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Abstract 31 
Lung cancer and tobacco use pose significant global health challenges and require a 32 
comprehensive translational roadmap for improved prevention strategies. We propose 33 
the GREAT care paradigm (Genomic Informed Care for Motivating High Risk Individuals 34 
Eligible for Evidence-based Prevention), which employs polygenic risk scores (PRSs) to 35 
stratify disease risk and personalize interventions, such as lung cancer screening and 36 
tobacco treatment. We developed PRSs using large-scale multi-ancestry genome-wide 37 
association studies and adjusted for genetic ancestry for standardized risk stratification 38 
across diverse populations. We applied our PRSs to over 340,000 individuals of diverse 39 
ethnic background and found significant odds ratios for lung cancer and difficulty quitting 40 
smoking. These findings enable the evaluation of PRS-based interventions in ongoing 41 
trials aimed at motivating health behavior changes in high-risk patients. This pioneering 42 
approach enhances primary care with genomic insights, promising improved outcomes in 43 
cancer prevention and tobacco treatment, and is currently under assessment in clinical 44 
trials.  45 
  46 
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Introduction 47 
The worldwide burden of lung cancer and tobacco smoking presents major 48 

challenges to global health1. Evidence-based practices to reduce their risk such as cancer 49 
screening and tobacco treatment (e.g. smoking cessation medication) have long existed 50 
but are infrequently used in most primary care practices. Communication of the precision 51 
risk of lung cancer and precision benefit of smoking cessation is a promising but untested 52 
strategy to promote health behavior changes to reduce cancer risk. To address this gap, 53 
polygenic risk scores (PRSs) emerge as a valuable approach to assess disease 54 
susceptibility among populations and pinpoint individuals at higher risk2–4. PRSs can be 55 
derived from large-scale genome-wide association studies (GWAS) to estimate individual 56 
disease risk and have shown promise in predicting health outcomes and promoting 57 
preventive healthcare5–9. Despite their potential, PRSs' implementation in primary care is 58 
limited, especially in diverse populations. Implementing a PRS-based precision 59 
intervention is crucial in order to address the multifaceted needs of different communities 60 
and individuals. Harnessing PRSs effectively can make significant progress in mitigating 61 
lung cancer’s public health impact. 62 

Ongoing studies like eMERGE10, GenoVA11, and WISDOM12 are leading the 63 
implementation of PRS into genetic risk reports (Table 1). They aim to personalize 64 
medical reports and understand the impact of PRS on screening, diagnostic procedures, 65 
and patient behavior. Notably, a gap persists as these initiatives have not yet formulated 66 
a PRS specifically for lung cancer. A likely reason is that the global burden of lung cancer 67 
is primarily driven by tobacco smoking rather than genetics13,14. However, accounting for 68 
the genetic basis of lung cancer may provide patients and clinicians with additional 69 
actionable information. The unique value proposition of a lung cancer-specific PRS lies 70 
in leveraging established and clear guideline-based prevention strategies, including 71 
smoking cessation treatment and lung cancer screening15. By incorporating PRSs for lung 72 
cancer and difficulty quitting smoking without treatment, there is an opportunity to 73 
revitalize and enhance these often under-utilized prevention practices. 74 

