuals) included in 
MVP Release 4. The clinical and demographic features of the participants are 
summarized in Table S20. Replication was conducted across ancestries in MVP Release 
4, using data on 108,202 participants of African American descent (7,393 patients with 
HFrEF, 6,515 with HFpEF, and 94,294 controls) and 46,622 participants of Hispanic 
descent (1,865 patients with HFrEF, 1,904 with HFpEF, and 42,853 control individuals, 
Table S20). Replication was also conducted across studies in the Vanderbilt University 
Medical Center (VUMC) Biobank (BioVU) using data on 17,744 participants of European 
descent (2,807 with HFrEF, 2,610 with HFpEF, and 12,327 control individuals) and 2,640 
participants of African-American descent (539 with HFrEF, 457 with HFpEF, and 1,644 
control individuals, Table S20).  
 
4.1.1 Million Veteran Program  
The MVP is a national voluntary research program and mega-biobank in the health care 
system of the Department of Veterans Affairs (VA). MVP contains comprehensive data 
linking genotype data to electronic health record (EHR) data, containing information on 
diagnosis codes, laboratory values, and imaging reports. Enrollment in the MVP began in 
2011 with veterans recruited from over 60 medical centers. Data was collected from 
participants with available VA EHR data. All participants have provided informed consent, 
and the study protocol of the MVP was approved by the Veterans Affairs Central 
Institutional Review Board. The study design and methodology of the MVP has been 
previously described7. 
 
Participants with HF in MVP were identified with an International Classification of 
Diseases (ICD)-9 code of 428.x or ICD-10 code of 150.x and with an echocardiogram 
performed within 6 months of diagnosis. Participants with heart failure were then 
classified into the subtypes of heart failure, HFrEF and HFpEF, by implementing a natural 
language processing (NLP) approach on both coded and unstructured data in the VA 
EHR in order to extract left ventricular ejection fraction (LVEF) values from 
echocardiogram reports63. Participants with an HF diagnostic code were classified as 
HFpEF if their first recorded LVEF was greater than or equal to 50% and as HFrEF if their 
first recorded LVEF was less than or equal to 40%. Participants were identified as having 
European, African American, or Hispanic ancestry using a combination of self-reported 
race and ethnicity and principal components of ancestry using previously described 
methods64. 
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4.1.2 Genotyping and quality control in the Million Veteran Program 
Genotyping in MVP was performed using the MVP 1.0 custom Axiom array, which is 
based on the Axiom Genotyping Platform. The MVP 1.0 custom Axiom array was 
designed and developed as a single assay to be used on clinically useful and rare variants 
applicable to the multi-ethnic MVP cohort65. The Axiom array consists of 668,280 genetic 
markers that pass quality control. Quality control involved removing duplicated, 
mislabeled, and misidentified samples, samples with excess relatedness (identified by a 
call rate below 98.5%), and samples with gender mismatches65. Imputation was then 
conducted on the 1000 Genomes phase 3 version 5 reference data using Minimac466. 
Variants with a minor allele frequency (MAF) greater than 1% were tested for association 
with HFpEF and HFrEF using PLINK2.67 Covariates included age, sex, and the top ten 
genotype-derived principal components. GWAS findings were functionally annotated and 
prioritized using FUMA, a software that uses information from 18 biological data 
repositories and tools68. 
 
4.1.3 Vanderbilt University Medical Center’s BioVU  
The BioVU is a biobank that links the de-identified EHR system containing phenotypic 
data to discarded blood samples from routine clinical testing for the extraction of genetic 
data69. Participants with HFrEF and HFpEF were identified by the Electronic Medical 
Records and Genomics (eMERGE) network phenotype definition for incident HFrEF and 
HFpEF, which includes electronic medical record (EMR) International Classification of 
Diseases, Ninth and Tenth Revision (ICD-9 and ICD-10) codes (ICD-9 code 428.x and 
ICD-10 code I50.x) and clinical notes. The algorithm uses ICD-9 and ICD-10 codes, 
problem list mentions, and HF mentions from clinical text identified by natural language 
processing. The EMR-driven phenotype algorithm of heart failure was conducted 
according to a previously published method70, which includes three hierarchical 
definitions of heart failure (definite, probable, and possible). Only individuals who have 
been flagged as “definite” and “probable” were included; individuals who have been 
flagged as “possible” were excluded from analyses. Echocardiography measurements of 
left ventricular ejection fraction were extracted from a structured database70. NLP was 
used to search radiology reports for EF measurements70, where a classification of HFpEF 
required the individual’s lowest ejection fraction to be greater than or equal to 50%, and 
HFrEF required the individual’s lowest ejection fraction to be less than 40%. HF cases 
with an intermediate ejection fraction (greater than or equal to 40% or less than 50%) 
were not included in the analyses. Individuals whose medical records lacked any ICD 
codes for heart failure or text mentions and who never had a documented left ventricular 
ejection fraction below or equal to 50% in their echocardiogram reports were used as 
controls. Age was defined as age at the time of heart failure diagnosis for cases and age 
at last medical visit for controls. 
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4.1.3.1 Genotyping and quality control in the BioVU  
GWAS-level genotyping was performed using the Illumina MEGA-Ex chip, which includes 
over 2 million common and rare variants prior to imputation69. Quality control involved 
excluding samples or variants with greater than or equal to 5% missingness, removing 
samples with mismatched identifiers as detected by checks for identity by descent, and 
removing samples that were discordant between reported sex and genetically determined 
sex69. 
 
4.2 Mendelian randomization on 15,253 genes and HFrEF and HFpEF in MVP 
We performed MR analysis using eQTLs and pQTLs spanning 15,253 unique protein-
coding genes across 5 different data sources as instrumental variables to infer effects of 
protein and expression levels on HFrEF and HFpEF. 
 
