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ABSTRACT 

The pain-free regular monitoring of blood-based biomarkers is a highly appealing yet difficult-to-

realize approach for the early detection of pathological changes, including cancers, infections, or 

metabolic diseases, such as diabetes. While a major focus of the research community lies on the 

investigation of pain-free blood sampling and devices for venous blood analysis, menstruation blood 

remains a largely ignored sampling source. Growing evidence shows excellent correlation between 

biomarker levels in menstruation blood and venous blood for an entire clinical panel of analytes. 

Here, we introduce a wearable, microfluidic diagnostic platform integrated into standard hygiene pads 

for the electronic-free naked eye-readable direct detection of disease biomarkers in menstruation 

blood (MenstruAI). We demonstrate semi-quantitative biomarker detection from menstruation using 

infection and inflammation biomarker C-reactive protein (CRP), gynecological cancer biomarkers 

(CEA and CA-125), and endometriosis biomarker CA-125 as representative examples of relevant 

proteinaceous biomarkers. The color-changes induced by the presence of these biomarkers can be 

read-out by the naked eye as well as by a machine-learning algorithm implemented into a smartphone-

app, enabling semi-quantitative analysis. The presented MenstruAI platform has the potential to 

revolutionize women's health by providing a non-invasive, affordable, and accessible approach to 

health monitoring, potentially democratizing healthcare by making health services more available and 

equitable. 
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INTRODUCTION 

In modern medicine, blood tests and blood panels are indispensable, providing valuable insights into 

various physiological aspects to make informed decisions about patient care. The levels of molecular 

constituents in blood are directly associated with the physiological state of the body.1–4 Traditionally, 

blood testing has been confined to laboratory environments, necessitated by the requirement for 

sample pre-processing, intricate analytical methods, and specialized instrumentation.5 However, the 

diagnostic significance of blood renders it a prime candidate for point-of-care (POC) diagnostic 

applications.6 While lateral flow assay (LFA)-based analyses of saliva or urine are well-established, 

the analysis of whole blood samples, which contain many more biomarkers, typically requires 

invasive blood collection as well as intricate sample preprocessing.7 Capillary blood samples obtained 

through finger pricks are most frequently used.8 Nonetheless, blood collection is invasive, leading to 

poor compliance and reluctant adoption by both patients and, even more so, seemingly healthy 

individuals. Additionally, using blood in point-of-care devices presents increased barriers to 

reproducibility and ease of use due to coagulation that hinders its usage, or simply the interference 

from the red color that may alter a colorimetric readout on a paper-based sensor.9 As a result, most of 

the research conducted on blood-based point-of-care devices involves the use of processed blood. 

This includes blood containing anticoagulants, blood that has been diluted beforehand with a running 

buffer, or blood that has been separated from certain components, such as red blood cells, to use only 

the remaining plasma.10–13 These intricate processing steps pose a significant barrier to regular, low-

cost health monitoring based on blood biomarkers. While a major focus of the research community 

lies in investigating pain-free blood sampling and devices for venous blood analysis, menstrual blood 

appears to be a largely ignored sampling source. Even though every month, 1.8 billion people 

menstruate,14 menstruation blood is largely under-represented in both basic and translation research.15 

Interestingly, menstrual blood has shown a considerable correlation with systemic blood in terms of 

protein content through molecular proteomic analysis. Additionally, it contains 385 unique proteins 

that open the door to further analysis and understanding of women's health.16,17 As a result, 

menstruation blood is a promising alternative for the noninvasive collection of blood for diagnosis 

and health monitoring for the menstruating population. Such an approach may be especially 

promising and economically viable for resource-constrained settings where patients have no access to 

regular check-ups, as well as diseases with a relatively low prevalence in the population, where 

preventative testing at the doctor's office is not economically feasible.18 In addition to providing a 

non-invasive means of accessing blood, menstrual blood is characterized by lower concentrations of 

coagulation factors, along with reduced levels of hemoglobin and hematocrit.19 These properties 

render menstrual blood particularly well-suited for point-of-care testing, circumventing the need for 

the preprocessing steps often necessary in the analysis of venous blood.  Recent studies have explored 

the utilization of menstrual blood for health monitoring purposes, focusing on aspects such as volume 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.22.24304704doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.22.24304704


control of blood loss20 and pH levels.21 However, these investigations have not leveraged menstrual 

blood for gaining valuable insights into the physiological state of an individual. 