We introduce the Genomic Informed Care for Motivating High Risk Individuals 75 
Eligible for Evidence-based Prevention (GREAT) framework as a novel approach to 76 
incorporate PRS-enabled interventions in clinical settings (Figure 1). The core of GREAT 77 
is the use of PRSs that offer precise risk estimates for lung cancer and difficulty quitting. 78 
By providing patients with personalized risk information, we aim to activate behavior 79 
change mechanisms that promote preventive actions. The primary targets of this 80 
intervention are high-risk individuals eligible for evidence-based prevention practices, 81 
such as lung cancer screening and smoking cessation. By integrating precision risk 82 
information with the benefits of timely interventions, GREAT empowers patients to make 83 
informed decisions about their health and motivates them to take proactive steps towards 84 
prevention. Ultimately, our objective is not only to motivate, but to significantly reduce lung 85 
cancer morbidity and mortality through this innovative care paradigm. 86 
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Effectively translating PRSs into clinical practice requires a comprehensive and 87 
pragmatic translational roadmap for equitable and effective implementation (Figure 1). 88 
First, to address ancestry diversity, we take a two-step approach of (1) constructing PRS 89 
based on large-scale multi-ancestry GWAS, and (2) standardizing PRS distributions 90 
across the continuum of genetic ancestry16,17 by leveraging reference data from the 1000 91 
Genomes Project Phase 3 (1000G)18. Given the variations in allele frequencies (AF) and 92 
linkage disequilibrium (LD) across ancestries, this step is critical to ensure fair risk 93 
stratification based on PRS distributions10,19. Second, to document accuracy and 94 
transportability of the PRSs to diverse populations, we perform large-scale validation 95 
using data from individuals of diverse self-reported ethnicities in the UK Biobank (UKBB) 96 
and Genetic Informed Smoking Cessation (GISC) trial. Third, we translate risk into 97 
actionable categories by setting appropriate thresholds for the PRS. The alignment of 98 
these thresholds with clinical significance involves many considerations for meaningful 99 
risk stratification. Fourth, we propose clear and patient-friendly communication strategies, 100 
including visual aids and educational materials, to facilitate understanding and meaningful 101 
interactions between patients and healthcare providers. Effectively communicating both 102 
the risk and precision of the PRS results is challenging but essential to empower patients 103 
to make informed decisions about their health. Moreover, it is crucial to consider patient 104 
perceived risk, perceived benefit, and personal relevance when discussing PRS results 105 
with patients. Patients' understanding and interpretation of PRS may vary, leading to 106 
differing levels of engagement in preventive actions. Hence, comprehensive patient 107 
education programs can enhance awareness and knowledge about PRS, its implications, 108 
and available preventive measures. 109 

In this paper, we introduce the design for two cluster randomized clinical trials 110 
(RCT): (1) PRECISE, which evaluates the effectiveness of a multilevel intervention, 111 
RiskProfile, on increasing lung cancer screening and tobacco treatment utilization in 112 
primary care (NIDA Grant 5R01CA268030-02); and (2) MOTIVATE, which evaluates the 113 
effect of PrecisionTx, a multilevel intervention to promote precision tobacco treatment in 114 
primary care (NIDA Grant 5R01DA056050-02). Through the innovative use of PRS, our 115 
aim is to motivate lung cancer screening and tobacco treatment among high-risk patients. 116 
We present a new care paradigm (Figure 1) and outline a translational roadmap (Figure 117 
2) that discusses potential barriers and solutions for implementation. By incorporating 118 
personalized risk assessments, such PRS-enabled interventions have the potential to 119 
significantly improve lung cancer prevention strategies and patient outcomes. 120 
 121 
Results 122 
Sample Characteristics  123 

For primary validation, we used data from 340,154 unrelated individuals in the UK 124 
Biobank (UKBB)20, given its large sample size, rich clinical data, and inclusion of 125 
individuals from diverse ancestry backgrounds (Methods). Lung cancer validation 126 
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involved 1,830 cases and 338,324 controls across five self-reported ethnic backgrounds: 127 
European (EUR, N = 318,043, Ncase = 1,762), African (AFR, N = 6,409, Ncase = 19), East 128 
Asian (EAS, N = 599, Ncase = 2), and South Asian (SAS, N = 7,520, Ncase = 10), with 7,583 129 
(Ncase = 37) with “Other” self-reported ethnic backgrounds such as mixed or unknown 130 
(Supplementary Table 1a). Lung cancer occurrence was slightly higher among men 131 
(53.3% of cases) compared to women (46.7% of cases).  132 