4.2.1 Selection of proposed eQTL and pQTL instruments  
We obtained cis-pQTLs from publicly available GWAS from the Fenland (retrieved from 
www.omicscience.org), deCODE, and ARIC studies, all using SOMAscan v4 assay in 
plasma and from European-ancestry individuals12–14 (Figure S2). The deCODE study 
provided genetic association data on plasma protein levels of 4,907 proteins measured 
in 35,559 individuals, Fenland provided data on 3,892 proteins measured in 10,708 
individuals, while ARIC provided data on 2,004 proteins measured in 7,213 individuals. 
To diminish the likelihood of horizontal pleiotropy, instruments were restricted to cis-
variants. In the Fenland study, approximate conditional analysis was performed to detect 
secondary signals for each genomic region identified by distance-based clumping of 
association statistics8. In the Fenland study, we used a total of 2,900 cis-pQTLs across 
1,557 genes covering an equal number of proteins that passed a Bonferroni threshold of 
p-value < 1 × 10!&&. In the ARIC study, we selected cis-pQTLs that were identified as 
significant independent variants from the original study, which included a total of 2,004 
significant SOMAmers that had at least one cis-pQTL (that met an FDR threshold of 5%) 
near the gene of the putative protein. We used unconditional estimates from this list of 
2,004 cis-pQTLs from the original ARIC study. Cis-variants in both deCODE and ARIC 
were selected based on conditional analysis. A total of 2,004 cis-pQTLs covering an equal 
number of proteins from the ARIC study were used as proposed instrumental variables. 
From the deCODE study, we selected cis-pQTLs that were identified as significant (p-
value < 1 × 10!') independent variants from the study, and removed duplicates by 
chromosome and position, resulting in 5,662 instruments across 1,663 genes encoding a 
protein (1,674 proteins and 1,703 SeqIDs). In the ARIC study, cis-regions were defined 
as +/- 500kb of the transcription start site (TSS), whereas in the Fenland and deCODE 
studies, cis-variants were defined as +/- 1Mb of the transcription start site (TSS) of a 
protein-coding gene. We note that despite independent cis-variants were identified 
through conditional analysis by the study authors in Fenland, deCODE, and ARIC, we 
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used the unconditional beta coefficients to avoid bias by using beta coefficients derived 
from conditional analysis. Across all sources, we have used cis-variants with 
unconditional beta coefficients.  
 
For protein-coding genes that are not covered by pQTLs, we used summary statistics 
derived from expression quantitative trait locus (eQTL) for whole blood from 31,684 
individuals from the eQTLGen Consortium, and for an additional 48 tissues, we derived 
eQTLs from Genotype Tissue Expression Project (GTEx) Version 8 using raw data16. We 
utilized data across 48 tissues of GTEx because we leveraged eQTLGen data for whole 
blood. For GTEx, we selected independent cis-eQTLs per gene by performing up to five 
conditional analyses in regions (+/- 1 Mb from the transcription start side of each gene) 
using individual-level data in GTEx Version 8, adjusting for the peak variant if the 
association passed a p-value of 1 × 10!#. The primary signal is unconditional. To identify 
independent signals, we considered primary and conditional associations that passed a 
p-value of 5 × 10!( and extracted the effect size and standard error estimates from the 
unconditional association. For eQTLGen, we defined instruments using the lowest p-
value per gene in the publicly available summary statistics files. We computed the beta 
and SE for these files using the reported Z-scores (𝑍) and p-values (𝑝)	using the formula 
𝛽 = )

*+,(&!,)(/0)!)
 and 𝑆𝐸 = &

*+,(&!,)(/0)!)
 .  

 
Genes with instruments covered by multiple pQTL sources were all used; genes with 
instruments covered by multiple eQTL sources (and which did not have data from any 
pQTL source) were all used. If the proposed IV variants were not present in the outcome 
GWAS, then a proxy variant was selected based on a 𝑟+	greater than or equal to 0.8 
between the two variants using the 1000 Genomes Project European reference panel. 
Palindromic variants and non-protein-coding genes were removed. 
 
4.2.2 Two-sample Mendelian randomization 
The effects of eQTLs and pQTLs on HFrEF and HFpEF were assessed using the inverse 
variance weighted method for genes with two or more IVs and the Wald ratio method for 
genes with a single IV using TwoSampleMR version 0.5.6 (release date 03-25-2021)71. 
TwoSampleMR was conducted across each dataset, including Fenland, deCODE, ARIC, 
eQTLGen, and for each of the 48 tissues in GTEx. We defined MR hits as those passing 
our Bonferroni correction criteria (p-value < 2.06 × 10!"), which was determined by 
dividing 0.05 by the number of tests conducted (n = 24,257), which is the total number of 
unique genes in each QTL source, including 1,383 genes in Fenland, 1,342 in ARIC, 
1,493 in deCODE, 8,054 in eQTLGen, and 11,985 in GTEx. If a gene passed this 
threshold in more than one QTL source (including tissues for eQTLs or datasets for 
pQTLs), then its beta coefficient must be directionally concordant across all such sources. 
Because Bonferroni is a conservative threshold, we also identified suggestive hits using 
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a Benjamini-Hochberg false discovery rate (FDR) of 5%, corresponding to a p-value < 
6.80 × 10!#, which is more lenient than our Bonferroni threshold.  
 
To define novelty of hits, we compared our findings against all previously published 
GWAS and MR studies in HF and HF subtypes8,9,18–23 and categorized hits as one of 
three categories: novel, partially novel, and replication. Novel genes are defined as those 
that have not been previously reported and are not in LD (𝑟+	 < 0.4) with a variant that 
has been published as a GWAS hit or as an instrument used for a MR hit; for further 
details, see section on “assessment of confounding by LD”. Partially novel genes are 
defined as genes that have been previously associated with unclassified HF, but that our 
study was able to assign to HFrEF or HFpEF. Otherwise, the MR hit was considered a 
replication of previous studies.  
 
4.3 Follow up analysis on MR hits.  
For all genes that passed a MR Bonferroni corrected p-value < 2.06 × 10!", we assessed 
MR limitations and established a therapeutic target profile including efficacy, on-target 
safety, novelty of mechanism of action, and druggability opportunities.  
    
4.3.1 MR Sensitivity Analyses 
4.3.1.1 Confounding due to Linkage disequilibrium 
To assess the likelihood of confounding due to LD, we performed genetic colocalization 
analysis of eQTLs and pQTLs with HF subtypes, examined the 1 Mb region around each 
proposed IV from each MR hit, and searched for variants previously reported by GWAS 
and MR studies on HF and HF subtypes. First, we performed genetic colocalization to 
evaluate whether our cis-pQTLs and eQTLs shared at least a single causal variant with 
HFpEF and HFrEF. We assigned a prior of 1 × 10!# for 𝑝& and 𝑝+, the prior probability 
that a variant in the region is associated with trait 1 and trait 2, respectively, and 
5 × 10!$	for 𝑝&+, the prior probability that a variant is associated with both traits. To limit 
bias from pleiotropy, we used a colocalization window around a lead variant of +/- 250kb. 
A posterior probability of hypothesis 4 (PP.H4) greater than 0.8 was considered as strong 
evidence for colocalization at the variant level, and PP.H4 greater than 0.5 but lower than 
0.8 was considered suggestive evidence of colocalization at the variant level. All 
colocalization analyses were performed using the coloc R package (version 5.2.2)72. We 
also examined the 1 Mb region (+/- 500 kb) around each proposed instrument to identify 
any GWAS variants and MR genes that have been identified in nine previously published 
studies for unclassified HF, HFrEF, HFpEF as well as MR hits from the current analysis 
within the region. For instruments with a HF or HF subtype hit from any of nine previously 
published GWAS or MR studies as well as our own within a +/- 500 kb region, we used 
the 1000 Genomes Project European reference panel to measure linkage disequilibrium 
by calculating the 𝑟+ between our proposed variant and the identified nearby variant. We 
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considered an 𝑟+ greater than 0.8 as high LD and between 0.4 to 0.8 as moderate LD, 
see Table S5. We also searched for known cardiomyopathy genes within a 1MB region 
around the MR hits.  
 