In this work, we report the design and development of a non-invasive low-cost paper based 

diagnostic platform for the effortless direct on-pad detection of disease biomarkers in menstruation 

blood by naked-eye detection or smartphone-app (termed MenstruAI), not requiring pre- or post-

processing. We demonstrate direct semi-quantitative biomarker detection from menstruation blood 

using infection and inflammation biomarker C-reactive protein (CRP), gynecological cancer 

biomarkers (CEA and CA-125), and endometriosis biomarker CA-125 as representative examples of 

women's health-relevant proteinaceous biomarkers. The versatile, multiplex detection platform is 

integrated into a standard hygiene pad. This first-of-its-kind point-of-care device relies on a design 

that allows both fluidic manipulation and multiplexing for an electronic-free readout, enabling 

completely passive (not involving human intervention other than deciding to use MenstruAI pads) and 

reproducible biomarker measurements. The MenstruAI platform directly promotes the use of a sample 

often seen as waste and increases the accessibility of women to cutting-edge technologies centered on 

women's health. It may signal to the user that additional checks at a doctor's office may be advisable, 

and with it have transformative impact on women's health by offering a non-invasive, cost-effective, 

and barrier-free route to close-meshed health monitoring.  

 

Figure 1: Concept of menstruation blood biosensor integrated into hygiene pads enabling direct 
naked-eye readable semi-quantitative analysis of biomarkers in unprocessed menstruation blood. The 
platform termed MenstruAI is designed to include infection/inflammation, cancer and endometriosis 
biomarkers based on an in-pad integrated lateral flow assay (LFA) platform with integrated volume 
control. 
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RESULTS & DISCUSSION 

Establishment of LFA for CEA, CA-125 and CRP in serum and whole blood 

To address the unmet need for affordable and accessible women's health diagnostics, we sought to 

design a wearable for the reliable, multiplex detection and semi-quantification of health-relevant 

analytes in menstrual blood.  The solution is designed to provide an accessible, cost-effective, 

reproducible, non-invasive method for detecting important health biomarkers through menstrual 

blood, offering a convenient, comfortable, and accessible solution for personal health monitoring to 

the menstruating population. 

 First, lateral flow assay (LFA) sensors were designed for the detection and semi-

quantification of individual biomarkers in relevant biofluids (including whole blood) and clinically 

relevant detection windows. CEA, CA-125 and CRP were selected as representative biomarkers, 

covering diagnostically interesting areas of cancer, endometriosis, and infection, making them 

particularly relevant for women’s health. Additionally, the presence of these biomarkers is indicative 

of a pathology since baseline levels in healthy individuals are typically low and in the region of the 

analytical detection limits of a typical LFA. Careful optimization of the LFA sensors was performed to 

achieve detection and semi-quantification in i) human serum, and ii) unprocessed human whole blood 

for practicality, ease of use and to eliminate the need for sample transformation or addition of a 

running buffer. The LFAs were engineered to incorporate both a test line, a control line and if needed, 

an antigen line to circumvent to so-called hook effect.22 Antibody-functionalized gold nanoparticles 

were used as recognition element for the different analytes.  For assay initiation, a defined volume of 

the fluid sample (i.e. serum or whole blood) was applied to the sample pad. This sample subsequently 

migrated towards the conjugate pad, where the target proteins within the sample interacted with 

functionalized gold nanoparticles pre-deposited on the conjugate pad via antigen-antibody reaction. 

The test line on the nitrocellulose (NC) membranes consisted of antibodies designed to capture these 

protein-nanoparticle complexes, thus facilitating a sandwich reaction that resulted in the visualization 

of the test line. After demonstrating feasibility in serum, the assay was adapted for use with 

unprocessed human whole blood. A Fusion 5 blood separation membrane was introduced to 

effectively filter out red blood cells, successfully retaining them within the glass fibers of the sample 

separation pad. This selective filtration ensured that only plasma progressed through the assay. 

Consequently, the red hue typically associated with blood was removed, allowing for a clear and 

unaltered measurement of color intensity at the test and control lines. 

 

Direct measurement of CEA level in serum and whole blood 

CEA was selected as first candidate biomarker relevant in many malignant diseases. Often naturally 

present at concentration below 5.0 ng/mL in healthy individuals, it can be used to indicate the 
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presence of tumors or spreading cancer when reaching values above 20 ng/mL.23,24 Thus, a gold-based 

LFA for CEA in the clinically relevant detection window (0-500 ng/mL) was established using 

human-CEA antibodies immobilized on 40 nm spherical gold nanoparticles. In human serum, a 

logarithmic response curve was observed with increasing concentration of CEA between 0 and 500 

ng/mL (Fig S1). A linear response was obtained between 0 and 50 ng/mL with a linear correlation 

coefficient R2 of 0.94 (Fig 2a). For human whole blood, a linear response was obtained on the entire 

range of concentration, between 0 and 500 ng/mL with a coefficient R2 of 0.94 (Fig 2b). Taken 

together, this assay configuration demonstrated a linear response in the diagnostically important 

concentration range and sufficient robustness for reliable detection of CEA in a diversity of samples, 

including serum, plasma, and unprocessed human whole blood. 