For difficulty quitting, the cohort comprised 34,923 current smokers and 117,483 133 
individuals who had previously smoked. The breakdown by self-reported ethnicity for this 134 
analysis was as follows: EUR (N = 145,483, 95.4%), AFR (N = 1,874, 1.2%), EAS (N = 135 
131, 0.1%), and SAS (N = 1,733, 2.2%) (Supplementary Table 1b). Among those who 136 
had quit smoking, 50.3% were male among Europeans, while quitting in non-European 137 
males varied between 51.2% and 81.5%.  138 

In addition, we validated the PRSs using data from the Genetically Informed 139 
Smoking Cessation (GISC) trial, which more accurately reflects the patient demographics 140 
anticipated in the PRECISE and MOTIVATE trials. The difficulty quitting analysis 141 
encompassed 647 current smokers and 149 former smokers, with the ancestry 142 
distribution as follows: 503 of European descent, 257 of African descent, and 36 of other 143 
ancestries (Supplementary Table 1c). 144 
 145 
Harmonization PRS distributions across ancestry 146 

To harmonize the polygenic risk scores (PRS) across diverse ancestries, we first 147 
projected genotypes of individuals from the UKBB and GISC onto a principal components 148 
analysis (PCA) space using PC loadings derived from 55,248 variants within 1000G 149 
dataset (Methods). The resulting PC scores aligned closely with the continental 150 
ancestries represented in the 1000G, confirming that projecting genotypes to an 151 
externally-defined PC-space still maintains similar clustering by ethnicity (Figure 3). The 152 
SNPs used and their corresponding loadings for the top five PCs are detailed in 153 
Supplementary Table 4.  154 

We constructed PRSs for lung cancer and smoking cessation using large multi-155 
ancestry GWAS with publicly accessible summary statistics (Methods, Supplementary 156 
Tables 2-3). Variations in the raw PRS across ancestries were notable (Figure 4). For 157 
instance, only 6% of AFR individuals in the UKBB cohort had a raw lung cancer PRS 158 
above the 80th percentile when benchmarked against the 1000G distribution. Conversely, 159 
57% of EAS individuals ranked below the 33rd percentile for the difficulty quitting PRS 160 
(Supplementary Table 6a-b). Such differences indicate that applying a universal cutoff 161 
for PRS without ancestry adjustment could lead to skewed risk profiling and inaccurate 162 
clinical recommendations. Even with the smaller sample size of the GISC dataset, there 163 
were noticeable difference in PRS distribution similar to those in the UKBB data 164 
(Supplementary Tables 6c-d).  165 
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To address this, we use a two-step ancestry adjustment procedure that regresses 166 
out ancestry PCs from the raw PRS such that the mean and variance of the PRS 167 
distribution are consistent across all populations (Methods, Figure 4, Supplementary 168 
Table 5). This adjustment step places individuals from different ancestries on a 169 
standardized scale, enabling the use of a single risk stratification cutoff irrespective of an 170 
individual’s ancestral background. After ancestry adjustment, the corresponding 171 
proportions of the UKBB individuals within each risk category closely match 20%-60%-172 
20% for lung cancer, and 33.3%-33.3%-33.3% for difficulty quitting, so that patients of 173 
any background can be appropriately compared against a single reference distribution for 174 
each outcome (Supplementary Table 6a-b).  175 
 176 
Risk stratification for lung cancer and smoking cessation  177 