Fine-mapping using SuSiE for determining causal variants for MR hits that are in 
LD with previously known HF loci  
We used the R package MungeSumstats to harmonize the two datasets with the 
reference genome GRCh37 and dbSNP73. INDELs were dropped from this analysis. LD 
was extracted from the GTEx v8 data. The packages coloc:SuSiE74 were used to identify 
credible causal sets. SuSiE75,76 (“Sum of Single Effects”) is a fine-mapping method based 
on a new model for sparse multiple regression, and entails a Bayesian modification of 
simple forward selection. The model outputs several credible sets with high probability for 
containing a variable with non-zero effect. The region chr17:42972122-44500000, as 
evident from the regional plot, contained a large LD block; therefore, the identified fine-
mapped set were very large (containing 1,372 out of the 1,920 SNPs in the same set), 
making fine-mapping very difficult to conduct in this region. We did not perform SuSiE for 
hits identified in high LD (𝑟+ ≥ 0.8), given the limited utility of SuSiE for performing fine-
mapping in these settings. 
 
4.3.1.2 Weak instrument bias and horizontal pleiotropy  
To assess weak instrument bias, we computed two key parameters from the first-stage 
regression of the exposure phenotype on the genetic variant: the proportion of variance 
explained (𝑅+	) and the F-statistic. We calculated 𝑅+	 as a function of effect size estimate 
𝛽, the minor allele frequency MAF, the standard error of effect size (se), and the sample 
size 𝑛77:  

𝑅+ =
2𝛽+𝑀𝐴𝐹(1 −𝑀𝐴𝐹)

2𝛽+𝑀𝐴𝐹(1 −𝑀𝐴𝐹) + A𝑠𝑒(𝛽)D+2𝑛𝑀𝐴𝐹(1 −𝑀𝐴𝐹)
 

 

We computed F-statistic78 using the formula 𝐹	 = 	 2
!	(/!+!3)
(&!2!	)3

 , for the number of 

instrumental variables, 𝑘, and the sample size,	𝑛. We used a threshold of F < 10 to denote 
a weak instrumental variable79. To assess the compatibility of the IV estimates, we 
conducted a test of heterogeneity and report the heterogeneity p-value, where a p-value 
below 0.05 was considered heterogeneous. To evaluate directional pleiotropy, we 
performed the MR-Egger intercept test for genes with three or more instruments. 
Directional pleiotropy was considered present when the MR-Egger intercept differed from 
the null (P < 0.05). 
 
4.3.1.3 Further validation of cis-eQTL instruments for MR hits 
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For all MR hits that used cis-eQTLs as instruments, we used Enformer to evaluate if these 
cis-eQTLs are likely to be causal in gene expression. Enformer aims to predict gene 
expression from DNA sequence with a deep learning approach80. The output is composed 
of 5,313 genomic tracks for the human genome and 1,643 genomic tracks for the mouse 
genome. The four types of predicted genome-wide tracks (CAGE, ChIP Histone, ChIP 
TF, Dnase/ATAC) concern various cell types and tissues. We directed our attention to the 
638 human genome CAGE tracks. We start with an input of 257,642 rsID-GTEx-tissue 
triplets used as MR instruments across 49 GTEx tissues. After combining with Gencode 
information, this is reduced to 257,613. A further 16,749 variants were excluded because 
they were further away than 57,344 base pairs from the transcription start site (TSS), as 
defined by GTEx GENCODE 26 (gencode.v26.GRCh38.genes.txt file retrieved from 
https://storage.googleapis.com/gtex_analysis_v8/reference/gencode.v26.GRCh38.
genes.gtf). A total of 240,819 variants-GTEx-tissue triplets covering 23,304 unique genes 
remained in the Enformer analysis as described below. For each CAGE track, we 
assigned a percentile value for each variant-gene pair (i.e. we obtain a matrix of 638 
values per variant-gene pairs). Briefly, we annotated each variant-gene-tissue with 
evidence from a causal model, with the mean percentile annotated across 638 CAGE 
outputs from Enformer. The percentile indicates where the statistics for a specific gene-
variant of a specific CAGE track falls compared to the distribution of the entire data range. 
The percentile values are calculated on the distribution of the statistic over the CAGE 
track for all the variants.  
 
The mean CAGE track value across all CAGE tracks is used to summarize the overall 
effect of a SNP on gene expression. We considered a mean CAGE track value greater 
than or equal to 50 to be supportive evidence for a particular cis-eQTL to be causal on its 
cognate gene expression. This threshold was chosen because 50 is the expected mean 
value given that the mean CAGE track values are uniformly distributed. Additionally, when 
we examined the entire SNP-gene dataset, particularly the bottom 250 variants with the 
lowest F-statistics, 50 was the observed average, further supporting the use of this 
threshold in the analysis. We noticed that by ranking all the SNPs by their F-statistics, the 
top SNPs had significantly higher Enformer percentiles (p-value = 2.7 × 10!() for the 
Kolmogorov-Smirnov test comparing SNPs with top and bottom F-statistics and mean 
CAGE score, providing support for the instruments used. 
  
4.3.1.4 Colocalization across pQTL sources 
We used colocalization analysis to assess shared genetic etiology across the 3 pQTL 
sources (deCODE, ARIC, and Fenland). Specifically, for genes with a significant MR 
result, we performed colocalization between all pairs of cis-variants available from the 
QTL sources passing MR. We used the same coloc parameters and thresholds as that in 
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the “Confounding due to Linkage disequilibrium” section. All analyses were conducted 
using the coloc package in R.  
 
4.3.1.5 GWAS Meta-analysis for replication 
To replicate our findings, we performed a GWAS meta-analysis on 175,208 individuals, 
including 12,604 HFrEF and 11,486 HFpEF cases of European and African-American 
descent from the BioVU, and 9,258 HFrEF and 8,419 HFpEF cases of African-American 
and Hispanic descent from the MVP. The BioVU replication cohort consisted of 2,807 
HFrEF and 2,610 HFpEF cases of European-descent and 539 HFrEF and 457 HFpEF 
cases of African-American descent. The MVP replication cohort consisted of 7,393 HFrEF 
and 6,515 HFpEF cases of African-American descent and 1,865 HFrEF cases and 1,904 
HFpEF cases of Hispanic descent. We performed the GWAS meta-analysis using a fixed-
effects model, and we used the inverse-variance-weighted (IVW) average method, which 
summarizes the effect size from multiple independent studies by calculating the weighted 
mean of the effect sizes using the inverse variance of the individual studies as weights. 
Allele frequency was calculated as the averaged frequency across studies. All analyses 
were conducted using the METAL software (version released 2020-10-06)81. 
 