 

Direct measurement of CA-125 level in serum and whole blood 

In addition to CEA, CA-125 was targeted due to its importance in gynecological cancers and 

endometriosis diagnostics. The conventional upper limit of normal CA-125 in serum is 35 U/mL.25,26 

Studies27 showed that 1% of healthy women and 82% of patients with ovarian cancer had CA-125 

levels above this limit. Additionally, women suffering from endometriosis have been shown to have 

an elevated level of CA-125, reaching values >100 U/mL.28 The clinical range of interest of CA-125 

is relatively large, with values reaching 1000 U/mL and higher.  Therefore, a gold based LFA in the 

clinically relevant detection window (0-1000 U/mL) was established. Human CA-125 antibodies were 

immobilized on 40 nm spherical gold nanoparticles. In human serum, a linear response was obtained 

over the range between 0 and 1000 U/mL with a coefficient R2 of 0.92 (Fig 2c). When using human 

whole blood, the linear response was even more satisfying reaching a coefficient R2 of 0.95 (Fig 2d). 

This demonstrates the capacity of the LFA to perform CA-125 detection over the chosen 

diagnostically relevant range in a both serum and whole blood.   

 

Direct measurement of CRP level in serum and whole blood 

Finally, CRP was selected as an inflammation biomarker widely used in clinical settings to measure 

acute inflammation,29 but also more recently to assess the risk of developing cardiovascular disease.30 

CRP is very often used as a model analyte for LFA. However, it is rarely measurable over the full 

CRP concentration range (0 to 500 µg/mL) due to the so-called “hook effect”.22 The hook effect is a 

known effect in immunoassays that occurs when high concentrations of analytes lead to decreased 

signal intensity due to the saturation of binding sites on the test line. The formation of the antigen-

antibody complex is prevented, resulting in a false-negatives. We designed a three lines LFA 

geometry, incorporating a sandwich assay-based line that allows to perform the detection of CRP 

between 0 and 10 µg/mL (Fig S2a, b, c). Additionally, a competitive assay-based line with the pre-

immobilized antigen was added, to counter the hook effect that takes place for the detection of CRP 
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level at concentrations above 10 µg/mL (Fig. S2d). The competitive assay-based line comprises of the 

antigen already bound to pre-immobilized CRP antibody. Thus, in the presence of low concentrations 

of CRP in the sample, this line has the highest signal intensity, as most AuNP conjugates will get 

immobilized on it. At high concentrations of CRP, most of the proteins will bind to the AuNP 

conjugates, which will therefore not bind to the antigen deposited on the line leading to a gradual 

decrease of the signal intensity (Fig 2e, f). In both human serum and human whole blood, introduction 

of an antigen line led to a very satisfying linear detection range of CRP throughout a clinically 

relevant window with R2 coefficients of 0.96 (0.1-500 µg/mL) and 0.95 (10-500 µg/mL), respectively 

(Fig 2e, f). This three lines LFA geometry therefore enabled the detection of CRP throughout the full 

concentration range (0 to 500 µg/mL). 

 

Figure 2: Design of LFAs suitable for biomarker detection in human serum and whole blood in 
clinically relevant detection windows. a) Design of CEA LFA assay using human CEA-antibody 
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functionalized 40 nm gold nanoparticles in human serum and b) in fresh, unprocessed human whole 
blood. c) Design of CA-125 LFA assay using human CA-125-antibody functionalized 40 nm gold 
nanoparticles in human serum and d) in fresh, unprocessed human whole blood. e) Design of CRP 
LFA assay using human CRP-antibody functionalized 20 nm gold nanoparticles in human serum and 
f) in fresh, unprocessed human whole blood. Assays were performed in triplicate using independent 
blood donors (N=3). 
 

Design of soft-silicon embedded paper-based wearable sensors with integrated volume control 

Leveraging the developed LFA sensing technology, we investigated design strategies for its seamless 

integration into sanitary products. This integration relies on embedding LFA biosensors into hygiene 

pads, enabling effortless direct, on-pad analysis of menstrual blood. This approach is guided by 

several critical design principles, including the simplification of processing steps prior to readout, 

ensuring minimal procedural complexity. The device's hallmark is its ability to operate autonomously, 

necessitating no more than a simple selection of the appropriate pad by the user, thanks to the fully 

integrated LFA technology.  
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Figure 3: a) Concept and b) technical characteristics of prototype design 1 of soft-silicon embedded 
wearable paper-based sensor. The design includes a reservoir of known volume with a dissolvable 
membrane acting as a drain after test completion. c) Integration of prototype 1 embedded into a 
sanitary pad and demonstration of functional volume control (preventing test overflow) (1,2: soft-
silicon casing for paper-based sensor embedding. 3: device placement into sanitary pad. 4: blood 
collection on first fluid transfer layer. 5,6: capillary-based intake of controlled volume and LFA test 
completion. 7: draining of additional blood. 8: completed test.) d) Wearability assessed based on 
mechanical stress response simulations of prototype 1 using gravity and a 0.5 nM moment. e) 
Dissolvable membrane concept and characteristics showing a controllable dissolving time based on 
PVP concentration. f) Concept and g) technical characteristics of prototype design 2 of soft-silicon 
embedded paper-based sensor. The design incorporates an inlet reservoir connected to a capillary 
channel with predefined dimensions. It utilizes a pressure gradient between the inlet and outlet to 
precisely control the volume and flow of blood sampled until the correct amount reaches the 
embedded Lateral Flow Assay (LFA) sensor. h) Integration of prototype 2 embedded into a sanitary 
pad and demonstration of functional volume control (preventing test overflow) (1,2: soft-silicon 
casing for paper-based sensor embedding. 3: device placement into sanitary pad. 4: blood collection 
on first fluid transfer layer. 5,6: capillary-based intake of controlled volume, pressure gradient 
cancelation and LFA test completion. 7: draining of additional blood. 8: completed test.) i) 
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Wearability assessed based on mechanical stress response simulations of prototype 2 using gravity 
and a 0.5 nM moment.  
 