All participants receiving interventions in our two ongoing trials are high-risk 178 
primary care patients who meet the criteria for lung cancer screening with elevated risks 179 
of lung cancer. Thus, we will assign patients to one of three PRS-based risk categories – 180 
“at risk”, “high risk”, and “very high risk” – using percentile cutoffs of ancestry-adjusted 181 
PRS distributions based on 1000G. To quantify patient risk, we calculated odds ratios 182 
(ORs) relative to the “at risk” group using 350,154 UKBB participants for lung cancer and 183 
152,406 for difficulty quitting (Figure 5, Supplementary Tables 4-5). For lung cancer, 184 
individuals within the 0-20th percentiles of the adjusted PRS distribution were categorized 185 
as "at risk", those in the 20-80th percentiles as "high risk", and the 80-100th percentiles 186 
as "very high risk". These percentiles yielded overall ORs of 1.42 (95% CI: 1.24 – 1.65) 187 
for “high risk” and 1.85 (95% CI: 1.58 – 2.18) for “very high risk” group compared to the 188 
“at risk” group (Supplementary Table 7a). Notably, the ORs derived from our ancestry-189 
adjusted PRS were nearly identical to those obtained by matching individuals’ raw PRS 190 
values with ancestry-specific distributions in 1000G (Supplementary Table 7b). This 191 
indicates that ancestry adjustment not only preserves similar results as the ancestry-192 
matched approach but also crucially supports the inclusion and robust risk stratification 193 
of individuals with mixed or unknown ethnic backgrounds. 194 

However, differences in ORs were still observed between EUR and non-EUR 195 
participants, potentially due to the limited number of non-EUR cases (67 out of 1,830 total 196 
lung cancer cases) in the UKBB cohort, which is predominantly EUR. The OR for the EUR 197 
"very high risk" group was 1.85 (95% CI: 1.57 – 2.19), which is consistent with the 198 
combined odds ratios across all ancestries (Supplementary Table 7a). The OR for all 199 
non-EUR samples in the "very high risk" category was modestly reduced to 1.63 (95% CI: 200 
0.78 – 3.51) (Supplementary Table 7b). Given the small number of non-European cases, 201 
enhanced diversity in biobank-scale validation data should better illustrate the difference 202 
in risk stratification between raw and ancestry-adjusted PRS.  203 

Since difficulty quitting is a behavior trait with no established absolute risk rates 204 
like cancer, we use terciles (0-33rd, 33rd-67th, and 67-100th percentiles) of the ancestry-205 
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adjusted PRS distribution to provide provides with slightly more agnostic risk information. 206 
The resulting ORs among UKBB participants were 1.19 (95% CI: 1.15 – 1.22) for "high 207 
risk" and 1.36 (95% CI: 1.32 – 1.41) for "very high risk" relative to "at risk" 208 
(Supplementary Table 8a-b). Further validation using smoking status outcomes from the 209 
GISC trial assessed showed higher overall ORs in both risk categories, but risk 210 
stratification using the ancestry-adjusted PRS distribution still reflected similar odds ratios 211 
as ancestry-matched PRS distributions (Supplementary Table 9a-b). However, since the 212 
GISC trial have much smaller sample size compared to UKBB, the confidence intervals 213 
were notably wider. Similar to the lung cancer analysis, the ORs using our ancestry-214 
adjusted PRS aligned closely those derived from ancestry-matched raw PRS.  215 

Using ancestry-adjusted PRS ensures equitable risk stratification across all ethnic 216 
backgrounds, a critical consideration given the substantial variability in raw PRS 217 
distributions across diverse populations (Figure 4). The outcome-based validation in 218 
UKBB and GISC further verify that the ancestry-adjusted PRS yields valid risk 219 
stratification. These findings collectively facilitate more robust and standardized 220 
application of PRS in clinical reporting.  221 
 222 
Translating polygenic risk scores into clinical reports 223 