4.3.1.6 Olink validation 
We performed a validation study using Olink Explore 3072 data generated by the UK 
Biobank Pharma Proteomics Project82 (UKB-PPP) characterizing plasma proteomic 
profiles of 52,363 participants from the UK Biobank. The Olink platform consists of 2,941 
immunoassays targeting 2,925 unique proteins. The Olink Explore 3072 proximity 
extension assay (PEA) platform is based on a pair of polyclonal antibodies.83 The 
antibodies in the Olink platform attach to different locations on the target protein and are 
marked with single-stranded complementary oligonucleotides. When pairs of antibodies 
that match bind to the protein, the linked oligonucleotides hybridize, and are subsequently 
detected through next-generation sequencing84. The UK Biobank plasma samples were 
taken at Olink’s facilities in Uppsala Sweden and processed using NovaSeq 6000 
Sequencing Systems. Further details of the Olink proteomics assay, data processing, and 
quality control have been previously described82. Consistent with our main analysis, 
instruments were restricted to cis-variants (defined as within 1 Mb from the gene encoding 
the protein) and we used unconditional beta coefficients to run two-sample MR. We used 
a total of 2,057 cis-pQTLs covering an equal amount of genes that were identified as 
significant (p-value < 1.7 × 10!&&) independent variants from the study. We removed 
palindromic variants and variants that were not in our outcome dataset, resulting in a final 
total of 1,682 cis-pQTLs that were utilized as instrumental variables. The pQTL mapping 
was conducted on the full UK Biobank PPP cohort on 52,363 participants and up to 23.8 
million imputed variants. We conducted two-sample MR on the harmonized datasets to 
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estimate effects on HFpEF and HFrEF consistent with methods detailed in the main 
analysis. 
 
4.3.1.7 Lipoprotein(a) Mendelian randomization analysis on HFpEF and HFrEF 
We performed two-sample MR on lipoprotein(a) [Lp(a)] concentration on HFpEF and 
HFrEF using genetic association effect estimates from Lp(a) variants from a genome-
wide association study on Lp(a) on 293,274 participants of the UK Biobank36. Lp(a) 
(nmol/L) was measured using an immunoturbidimetric analysis on a Randox AU5800, 
and measurements that returned an error or were outside the reportable range for Lp(a) 
(3.80-189 nmol/L) were excluded from analyses36. Associations of genetic variants with 
natural log-transformed Lp(a) were tested in linear regression models, controlling for age, 
sex, genotype batch, and 20 principal components of ancestry. We performed clumping 
on variants that passed genome-wide significance (p-value < 5 × 10!() using the PLINK 
clumping method and a European reference panel, where variants in LD within a window 
of 1 Mb and with an r2 < 0.01 were pruned. The variant with the lowest p-value was 
retained. We removed palindromic variants and variants that did not harmonize with our 
outcome datasets. Using 67 variants, we performed inverse-variance weighted (IVW) MR 
on HFrEF and HFpEF. To estimate the causal effect adjusted for any directional 
pleiotropy, we performed MR-Egger. We computed linkage disequilibrium between these 
67 variants and the LPA variant in GTEx liver (rs2292334) and Olink (rs56393506) by 
calculating r2 using the 1000 Genomes European reference panel.  
 
A randomized, double-blind trial of olpasiran therapy at 34 participating sites across seven 
countries identified a significant reduction in Lp(a) concentrations in patients with 
established atherosclerotic cardiovascular disease37. The baseline median laboratory 
value of Lp(a) concentration (nmol/L) of trial participants who were given 75 mg olpasiran 
every 12 weeks (n = 58) was 227.5 (IQR 188.4-304.2). The percent change in the Lp(a) 
concentration from baseline to week 36 was -93.8 (95% CI -97.3 to -90.3). Therefore, we 
estimated the effect on HFrEF and HFpEF risk by multiplying the log of the ratio of 
endpoint to baseline Lp(a) concentration with 75 mg olpasiran (-2.786) by the MR beta, 
which represents the change in HFrEF or HFpEF per change in natural log-transformed 
Lp(a) (nmol/L). We exponentiated this value to convert to the percent reduction in the 
odds ratio of HFrEF or HFpEF. 
 
4.3.2 Therapeutic target profile  
For every MR hit, we leveraged orthogonal sources of evidence and created a therapeutic 
target profile covering efficacy, on-target safety, novelty of mechanism and druggability 
opportunities. Orthogonal sources for efficacy included information on 29 cardiac MRI 
metrics used as proxies for structural heart damage, HF-related traits from putative loss-
of-function (pLOF) in UK Biobank (UKBB), OMIM/ClinVar, animal models (knockout and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.22.24304728doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.22.24304728
http://creativecommons.org/licenses/by/4.0/


24 

transgenic), and evidence (OMIM/ClinVar, pLOF UKBB, and animal studies) from genes 
directly linked to the MR hits (referred to as “secondary genes”), identified through protein-
protein interactions (PPI). Sources utilized for safety include FDA warnings for drugs 
covering identified targets, and MR results on 24 traits covering cardiac, renal, and 
hepatic toxicity, and safety events usually included in phase 3 HF trials. A p-value < 
5 × 10!$ was used to denote statistical significance in follow-up analysis, which is less 
than 0.05/number of total tests conducted.   
 
4.3.2.1 Cardiac MRI traits  
For every MR HF subtype hit, we determined the MR estimates for the following cardiac 
MRI metrics: left atrial (LA) emptying fraction, LA emptying volume, LA maximum volume, 
LA minimum volume, left ventricular (LV) end-diastolic volume, LV ejection fraction 
(LVEF), LV end-systolic volume(LVESV), LV mass (LVM), LV mass to volume ratio 
(LVMVR), LV stroke volume (LVSV), right ventricle (RV) end-diastolic volume (RVEDV), 
RV ejection fraction (RVEF), RV end-systolic volume (RVESV), and RV stroke volume 
(RVSV). For this, we used unpublished data from UKBB using data from 32,994 
individuals24. We additionally determined MR estimates for myocardial interstitial fibrosis 
using publicly available GWAS85 and for left atrial volume, longitudinal peak diastolic 
strain rate, and radial peak diastolic strain rate using a publicly available GWAS86. 
 