 
In line with this principle, our wearable prototypes were specifically engineered to analyze 

unprocessed human menstrual blood for user-friendly, efficient health monitoring. However, this 

ambition comes with challenges, notably in ensuring consistent, reproducible sampling amidst the 

dynamic variability of menstrual blood loss, influenced by individual and physiological factors. 

Excessive blood contact with the test platform could alter or invalidate results and potentially lead to 

overflow, affecting the test's usability. In addition to these technical considerations, the integration 

must meet critical requirements of biocompatibility, comfort, and user-friendliness. To meet the 

aforementioned design specifications, we designed two different prototypes, relying on distinctly 

different volume control approaches. 

Prototype 1 was designed with a soft-silicon casing that encases an LFA, featuring an inlet 

reservoir with a time-dissolvable PVP membrane at its bottom, capable of holding 150 µL of blood 

for a set duration (Fig 3a). While the polyvinylpyrrolidone (PVP) membrane is intact, the blood stays 

in the reservoir and the LFA test can run to completion. As blood fills the reservoir, it interacts with 

the PVP membrane, causing it to degrade and eventually fail, a process adjustable through the 

membrane's PVP concentration (Fig 3e). When the membrane fails, any additional blood simply 

passes through the now open reservoir and is absorbed by a layer beneath the casing. This device was 

integrated into a hygiene pad, positioned under a polypropylene (PP) transfer layer that directed blood 

into the inlet reservoir. After the test, the PP layer was removed to reveal the LFA's readout zone 

through the transparent silicon casing. This design enables reliable volume control and 

straightforward readout of the integrated LFA test. The inlet reservoir's dimensions are adaptable, 

aligning with the needs of the LFA and ensuring the correct blood volume is used for the test. The 

modular design effectively manages sample volume, preventing overflow and protecting the test 

within a clear casing. 

 Prototype 2 consists of a similar soft silicon-based casing containing the LFA strip. The 

design of the device is different from prototype 1 as it relies on principles of capillary pressure driven 

flow microfluidics that allows passive movements of fluids in microchannels (Fig 3f). When a drop of 

blood is applied on the first PP transfer layer of the hygiene pad, it automatically gets directed above 

the inlet reservoir that holds a volume of approximately 60 µL. Given the micrometric dimension of 

the device surface tension forces dominate against gravity. This causes the liquid sample to enter the 

capillary directing the sample towards the LFA. Inside the microfluidic channel of approximately 25 

µL volume, the Laplace pressure at the liquid/air meniscus interface is the driving force responsible 

for the movement of the fluid:31 
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with � denoting the surface tension, � the contact angle, � the width and h the height of the 

rectangular channel. With the atmospheric �� at the outlet, this generates the right pressure gradient to 

drive the fluid to the LFA. Additionally, considering an incompressible and non-Newtonian fluid in a 

laminar flow within a cylindrical capillary, it is possible to use Hagen-Poiseuille equation:32 

� �
���

8μ�
∆� 

with Q the volumetric flow rate, r, and L the radius and length of the capillary, µ  the dynamic 

viscosity of the liquid and ∆� the pressure difference between inlet and outlet. 

The Washburn equation33 then gives the filling rate of a channel with constant capillary pressure: 

�� �
�������

4μ
  

with L the length of channel that is filled at time t, � the surface tension, � the contact angle, D the 

diameter of the channel, µ  the viscosity. This design ensures consistent capillary filling under fixed 

channel parameters, finely tuned for controlled sample flow to the LFA. Upon contact, the blood is 

absorbed by the paper-based sensor through capillary action, completing the test. The wetting of the 

paper causes the LFA's sample pad within the silicon device to clog, interrupting the air flow between 

inlet and outlet, and nullifying the pressure gradient, thereby preventing further liquid entry. This 

mechanism ensures reproducibility and prevents overflow. In addition, we included draining holes 

beneath the LFA, channeling excess blood into the absorbent layers of the hygiene pad (Fig 3h). For 

read-out, the top PP layer is easily removable, revealing the LFA's readout zone through the clear 

casing. Like Prototype 1, the device's dimensions and consequently the blood volume are adjustable, 

offering a flexible solution tailored to the specific design requirements. Finally, the soft silicon 

utilized in both prototypes demonstrates high flexibility, as validated through comprehensive 

mechanical stress simulations (Fig3 d, i). Even minor stressors, such as gravity or a mere 0.5 nM 

moment, induce noticeable deformations. This high malleability ensures that the prototypes are highly 

responsive and compliant with users' dynamic movements, making them an ideal choice for wearables 

designed to accommodate a range of motion. 