We highlight two example trials: PRECISE (NIDA Grant 5R01CA268030-02) and 224 
MOTIVATE (NIDA Grant 5R01DA056050-02), designed to promote health behavior 225 
change using genetically-informed interventions, RiskProfile and PrecisionTx, 226 
respectively. These interventions incorporate PRS in communicating precision risk of lung 227 
cancer and precision benefits of smoking cessation to promote evidence-based practices 228 
such as cancer screening and tobacco treatment in high-risk individuals who smoke 229 
and/or are eligible for lung cancer screening. PRS risk stratification from either RiskProfile 230 
or PrecisionTx and clinical information are delivered within a comprehensive report, along 231 
with actionable recommendations to reduce lifetime risk (Figure 6). Access to 23andme 232 
genotypes and expanded health information has been a motivating component for the 233 
research participants. Both PRECISE and MOTIVATE are currently in the preliminary 234 
phases of recruiting primary care providers and patients. The recruitment strategy aims 235 
to engage over 100 physicians and 1600 patients in these trials. 236 
 237 
Discussion  238 

In this study, we introduce the GREAT framework in primary care. The application 239 
of PRSs in the two example trials offers precise risk estimates for lung cancer and difficulty 240 
quitting to high-risk individuals to activate behavior change mechanisms that promote 241 
health. To enable the interventions, we present a feasible translational roadmap to 242 
transform genetic data, implemented in two example PRS-enabled interventions 243 
designed to promote health behaviors. These behavior-change tools will be evaluated for 244 
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implementation and effectiveness in motivating patients at high risk to reduce their risk by 245 
increased cancer screening and smoking cessation.  246 

Importantly, we have accomplished our goals of generating behavior-change 247 
interventions by a) framing our translational message specifically for high-risk patients 248 
who have not received guideline-recommended cancer screening or tobacco treatment21–249 
24, b) translating risk categories into precision risk and benefit that are designed to 250 
motivate health behavior changes, and c) ensuring inclusion of diverse ancestry with PC-251 
regression-based PRS adjustment.  252 

Our goal is to enable a robust implementation of PRS in currently funded clinical 253 
trials to evaluate the efficacy of these relatively novel interventions. The GREAT 254 
framework guides the implementation of PRS-enabled interventions in primary care 255 
settings. Critical questions such as timing, methodology, and location of these 256 
interventions’ delivery to patients and providers are addressed to optimize its acceptability, 257 
understanding, and potential impact.  258 

Our approach to ancestry adjustment of PRS employs widely accessible data from 259 
the 1000G dataset, as an alternative to methods in the GenoVA11 and eMERGE10 studies 260 
that use data from the Mass-General Brigham Biobank and All of Us, respectively. We 261 
have validated the transferability of our 1000G-based standardization in external datasets 262 
from the UKBB and GISC, allowing future trials to adopt a similar methodology 263 
irrespective of their specific genetic data. By utilizing our provided PC loadings and PRS 264 
standardization formula for lung cancer and difficulty quitting based on 1000G data, new 265 
patients in these trials can receive accurate risk categorization reports, bypassing the 266 
potential inaccuracies of self-reported ethnicity and the need for re-training PCA models. 267 

A notable gap in current practice is the absence of genetic information in electronic 268 
health records (EHRs) for decision support and the lack of PRS generation in clinical labs. 269 
Implementing multilevel precision interventions in primary care necessitates a workflow 270 
that incorporates the use of EHRs for recruitment, protocols of biomarker testing, and a 271 
standardized process to generate the personalized intervention reports25. This requires 272 
collaborations with primary care stakeholders, community advisory boards, genetic 273 
counseling, and health communication to improve the messaging and visualization for 274 
intervention clarity, accuracy, and impact26–30. Patients expressed a notable interest in 275 
receiving personalized interventions. In our previous study, 85% of smoking patients 276 
reported a high interest in receiving genetically tailored tobacco treatment31. Further, a 277 
substantial majority (95%) of individuals who smoke endorsed the importance of receiving 278 
genetic results, in particular to guide their treatment27. Following receipt of a personalized 279 
genetic risk profile for smoking cessation, 91% of participants who smoke found the tool 280 
to be highly useful, most notably to better understand their health, cope with health risks, 281 
and feel more in control of their health28. Such pronounced interest and the perceived 282 
significance of genetic data highlight the growing demand for personalized interventions 283 
among patients who smoke. Personalized interventions may further increase patient 284 
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compliance. For example, our study found that patients reported higher interest in taking 285 
medication (97.5% vs. 61.0%, p<.0001) when medication was personalized based on 286 
their genetics31. These data demonstrate the translation potential of personalized 287 
genetics in motivating patients for positive behavior change.  288 