HF-related traits from pLOF burden test in UKBB, OMIM/ClinVar and animal models 
To determine if our findings have been reported at both the phenotype and gene level, 
we examined multiple orthogonal sources of support, including variants of clinical 
significance from ClinVar87,88, Online Mendelian Inheritance in Man (OMIM)87, putative 
loss-of-function data from GeneBass89, and knockout models from Mouse Genome 
Informatics (MGI)90. We retrieved from ClinVar, a centralized repository of information 
about genomic variants and their clinical significance, data on loss-of-function variants, 
missense variants, and pathogenetic variants.87,88 We queried OMIM, a comprehensive 
catalog of human genes related to genetic disorders and traits87, for entries on any genetic 
disorders or traits linked to mutations or variations in the gene. Using the Genebass 
(gene-biobank association summary statistics) browser with UK Biobank data, we 
explored gene-based phenome-wide association study (PheWAS) analysis results to 
identify rare-variant association results89. Group tests were conducted using the mixed-
model framework SAIGE-GENE, which includes single-variant tests and gene-based 
burden (mean) test89. We queried the Mouse Genome Informatics (MGI, 
http://informatics.jax.org/) resource and retrieved all cardiovascular system phenotypes 
attributed to mutations/alleles of the gene. Each entry for each of these orthogonal 
sources of support (ClinVar, OMIM, GeneBass, and MGI) have been meticulously 
reviewed by two independent reviewers to classify them as: (1) HF risk factor phenotype, 
and (2) HF and cardiomyopathy phenotype. We developed a summary score representing 
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the overall number of positive sources identified per gene for both the HF risk factor 
phenotype and the HF and cardiomyopathy phenotype, where a positive finding in ClinVar 
or OMIM, GeneBass, and MGI were considered in the score.  
 
Evidence from secondary genes 
Given that genes, and hence drug targets, exhibit downstream effects through biological 
networks, we searched for genes directly linked to our MR-hits (referred as “secondary 
genes”) and retrieved information on HF-related traits from pLOF from UKBB, 
OMIM/ClinVar, and animal models (knockout and transgenic). Secondary genes were 
identified through a procedure introduced by MacNamara26 that aggregates various 
interaction networks to create a comprehensive protein-protein interactions (PPI) 
network. Resources used included STRING (score >= 500)91, the Complex Portal92, the 
Human Reference Interactome Mapping Project (Lit-BM)93, the OmniPath94, the Human 
Integrated Protein-Protein Interaction reference (HIPPE; score >= 0.9)95–98, and the 
Ligand-receptor interactions MetaBase. MetaBase contains over 6 million experimental 
findings on protein-protein, protein-nucleic acids, and protein-compound interactions. Lit-
BM contains a human ‘all-by-all’ reference interactome map of human binary protein 
interactions, known as ‘HuRI’, containing over 53,000 protein-protein interactions.93 To 
harmonize the different resources, we converted different representations of gene IDs to 
gene symbols and for every gene we aggregated interactions across all resources. After 
harmonizing these PPI resources, the aggregated network contained 50,163 nodes and 
13,750,500 interactions. Using this network, the secondary genes are defined as genes 
directly interact with the MR hits. Using data on orthogonal support on the secondary 
genes, we computed an average score for the level of orthogonal support across all 
secondary genes linked to a primary gene, which was computed as the total number of 
positive findings for ClinVar or OMIM, GeneBass, and MGI across all secondary genes 
divided by the number of secondary genes associated with each primary gene. 
 
HF risk factors 
We conducted two-sample MR, as described for HF subtypes, of our gene-hits for the 
following 20 HF risk factor traits: atrial fibrillation, atrial flutter, body mass index, chronic 
airway obstruction, troponin, diastolic blood pressure, estimated glomerular filtration rate, 
HDL-c, ischemic heart disease, LDL-c, systolic blood pressure, cardiac troponin I 
measurement, type 2 diabetes, NT-proBNP measurement, cardiomyopathy, primary and 
intrinsic cardiomyopathies, troponin I cardiac muscle, alcohol intake frequency, C-
reactive protein, and current tobacco smoking. For current tobacco smoking, C-reactive 
protein, alcohol intake frequency, and troponin I cardiac muscle, we used publicly 
available GWAS summary statistics99–101, and for all other risk factors, we used data from 
a meta-analysis of three data sources, FinnGen, UK Biobank, and MVP102.  
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We conducted MR using pQTLs and eQTLs as instrumental variables on HF risk factors 
and safety traits using data from the MVP, UK Biobank103, and FinnGen version 7104. To 
harmonize phenotypes between the three sources, disease-based traits were mapped 
using phecodes and ICD-10 codes from the sources. UK Biobank traits with an ICD-10 
code were mapped to phecodes; if the phecode had not already been mapped to MVP in 
the previous step, then a match was made, if possible. For all unmapped MVP phecodes 
with case counts lower than 4000, only MVP data was used for the analyses. To map 
MVP and UK Biobank phenotypes to FinnGen, NLP was used to assign phenotypes 
described in the three sources to the closest available Experimental Factor Ontology 
(EFO)105 codes. All matches were submitted to clinical adjudication. We considered 
findings significant at a p-value threshold < 5 × 10!$.  
 
Novelty of Mechanism of Action (MoA) 
We used two hard criteria and one soft criteria for identifying novel MoA for our hits. For 
the first hard criteria, we searched if our hits were the target, or directly linked to a target, 
of a drug approved for HF management. We retrieved information on HF drugs and its 
targets from ChemBL, followed by manual curation by two authors (JJ and JPC). To 
identify if our MR-hits were directly linked to gene targets of drugs used for HF 
management, we used our interaction network as described above.  
 
For the second hard criteria, we investigated if our hits shared the same biological 
pathway of drug targets approved for HF management. To achieve this, we extracted 
biological pathways of every gene by querying the EnrichR database. This process 
extracts pathways with adjusted p-value < 0.05. Then, for every MR hit gene, we 
intersected its corresponding pathways with those associated with the drug-target genes. 
 
For the soft criteria, we used two sample MR to determine the profile of HF risk factors 
associated with our hits. We considered hits that were exclusively or largely (>80%) 
associated with modifiable HF risk factors to be not novel and vice versa, hits that were 
exclusively or largely associated with no/partially modifiable HF risk factors or no HF risk 
factor to be novel. Modifiable HF risk factors were CHD, blood pressure, LDL-C, NT-
proBNP, T2DM, and smoking. Non or partially modifiable HF risk factors used were HDL-
C, eGFR, atrial fibrillation/ atrial flutter, alcohol intake frequency, body mass index, C-
reactive protein (CRP) and COPD. CRP as a proxy (non-causal) of inflammation due to 
the NLRP3/IL1B/IL6 pathway was considered a non-modifiable HF risk factor. 
 
MR for on-target safety traits relevant to HF  
We conducted two-sample MR, as described for HF subtypes, of our gene-hits against 
the following 24 safety traits: serum alanine aminotransferase (ALT) measurement, 
alkaline phosphatase, aspartate aminotransferase (AST) measurement, breast cancer, 
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chronic liver disease and cirrhosis, colorectal cancer, creatinine, cystatin C, gamma 
glutamyltransferase (GGT), lung cancer, prostate cancer, proteinuria, pulmonary heart 
disease, atrioventricular block, paroxysmal ventricular tachycardia, renal failure, acute 
renal failure, chronic renal failure (CKD), acute pulmonary heart disease, chronic 
pulmonary heart disease, Alzheimer’s disease, total creatine kinase, trefoil factor 3, and 
QT interval. For trefoil factor 3 and QT interval, we used publicly available GWAS 
summary statistics100,106. For the remaining safety traits, we used data from a meta-
analysis of 3 data sources, FinnGen, UK Biobank, and MVP, consistent with the approach 
utilized for the analysis of HF risk factors102.To be considered as a potential on-target 
safety signal, the MR on a safety trait must have reached a p-value threshold < 5 × 10!$ 
and the directionality of its beta coefficient must be discordant with that observed for 
HFrEF or HFpEF.  
 