 

Smartphone-assisted semi-quantitative analysis of biomarkers in menstruation blood  

With the volume-controlled in-pad LFA platform designed, the final crucial step for an accessible 

health monitoring platform lies in the reliable readout of the test results. LFA results are often subject 

to subjective interpretations, leading to frequent false positives or negatives34,35 especially when using 

unprocessed whole blood, which can cause interference such as blood leakage, immobilized red blood 

cells forming misleading lines, or lysed cells creating a red background. The semi-quantitative output 

from multiplexed detection of biomarkers like CEA, CA-125, and CRP, including an antigen line in 

the case of CRP, poses additional challenges for visual evaluation by untrained users, underscoring the 

need for standardized readout methods. 
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Figure 4: a) Concept of the smartphone-based machine learning (ML) for LFA test analysis. A test 
image was captured with a smartphone. An ML model was employed to identify the readout zone and 
classify the result, analyzing the pixel intensity profile to locate peaks, corresponding to control and 
test line intensities. These intensities can be directly linked to biomarker concentration, based on pre-
established integrated calibration. b) Workflow of machine learning model dataset preparation and 
training. For the training process, a dataset was first generated using a set of raw images of LFA strips, 
manually labeled. This dataset was then used for the training of two ML models for readout zone 
detection and classification. Additionally, intensity profiles were extracted from the same images and 
manually annotated for peak and background regions. This dataset was then used for the training of 
the fully connected layer (FCL) model to perform automatic peak segmentation on new (unseen) data. 
c) Illustration of the workflow of the machine learning application. Once the three models were 
trained, they were employed to detect and classify the readout zone on new LFA strip images. The 
intensity profiles were then extracted for peak segmentation and biomarker concentration 
determination. 
 
To address these issues, we developed a fully automatic analysis application using machine learning, 

deployed on smartphones for standardized assay readouts after pad use. The approach involved using 

a smartphone-captured image of the LFA strip, and subsequent analysis with segmentation and 

classification models. The application first automatically detected the readout zone, where colorful 

lines (control and test lines for CEA and CA-125, and control, test, and antigen lines for CRP LFA) 

were visible. For this purpose, a pre-trained yolov8 convolutional neural network (CNN) was 

employed, achieving a box loss of 0.73 and an mAP50 of 0.995 (Fig5 a).  
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Figure 5: a) Readout zone detection using CNN. The CNN model automatically detected the region 
of interest where the readout of the test was located. The readout could then be classified. The model 
reached a box loss of 0.73 and mAP50 of 0.995 after training. b) Concept and performances of FCL 
models used for peak segmentation. Three models were built similarly with an input layer, hidden 
layers, and an output layer. Discriminating the output type directly influences positively the 
performances of the trained models (model 1 and 2) compared to a model trained on all the possible 
output types (model 3). c) Examples of peak segmentation on intensity profiles displaying 2 and 3 
peaks (corresponding to control, test and possibly antigen lines). The FCL model accurately detected 
the regions corresponding to a peak of intensity on the LFA strips. Comparison between prediction 
and ground truth demonstrates very satisfactory performances. d) Example use case of automatic CEA 
quantification from a smartphone-captured image. The readout zone was accurately detected and 
classified. Peak segmentation was performed by the FCL model, and the value of CEA was obtained 
after extraction of the test line intensity, which is linked to the biomarker concentration based on pre-
established calibration. 
 

With a confidence threshold of 0.8, it accurately detected the readout zone across the entire test 

dataset. After segmenting the readout zone, it was processed by a classification CNN and a fully 

connected layer (FCL) model, enabling peak segmentation on the intensity profile, which displayed 2 

or 3 peaks depending on the output type. Without discriminating the output type, the neural network 
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achieved an accuracy, precision, and recall of 0.83, 0.90, and 0.86, respectively. However, when data 

was classified and separated based on output type, the network's performance increased, with both 

models’ accuracies reaching 0.90 and precision over 0.93 (Fig 5b). The application then provides the 

user with the concentration value of the biomarker measured by the LFA, offering a reliable and 

immediate interpretation of results (Fig 5d). 

 

Figure 6: a) Example of LFA strips obtained using unprocessed whole menstruation blood for CRP 
concentration measurement. b) Detection of CRP in unprocessed whole menstruation blood using 
ML-assisted readout analysis. c) Detection of CRP in spiked unprocessed whole menstruation blood 
using ML-assisted readout analysis. d) Multiplexing LFA using a dot-based design. e) Multiplexing 
LFA using a line-based design. f) Representation of the developed smartphone application for test 
analysis (1: home screen of MenstruAI app. 2: camera screen to acquire an image of the test. 3: 
validation screen and picture analysis. 4: results screen with precedent test results folders. 5: test result 
folder with analysis of the image acquired and interpretation of the results). Panels show 
representative data from tests performed independently at least three times. 
 