Unlike most current research that evaluates PRS-enabled interventions in general 289 
patient populations, our work provides a unique aspect by designing and evaluating these 290 
interventions specifically among high-risk patients who will benefit tremendously from the 291 
recommended health behaviors (lung cancer screening and smoking cessation) when 292 
general medical advice is not enough to motivate such behaviors. 293 

Here we share three key design considerations for best practices. First, for 294 
equitable implementation of precision health interventions, tools must be designed with 295 
racial/ethnic minority communities engaged in the development process at the outset, 296 
rather than solely examining whether these interventions work for these communities post 297 
hoc. We engage in ongoing participatory sessions with racial and ethnic minority 298 
communities and advisory boards across all phases through iterative cycles of 299 
intervention development, feedback, and testing so that innovative genomics-informed 300 
tools are designed for use and benefit across diverse populations. 301 

Second, we have chosen clinically meaningful thresholding for PRS risk categories 302 
in communicating personalized risks and benefits with patients in our research. The 303 
categories were selected because all participants receiving interventions in our two 304 
ongoing trials are high-risk primary care patients eligible for lung cancer screening, who 305 
are current or previous heavy smokers. We defined lung cancer risk by the bottom 20%, 306 
middle 60% and 20%, and difficulty quitting smoking by slightly more agnostic tertiles, to 307 
motivate positive behavior change. We aim to follow best practices of communicating 308 
uncertainties. Furthermore, we need to make decision on options of risk presentation 309 
such as a continuous or categorical assignment. Importantly, we strive to be transparent 310 
about the imprecision in both risk estimates and action thresholds for PRS.  311 

Third, we expect to update our workflow to adapt to new GWAS and evolving 312 
methodologies. As scientific knowledge rapidly progresses, outdated or inaccurate PRS 313 
predictions can hinder effective implementation. To address this challenge, a dynamic 314 
PRS framework that allows for regular updates based on new scientific discoveries is 315 
necessary. This will ensure that the PRS-based intervention remains current and aligned 316 
with the latest advancements, ultimately shortening the implementation gap and 317 
maximizing its impact on preventive healthcare outcomes. Leveraging current 318 
recommendations on genetic counseling, we have established a process and threshold 319 
to incorporate new evidence into our intervention regarding smoking cessation and lung 320 
cancer risk. This process will a) adjudicate population specific new evidence regarding 321 
genetics and biomarkers, b) evaluate its impact on changes in risk levels at personal and 322 
population level, and c) develop effective communication regarding the dynamic nature 323 
of genetic evidence with patients and providers. 324 
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There are several limitations in our work as we hope to share our experiences to 325 
help inform the knowledge pool for the best practices in creating PRS-enabled 326 
interventions that may be disease-, population-, or context-specific. We have tailored our 327 
approach to our unique outcomes (lung cancer and difficulty quitting smoking), population 328 
(patients eligible for lung cancer screening and tobacco treatment), and context (primary 329 
care settings) to optimize the potential health impact of our intervention tools. Another 330 
notable limitation is the underrepresentation of non-European populations in the multi-331 
ancestry GWAS employed to derive the PRS weights, as well as in the UKBB used to 332 
evaluate the PRSs. These factors may reduce the predictive power of the PRS in non-333 
European populations. A dominance of European populations persists in most existing 334 
GWAS32–35, not limited to lung cancer and smoking cessation. With the burgeoning 335 
emphasis on incorporating minority populations in GWAS analyses and the ongoing 336 
development of new PRS approaches7,8,36–39 that focus on enhancing predictive power in 337 
diverse populations, we can iteratively refine the PRS implementation in our trial to 338 
synchronize with the most contemporary advancements.  339 