FDA box warnings   
For gene-hits that are targets of drugs in clinical phase or licensed, we retrieved any FDA 
box warning associated with such drugs from Open Targets. To determine if a box 
warning is applicable to our MR hits, first, the drug must have only one drug-target and 
the MR beta on HF subtype must be concordant with the pharmacological action of the 
drug. A positive MR beta on HF subtype is concordant with drug inhibitors or negative 
modulators, while a negative MR beta is concordant with drug agonists or positive 
modulators. Information on pharmacological action for drugs was retrieved from ChemBL. 
The exception to this rule are drugs whose pharmacological action was described as 
“other”. To determine if our HF subtypes findings are the rediscovery of a box warning 
cardiotoxicity of existing drugs, the MR beta on HF subtype needs to be discordant with 
the pharmacological action of the drug and ideally the drug should have only one target; 
otherwise this was considered as a potential rediscovery as the cardiotoxicity could be 
due to other drug targets, for further details see Figure S3. 
 
Druggability annotations  
Protein-encoding genes identified as hits in our MR analyses for HF subtypes were 
annotated with drug tractability information based on information provided by 
OpenTargets31–33(release date 2021-03-21), as described previously by our group8. For 
easier interpretation, we regrouped the original Open Targets buckets into four mutually 
exclusive groups: Category 1, which includes targets of approved drugs; Category 2, 
targets of drugs in clinical trials; Category 3, targets of preclinical small molecules; and 
Category 4, targets predicted druggable by small molecules or antibodies. The remaining 
proteins were considered non-druggable. For genes that were determined to be 
druggable, we extracted information on those drugs from ChEMBL v32107. For each drug 
with available information, we assigned all indications, clinical phase, and the mechanism 
of action (MoA) for the drug. To retrieve any possible gene-drug pairs that may have been 
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missing from the Open Targets pipeline, we extracted absent Ensembl IDs for any 
proteins found in ChEMBL using Uniprot’s rest API.  
 
For genes that were the target of licensed drugs, we checked whether the disease 
indication was also a risk factor for HF, as this may introduce a bias analogous to 
confounding by indication in MR. Translational opportunities were defined as those gene-
hits that are the only target of a drug or compound and whose MR beta coefficient on HF 
subtype is concordant with the MoA of the drug. We also identified the targets of drugs 
used in HF management and determined how many of these targets were directly (or 
indirectly through secondary genes) rediscovered by our MR-QTL strategy. MR findings 
on drug-targets being pursued for HF, identified through clinical trials.gov, are reported 
regardless of p-value.  
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Table 1. Novel and partially novel Mendelian randomization (MR) hits for HFrEF and 
HFpEF in the Million Veteran Program (MVP) Release 4. Novel hits are those that have 
not been previously reported as a hit by published GWAS or MR studies for unclassified 
HF, HFrEF, or HFpEF8,9,18–23. Partially novel hits are those that have been previously 
reported as a hit for unclassified HF by published GWAS or MR studies. Gene names 
that are marked with an asterisk have been found significant (p-value < 2.06 × 10!") in 
multiple data sources or tissues in the MR analyses. For each gene, if multiple MR 
sources (pQTL studies or eQTL tissues) were available, we report on the finding with the 
lowest MR p-value. Findings are ordered by the lowest MR p-value.  
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Protein Gene 
Name

HF 
Subtype Source

# 
SNPs

Odds 
ratio 95% CI p  value

MR Egger 
intercept; 
p value Q p  value

Novel hits

LAG3 HFrEF deCODE 2 1.77 (1.37,2.17) 6.18E-07 0.56

TCAP HFrEF GTEx Muscle Skeletal 1 1.62 (1.32,1.92) 2.80E-07 NA

ERBB2* HFrEF GTEx Skin Not Sun Exposed Suprapubic 1 1.57 (1.36,1.78) 5.12E-11 NA

ATP6V1F HFrEF GTEx Skin Not Sun Exposed Suprapubic 1 1.49 (1.25,1.74) 1.97E-06 NA

SENP3 HFrEF GTEx Esophagus Mucosa 1 1.38 (1.22,1.55) 9.92E-08 NA

RNF123 HFrEF GTEx Skin Sun Exposed Lower leg 1 1.38 (1.2,1.55) 1.24E-06 NA

KLHDC8B* HFrEF GTEx Artery Tibial 1 1.35 (1.21,1.49) 3.28E-08 NA

MED1 HFrEF eQTLGen 1 1.34 (1.18,1.5) 1.36E-06 NA

MST1R HFrEF GTEx Lung 1 1.30 (1.16,1.43) 9.64E-07 NA

WDR6* HFrEF GTEx Colon Sigmoid 1 1.28 (1.17,1.4) 4.73E-08 NA

QRICH1* HFrEF GTEx Esophagus Gastroesophageal Junction 1 1.27 (1.16,1.39) 6.00E-08 NA

SEC24C HFrEF GTEx Esophagus Mucosa 1 1.26 (1.14,1.37) 9.27E-07 NA

RHOA HFrEF GTEx Muscle Skeletal 1 1.25 (1.15,1.36) 7.98E-08 NA

CA9* HFrEF GTEx Artery Tibial 1 1.25 (1.14,1.36) 2.32E-07 NA

INPP5F HFrEF GTEx Cells Cultured fibroblasts 2 1.23 (1.13,1.33) 3.13E-07 0.00

NFATC2IP HFpEF GTEx Skin Not Sun Exposed Suprapubic 3 1.21 (1.13,1.29) 7.45E-09 0.03; 0.85 0.97