Finally, we demonstrate the robust and reliable biomarker detection and semi-quantification 

directly in unprocessed whole menstruation blood using the developed platform. The obtained 

menstruation blood was used as a matrix for CRP detection using the designed CRP LFA presented 

above (Fig 6a-c). In menstruation blood, biomarker quantification results comparable to the detection 
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in human venous whole blood have been obtained, which demonstrate the feasibility of biomarker 

detection using the envisioned LFA platform directly in unprocessed menstruation blood. 

Additionally, multiplexed paper-based tests were designed to incorporate the results of the 

three biomarkers into a single platform. The designs used either a dot-based (Fig 6d) or line-based 

(Fig 6e) readout and enabled concurrent detection of at least three biomarkers (CEA, CA-125, CRP) 

with minimal cross-reaction. Finally, we demonstrate direct on-pad multiplex biomarker analysis 

using the software framework (Fig 5) integrated into a smartphone app, allowing ease of use, 

automatic analysis, and accessibility of the user's data (Fig 6f). The app contains an intuitive and 

simple user interface, allowing the user to take a picture of the test through the app using the 

smartphone camera, and analysis of the test either immediately or later. The analysis report with the 

respective CEA, CA-125 and CRP menstruation blood levels, along with an interpretation based on 

the normal clinical range, can then be found alongside precedent reports in the result folder of the app 

(Fig 6f). 

 

CONCLUSIONS 

In this work, we present a fully integrated on-pad detection platform for the semi-quantitative analysis 

of a panel of biomarkers relevant for inflammation and infection, cancer, and endometriosis, directly 

in menstruation blood. This work directly promotes the use of a sample often seen as waste and 

increases the accessibility of women to cutting-edge technologies centered on women's health. 

Additionally, this first-of-its-kind point-of-care device features an innovative design that enables 

fluidic manipulation and multiplexed electronic-free readout, allowing for completely passive 

(without active human intervention) and reproducible testing in resource-constraint settings. This 

work presents two key innovations, namely the direct analysis of unprocessed, undiluted menstruation 

blood, and most importantly, fluid-control mechanisms, that enable accurate dosing of menstruation 

blood on the sample pad and prevent overflowing and thus invalidation of the test results. The 

machine-learning assisted analysis of the LFA assists the user in data interpretation and long-term 

tracking of biomarkers. Due to the low-barrier characteristics of this platform, we expect significant 

user adoption, and potentially earlier detection of healthy complications. Importantly, the platform in 

its current form is not intended as a diagnostic replacing clinically established tests, but rather to alert 

users of potential health issues and enable close-meshed, cost-effective health monitoring. In the 

future, we foresee that the biomarker panel could be extended depending on the user's interest and 

disease prevalence, potentially also including sexually transmitted disease (STD) biomarkers, etc. The 

proposed menstruation blood-based multiplexed detection platform could have a transformative 

impact on women's health by offering a non-invasive, cost-effective, and barrier-free approach to 

health monitoring in both developed and developing countries, thus contributing to healthcare 

democratization. 
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MATERIALS AND METHODS 

Materials.  Sodium citrate dihydrate HOC(COONa)(CH2COONa)2·2H2O, HAuCl4, Phosphate-

buffered saline, bovine serum albumin, sucrose C12H22O11, tween-20, NaH2PO4·H2O, Na2HPO4, 

Na2B4O7·10H2O, H3BO3, polyvinylpyrrolidone (PVP) (C6H9NO)n were purchased from Sigma-

Aldrich. Anti-CRP detection and capture monoclonal antibodies were purchased from Abcam inc. 

(anti-CRP C2 & anti-CRP C6). Anti-CEA detection and capture monoclonal antibodies were 

purchased from Fitzgerald industries international (anti-CEA F & anti-CEA G). Anti-CA-125 

detection and capture monoclonal antibodies (Anti-CA-125 X325 & Anti-CA-125 X306) were 

purchased from Lubioscience.  

Goat anti-mouse IgG were purchased from Lubioscience. CRP from human ascites were purchased 

from Sigma-Aldrich, and CEA proteins were purchased from Fitzgerald industries international. CA-

125 human protein was purchased from Sigma Aldrich. CRP free human serum was purchased from 

Lubioscience, and human serum was purchased from Sigma-Aldrich. Citrate-phosphate-Dextrose 

anticoagulant solution was purchased from Sigma-Aldrich. All buffers and reagent solutions were 

prepared using distilled water or MiliQ water (>18.2Ø.cm, Milipore). The sample, conjugate, and 

absorbent pads, as well as nitrocellulose membranes and adhesive backing cards were obtained as part 

of a LFA assembly kit purchased from Nanocomposix. Additionally, Fusion 5 blood separation 

membrane was purchase from Cityva. Ecoflex near-clear 00-31 was purchased from Smooth-On. 

Sanitary pads were purchased from Always.  

 

Human venous and menstruation blood samples. The collection of venous (BASEC No. 2016-

00816) and menstruation blood (BASEC No. 2023-00562) was approved by the cantonal ethics 

commission of the Canton of St. Gallen, Switzerland. Human menstruation blood samples were 

obtained from healthy volunteers on day 1 and 2 of menses, donated to a gynecologist at the Cantonal 

Hospital St. Gallen and handed over to the research lab on the same day in an anonymous way (not 

transferring any donor information).  

 

Apparatus. A Hidex sense 425-301 plate reader was used for the absorbance measurement and 

verification of nanoparticles conjugation. A Prusa extrusion 3D printer was used for 3D printing of 

parts. An iPhone 13 along with ImageJ software analysis were used for quantitative evaluation of the 

assay’s results. 

 

Reagents preparation. Phosphate buffer (0.01M, pH 7.4) was made using Na2HPO4 and 

NaH2PO4.H2O in MiliQ water. Borate buffer (100mM, pH9) was made using Na2B4O7·10H2O and 

H3BO3 in miliQ water. The sample pad buffer consisted of a solution of PBS containing 0.5% (w/v) 

BSA and 1% (v/v) tween-20. Finally, the conjugate pad buffer in which nanoparticles were 
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resuspended after conjugation consisted of a solution of PBS containing 5% (w/v) sucrose, 1% (w/v) 

BSA and 0.5% (v/v) tween-20. 

 

Gold nanoparticle synthesis. To synthesize gold nanoparticles, a 60 mL solution of 2.2 mM of 

sodium citrate dihydrate was prepared in 3 Neck round bottom glass flask and brought to boiling 

point. 400 µL of a 25 mM HAuCl4 was added afterwards, resulting in seed nanoparticles of 

approximately 6 to 10 nm diameter after 15 min. Afterwards, a growth step was realized adding 400 

µL of a 60 mM sodium citrate dihydrate solution the mix, followed by 400 µL of a 25 mM HAuCl4 

solution. After cooling down, gold nanoparticles of approximately 20 nm diameter were fully 

synthesized. To obtain larger diameter nanoparticles, additional growth steps were completed until the 

nanoparticles reached the desired diameter.  

 

Conjugation of antibodies to gold nanoparticles. To prepare gold nanoparticle conjugates, the 

desired detection antibodies were passively conjugated to the surface of the nanoparticles from non-

covalent interaction. Briefly, two solutions of 40 nm AuNP at pH9 were respectively mixed with a 300 

µg/mL solution of anti-CEA antibody diluted in MiliQ water and a 350 µg/mL solution of anti-CA-

125 antibody diluted in MiliQ water followed by the addition of 1% BSA in MiliQ water for the 

obtention of anti-CEA-AuNP and anti-CA-125-AuNP conjugates. Similarly, a solution of 20 nm 

AuNP at pH8 was mixed with a 200 µg/mL solution of anti-CRP antibody diluted in MiliQ water 

followed by the addition of 1% BSA in MiliQ water. After incubation for 30 min, the 40 nm AuNP-

based mixtures and 20nm AuNP-based mixtures were respectively centrifuged at 3500 and 10,000 

rpm and resuspended in the conjugate pad buffer.  

 

Lateral flow assay preparation. The LFA sensor for individual biomarker detection consists of four 

components: a sample pad (blood filtration pad or not), a nitrocellulose membrane, a conjugate pad, 

and an absorbent pad. The sample pad was pre-treated with a sample pad buffer to assist in the fluid 

migration. The desired conjugated nanoparticles in a conjugate pad buffer were deposited on the 

conjugate pad. The absorbent pad was left untreated. For the CEA-LFA, a line of a 1 mg/mL anti-CEA 

capture antibody solution in phosphate buffer was deposited on the NC membrane to act as the test-

line, and a 1.0 mg/mL goat anti-mouse IgG solution in phosphate buffer was deposited to act as the 

control line. For the CA-125-LFA, a line of a 0.75 mg/mL anti-CA-125 capture antibody solution in 

phosphate buffer was deposited on the NC membrane to act as the test-line, and a 1.0 mg/mL goat 

anti-mouse IgG solution in phosphate buffer was deposited to act as the control line. For the CRP 

LFA, a line of a 0.75 mg/mL anti-CRP capture antibody solution in phosphate buffer was deposited on 

the NC membrane to act as the test-line. An extra line of a 1.0 mg/mL anti-CRP capture antibody 

solution in phosphate buffer was deposited, followed by the addition of a 1.0 mg/mL human CRP 

solution deposited on top of the same line, to act as the antigen line. The control line was formed by a 
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1.0 mg/mL goat anti-mouse IgG in phosphate buffer. All components were dried for 1h in a 37°C 

drying oven, and later assembled on a plastic adhesive backing card. Each segment overlapped its 

neighboring one by 2 mm. Finally, individual LFA were cut to obtain regular paper-based sensors of 5 

mm width and 6 cm length. 