ZNF664 HFrEF GTEx Thyroid 1 1.18 (1.11,1.26) 2.01E-07 NA

STARD3 HFrEF GTEx Cells Cultured fibroblasts 1 1.17 (1.11,1.23) 6.13E-10 NA

GMPPB HFrEF GTEx Testis 1 1.16 (1.09,1.23) 1.79E-06 NA

MMP11* HFrEF GTEx Heart Atrial Appendage 1 1.16 (1.09,1.22) 7.00E-07 NA

ATF1* HFrEF GTEx Colon Sigmoid 1 1.15 (1.1,1.21) 2.65E-08 NA

CYP1A1* HFrEF GTEx Adipose Visceral Omentum 1 1.14 (1.09,1.19) 3.67E-08 NA

CCDC71* HFrEF GTEx Brain Cerebellum 1 1.12 (1.07,1.16) 5.01E-08 NA

MRPL35 HFrEF GTEx Artery Aorta 2 1.09 (1.05,1.13) 8.79E-07 0.87

MTSS1 HFrEF GTEx Heart Left Ventricle 1 1.09 (1.06,1.12) 2.21E-09 NA

ARL17A* HFpEF GTEx Brain Amygdala 1 1.06 (1.04,1.09) 6.27E-07 NA

LRRC37A2* HFpEF GTEx Cells Cultured fibroblasts 1 1.06 (1.03,1.08) 1.39E-06 NA

LRRC37A HFpEF GTEx Skin Sun Exposed Lower leg 2 1.05 (1.03,1.07) 2.07E-08 0.23

SORT1* HFrEF GTEx Liver 1 0.95 (0.93,0.97) 1.04E-08 NA

PROM1* HFrEF GTEx Artery Aorta 1 0.95 (0.93,0.97) 1.90E-06 NA

MAPT HFpEF GTEx Colon Sigmoid 2 0.94 (0.92,0.96) 3.31E-09 0.63

PDLIM5 HFrEF GTEx Cells Cultured fibroblasts 2 0.92 (0.89,0.95) 1.92E-07 1.00

CCDC36* HFrEF GTEx Prostate 1 0.92 (0.89,0.95) 1.84E-08 NA

SENP7 HFrEF eQTLGen 1 0.92 (0.88,0.95) 2.03E-06 NA

NCKIPSD* HFrEF GTEx Brain Cerebellar Hemisphere 1 0.91 (0.88,0.95) 2.89E-07 NA

CCDC92* HFrEF GTEx Heart Left Ventricle 1 0.88 (0.85,0.92) 3.61E-08 NA

AMT* HFrEF GTEx Artery Tibial 1 0.88 (0.84,0.92) 3.46E-08 NA
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Protein 
Gene 
Name

HF 
Subtype Source # SNPs

Odds 
ratio 95% CI p  value

MR Egger 
intercept; 
p  value Q p  value

Novel hits (con't)