 

Test procedure. Once LFA were prepared, solutions of the biomarker of interest were prepared in 

different matrices at various concentration. CEA, CA-125 and CRP solutions were prepared by 

spiking human serum and CRP-free human serum, as well as human whole venous blood containing 

anticoagulant, at desired concentrations. Additionally, CRP solutions were prepared by spiking human 

whole menstruation blood at desired concentrations. 60 to 100 µL of sample were deposited on the 

sample pad. Once the test was performed, images were obtained using an iPhone 13 and analyzed 

with ImageJ. The intensity profile of individual color channels of the LFA strip image was obtained, 

and the peak intensity of the lines was recorded. The intensity value was obtained by subtracting the 

peak value of the line from the background value. All measurements were triplicated.  

 

In-pad biosensor assembly. Fabrication of soft silicon casing started with the design of negative 

parts and molds in Fusion 360 CAD software, followed by 3D printing with an extrusion 3D printer. 

Ecoflex near-clear 00–31 part A and part B were mixed in 1:1 (v/v) ratio. The mix was later poured 

into the desired mold adding the negative parts to form the desired geometries after curing for 4H at 

room temperature. The negative parts were later removed manually, and biopsy punchers were used to 

create inlets and outlets in the silicon casing. The LFA sensors were later integrated into the silicon 

casing to obtain a fully assembled test platform. PVP membranes for volume control were synthesized 

by mixing PVP powder in methanol at various concentration depending on the desired retention time 

to achieve. Once the mix was fully dissolved, the solution was drop casted onto circular shaped Teflon 

mold and left to dry for 1H. Once ready, the PVP membranes were directly added to the silicon 

casing. A commercial sanitary pad was used as a proof of concept. The three layers composing the pad 

were separated, and the soft-silicon device was integrated below the first polypropylene sheet, acting 

as transfer layer for any fluid encountering the pad. The whole assembly was later used as such for 

experiments. 

 

Artificial intelligence assisted analysis using smartphone app. 

The smartphone-based analysis using AI has been built using three distinct machine learning models 

to i) detect the readout zone ii) classify the type of readout and iii) perform peak segmentation on the 

intensity profile of the LFA strip to correlate the test line intensity to the biomarker concentration. The 

workflow consists of automatically detecting the readout zone on the LFA. The readout zone is the 

zone where the output of the LFA is visible thanks to AuNP-based colorful lines. Once the zone is 

automatically detected, the output is analyzed and classified depending on the type of line visible. A 
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model is used to classify the readout zone in three distinct categories (control line only; test and 

control lines; test, antigen, and control lines visible).  The pixel intensity profile of the region is then 

obtained and automatically processed with a bespoke model, to extract the value of the test line 

intensity peak that later correlates with the biomarker concentration using pre-determined calibration 

curves. 

First, a dataset containing 549 images of individual strips of LFA was built, incorporating 

LFA for the detection of CEA, CA-125 and CRP with different fluids (phosphate buffered saline, 

human serum, and blood). The dataset has been manually labelled to draw a bounding box containing 

the AuNP-based colorful lines on each individual strip. The dataset was divided into training, testing 

and validation sets representing 70%, 20% and 10% respectively. Transfer learning has been 

leveraged, using a pre-trained yoloV8 convolutional neural network36 model to learn the detection and 

segmentation of the readout zone using 50 epochs and a batch size of 10.   

In a second time, a dataset for the classification of the readout has been built. 549 images of 

individual readout zones were cropped out from the images of single LFA strips and separated 

depending on the readout (control line only; test and control lines; test, antigen, and control lines 

visible). The dataset was divided into training, testing and validation sets representing 70%, 15% and 

15% respectively. The same pre-trained yolov8 CNN model was used to learn the classification of a 

given LFA readout using 50 epochs and a batch size of 5.  

Finally, the automatic peak segmentation was performed using a fully connected layer model. 

To do so, intensity profiles were manually extracted for each of the 549 individual strips. They were 

manually labelled, attributing a probability 1 to the pixels displaying a colorful line on the LFA and a 

probability 0 to the pixels consisting of the background region on the LFA. The labelled profiles were 

subsequently separated in two: profiles containing test line and control line-based peaks, and profiles 

containing test line, antigen line and control line-based peaks. For the two types, the dataset was 

divided into training and testing sets representing 80% and 20% respectively, and two identical FCL 

models were trained using the pixel position and the corresponding intensity as input for supervised 

learning of the probability of the pixel to fall within a peak region or a background region. The two 

models were built from an input layer of 512 nodes, a hidden layer of 256 nodes and an output layer 

of 1 node. Dropout of 0.5 was used in-between layers, as well as a ReLu activation function. The 

sigmoid activation function was used for the output layer. The models were trained using binary cross 

entropy as a loss function over 100 epochs and batch size of 10. A binary response was finally 

obtained from the probability output by the model using a threshold value of 0.5.  

The smartphone-based application has been coded using JavaScript and React. The open-

source framework React Native has been used alongside Expo Go client app to develop an application 

available on both iOS and Android platforms.  
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