DNAH10* HFrEF GTEx Colon Sigmoid 1 0.88 (0.84,0.92) 2.00E-07 NA

MPI HFrEF GTEx Spleen 1 0.88 (0.84,0.92) 3.47E-08 NA

ARIH2* HFrEF GTEx Adrenal Gland 1 0.86 (0.82,0.91) 3.28E-08 NA

P4HTM* HFrEF GTEx Brain Cerebellum 1 0.86 (0.81,0.91) 5.14E-08 NA

PSMG1* HFrEF GTEx Stomach 1 0.86 (0.8,0.91) 9.39E-07 NA

TAPT1 HFrEF GTEx Artery Aorta 1 0.85 (0.79,0.91) 1.90E-06 NA

C6orf15 HFrEF GTEx Skin Not Sun Exposed Suprapubic 1 0.85 (0.79,0.9) 1.89E-06 NA

MLIP* HFrEF GTEx Artery Tibial 1 0.81 (0.75,0.88) 1.08E-06 NA

SERPINF2 HFrEF deCODE 6 0.80 (0.75,0.86) 4.98E-11 -0.01; 0.66 0.72

DALRD3* HFrEF GTEx Pancreas 1 0.79 (0.73,0.86) 5.86E-08 NA

PABPC4* HFpEF eQTLGen 1 0.78 (0.7,0.86) 1.14E-06 NA

LIME1 HFpEF GTEx Muscle Skeletal 1 0.77 (0.69,0.85) 9.84E-07 NA

FBXO32 HFrEF eQTLGen 1 0.76 (0.67,0.84) 1.59E-06 NA

FBXL20* HFrEF GTEx Artery Tibial 1 0.75 (0.67,0.84) 6.16E-07 NA

NSF HFpEF GTEx Esophagus Mucosa 1 0.74 (0.65,0.83) 8.08E-07 NA

ROCK2 HFrEF GTEx Muscle Skeletal 1 0.71 (0.63,0.79) 5.69E-10 NA

NDUFAF3 HFrEF GTEx Muscle Skeletal 1 0.70 (0.6,0.8) 9.62E-07 NA

TCTA* HFrEF GTEx Thyroid 1 0.68 (0.59,0.78) 5.00E-08 NA

TNFRSF6B HFpEF Fenland 1 0.64 (0.53,0.76) 9.84E-07 NA

C3orf62* HFrEF eQTLGen 1 0.63 (0.52,0.73) 4.96E-08 NA

LTN1 HFrEF GTEx Muscle Skeletal 1 0.58 (0.49,0.68) 6.21E-11 NA

Partially novel hits

ZBTB17 HFrEF eQTLGen 1 2.56 (1.85,3.27) 3.81E-11 NA

PGAP3* HFrEF GTEx Adipose Subcutaneous 1 1.42 (1.27,1.57) 2.70E-11 NA

PHIP HFrEF GTEx Thyroid 1 1.34 (1.18,1.5) 2.06E-06 NA

IRAK1BP1* HFrEF GTEx Adipose Visceral Omentum 1 1.12 (1.07,1.17) 1.61E-06 NA

FUT11* HFrEF GTEx Esophagus Mucosa 1 1.10 (1.06,1.14) 8.68E-07 NA

MST1 HFrEF deCODE 6 1.04 (1.03,1.05) 4.13E-12 0.02; 0.47 0.05

B3GNT8* HFrEF deCODE 4 0.96 (0.94,0.97) 6.91E-10 -0.04; 0.17 0.59

MYOZ1 HFrEF GTEx Heart Atrial Appendage 2 0.94 (0.92,0.96) 2.60E-12 0.94

TNFSF12* HFrEF deCODE 3 0.91 (0.88,0.94) 3.71E-08 0.01; 0.94 0.09

CELSR2* HFrEF GTEx Muscle Skeletal 1 0.89 (0.85,0.93) 1.04E-08 NA

MIA3 HFrEF GTEx Cells Cultured fibroblasts 2 0.85 (0.79,0.9) 1.51E-06 0.69

PSRC1* HFrEF GTEx Brain Cortex 1 0.83 (0.78,0.89) 6.96E-09 NA

STRN HFrEF GTEx Heart Atrial Appendage 1 0.82 (0.75,0.88) 1.18E-06 NA

MAP3K7CL HFrEF GTEx Cells Cultured fibroblasts 1 0.77 (0.71,0.83) 8.42E-12 NA
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Figure 1. Schematic of study design. We evaluated the putative causal effect of eQTLs 
from GTEx and eQTLGen and pQTLs from Fenland, deCODE, and ARIC on HFpEF 
(27,579 cases) and HFrEF (27,799 cases) in a cohort of 422,645 individuals from the 
Million Veteran Program (MVP) using two-sample Mendelian randomization (MR). We 
evaluated 11,985 genes from GTEx v8 and 8,054 genes from eQTLGen, totaling 13,420 
unique genes among the two eQTL sources. For the pQTL sources, we evaluated 1,393 
genes from Fenland, 1,493 genes from deCODE, and 1,342 genes from ARIC, totaling 
1,833 unique genes among the three pQTL sources. Primary hits are identified using a 
Bonferroni-adjusted threshold of p-value < 2.06 × 10!" and suggestive hits are identified 
using a false discovery rate (FDR) of 5% (p-value < 6.80 × 10!#). For all hits, we created 
a therapeutic target profile consisting of efficacy, novelty of mechanism, on-target safety, 
and druggability annotations. We conducted ancestry-specific replication leveraging data 
from Hispanic [HIS] and African-American [AA] ancestry individuals in the MVP and 
European [EUR] and African-American [AA] ancestry individuals in the Vanderbilt BioVU, 
and multi-ancestry replication on 175,208 individuals using a meta-analyzed GWAS for 
HFpEF (11,486 cases) and HFrEF (12,604 cases). We conducted an instrument and 
proteomics platform replication using plasma proteomic profiles of 54,219 individuals 
using the antibody-based Olink Explore 3072 platform data generated by the UK Biobank 
Pharma Proteomics Project. 
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iOnly pQTL sources were used for genes with instruments covered by both eQTL and pQTL 
sources. 
iiGenes with instruments covered by multiple pQTL sources were all used in analyses. Genes 
with instruments covered by multiple eQTL sources (and that did not have any pQTL source) 
were all used in analyses. 
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Figure  2. Robustness of MR hits against HFrEF and HFpEF. The length of the arc of the 
outer circle is proportional to the number of sources that the MR was significant for that gene. 
The gene names are colored according to druggability, based on information provided by 
Open Targets (release 2021-03-21). Gene names colored in purple correspond to potentially 
druggable, which includes targets of preclinical small molecules and of predicted druggable 
by small molecules or antibodies. Gene names colored in red correspond to targets of known 
drugs, which includes targets of approved drugs. Genes that do not fall in either of these two 
categories are colored in black. The outermost track (track #1) corresponds to the gene 
identified for HFrEF (in dark red) or HFpEF (in pink). The next track (track #2) going inward 
corresponds to the beta coefficient obtained in the MR analysis (colored from blue 
corresponding to a negative beta to red corresponding to a positive beta). The subsequent 
track (track #3) going inward corresponds to the colocalization PP.H4 (grouped by PP.H4 0-
0.5, 0.5-0.8, and >0.8). The subsequent track  (track #4) going inward corresponds to the 
mean CAGE value, presented for the tissue corresponding to the MR hit. The innermost track 
(track #5) corresponds to the variant F statistic.  
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Figure 3. Orthogonal sources of support on efficacy. The gene names are colored 
according to druggability, based on information provided by Open Targets (release 2021-
03-21). Gene names colored in purple correspond to potentially druggable, which 
includes targets of preclinical small molecules and of predicted druggable by small 
molecules or antibodies. Gene names colored in red correspond to targets of known 
drugs, which includes targets of approved drugs. Genes that do not fall in either of these 
two categories are colored in black. The outermost track corresponds to the gene 
identified for HFrEF (in dark red) or HFpEF (in pink). Following the outermost track, the 
next two tracks going inward correspond to the number of cardiac MRI metrics and the 
number of HF risk factors with p-value < 5 × 10!$ in the MR analysis for each gene. The 
next track going inward corresponds to results from ClinVar, OMIM, pLOF in UK Biobank, 
and knockout (KO) mouse models, where a “0” corresponds to no findings found for HF 
risk factors, a “1” corresponds to at least one finding for HF risk factor, and a “2” 
corresponds to at least one positive finding for HF/cardiomyopathy from any of the 
sources. The next two tracks going inward correspond to evidence from orthogonal 
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sources of support on HF/cardiomyopathy obtained for secondary genes, where the 
“secondary total score” represents the total number of positive sources across all 
secondary genes that are linked to the same primary gene and “secondary average 
score” is determined by the ratio of the total score to the number of secondary genes 
associated with each primary gene.  
 

 
Figure 4. MR effect on HFpEF against the MR effect on HF risk factors, body mass 
index and type 2 diabetes, for HFpEF gene-hits. Plot is shown for HFpEF hits that pass 
the Bonferroni-adjusted threshold of p-value < 2.06 × 10!" (in red) and for hits that pass 
the false discovery rate (FDR) of 5% (p-value < 6.80 × 10!#) (in blue). The error bars 
indicate the 95% confidence interval of the MR beta coefficient. The best-fit line derived 
through ordinary least squares is shown in black. The predicted model for body mass 
index is 𝑦 = 0.03 + 0.97𝑥 (left plot) and for type 2 diabetes is 𝑦 = 0.01 + 0.71𝑥 (right plot). 
The correlation between the MR betas for HFpEF and body mass index is 0.79 and 
between the MR betas for HFpEF and type 2 diabetes is 0.89. 
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Figure 5. On-target safety for MR hits on HFrEF and HFpEF. The gene names are 
colored according to druggability, based on information provided by Open Targets 
(release 2021-03-21). Gene names colored in purple correspond to potentially druggable, 
which includes targets of preclinical small molecules and of predicted druggable by small 
molecules or antibodies. Gene names colored in red correspond to targets of known 
drugs, which includes targets of approved drugs. Genes that do not fall in either of these 
two categories are colored in black. The outermost track corresponds to the gene 
identified for HFrEF (in dark red) or HFpEF (in pink). Following the outermost track, the 
next four tracks going inward correspond to on-target safety traits, classified by cancer 
(second track going inward), liver (third track), renal (fourth track), and other traits (fifth 
track). Cancer traits include breast cancer, colorectal cancer, lung cancer, and prostate 
cancer. Liver traits include serum alanine aminotransferase (ALT), alkaline phosphatase, 
aspartate aminotransferase (AST), chronic liver disease and cirrhosis, and gamma-
glutamyl transferase (GGT). Renal traits include creatinine, cystatin C, proteinuria, renal 
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failure, acute renal failure, chronic renal failure (CKD), and trefoil factor 3. Other traits 
include pulmonary heart disease, atrioventricular (AV) block, paroxysmal ventricular 
tachycardia, acute pulmonary heart disease, chronic pulmonary heart disease, 
Alzheimer’s disease, and total creatine kinase. The next track (sixth track) corresponds 
to QT interval (“0” indicates that the gene is not linked to the HERG gene for QT syndrome 
and there is no QT interval as a potential safety trait, “1” indicates QT interval is identified 
as a potential safety trait, and “2” indicates the gene is linked to the HERG gene). The 
next track (seventh track) going inward corresponds to FDA warning, where “None” 
corresponds to no drug and no FDA warning, and “Warning (single targets)” and “Warning 
(multiple target)” corresponds to a reported FDA warning for a drug with single target or 
multiple target, respectively.  
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