Many questions need to be answered in the near future. First, how can we reduce 340 
the time lag from evidence to implementation? One challenge is the constant evolution of 341 
evidence that identifies new biomarkers for treatment. For instance, our recent work 342 
highlights the potential of polygenic risk scores in guiding future treatment approaches40. 343 
However, despite the presence of actionable precision treatment findings, the ever-344 
changing evidence base and the perception that even better data are on the horizon have 345 
hindered effective implementation29,41. In this proposal, we seek to overcome this 346 
challenge by utilizing cutting-edge, biology-based metabolic and genetic markers that 347 
offer robust evidence for precision treatment. The motivation behind this approach is to 348 
reduce the time lag from evidence generation to practical implementation, particularly in 349 
the context of precision medicine, where the evidence base is continuously evolving and 350 
dynamic. This affords the unique opportunity to measure and report on the time from 351 
landmark publications to implementation of key findings, an approach that is being 352 
increasingly called for in translational science42. By leveraging state-of-the-art markers, 353 
we aim to enhance the efficiency and effectiveness of precision treatment and ensure that 354 
patients can benefit from the latest and most accurate recommendations.  355 

Second, can we truly evaluate the effect of precision interventions? We expect that 356 
precision interventions may activate multiple mechanistic pathways to the uptake and 357 
efficacy of lung cancer screening or tobacco treatment. Understanding potential plausible 358 
mechanisms is needed to improve or refine the intervention for intended outcomes and 359 
contexts. Third, can these precision interventions be scaled in the real-world clinics? 360 
Evidence has shown that physicians are highly receptive to guidance on medication 361 
recommendations based on biomarkers43. To reduce burden, we need to leverage 362 
existing EHR tools (e.g. Best Practice Advisories) to efficiently facilitate physician 363 
prescribing44,45. Understanding of mechanistic and implementation outcomes ill guide 364 
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scalable, efficient delivery components for integration into clinic workflows25, trained 365 
embedded staff, and digital therapeutic tools to enable these PRS-informed behavioral 366 
interventions46.  367 

In conclusion, a well-designed roadmap that validates the PRS, creates it using 368 
TE weights, translates risk into actionable categories, communicates effectively, 369 
considers patient perspectives, and accommodates evolving science is essential for the 370 
equitable and pragmatic translation of PRS into clinical care. By addressing the barriers 371 
and implementing potential solutions at each stage, we can harness the power of PRS to 372 
improve preventive healthcare and make a meaningful difference in reducing the burden 373 
of diseases like lung cancer.  374 
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Figures 415 

 416 
Figure 1. Care Paradigm: Genomic Informed Care for Motivating High Risk 417 
Individuals Eligible for Evidence-based Prevention (GREAT). The GREAT framework 418 
is a primary care paradigm that integrates genetic and clinical risk in precision health. 419 
Individuals and their providers in two upcoming trials (PRECISE and MOTIVATE) are 420 
enrolled and provided with multilevel interventions (e.g. RiskProfile and PrecisionTx) to 421 
promote clinical outcomes of lung cancer screening, tobacco treatment, and successful 422 
smoking cessation in primary care settings. Mechanisms of health behavior changes (e.g., 423 
perceived benefit, self-efficacy, and outcome expectancy) will be evaluated. During the 424 
specific actionable recommendations phase, personalized shared decision-making will 425 
be facilitated by multilevel actions between patients and clinicians for better clinical 426 
outcomes.  427 
  428 
 429 
 430 
  431 
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 432 
 433 

 434 
Figure 2 Roadmap for translating genetic data to a genetic risk profile as a 435 
multilevel intervention in primary care. In step 1, enrolled participants’ genetic data 436 
are analyzed by 23andMe’s Clinical Laboratory Improvement Amendments (CLIA) 437 
certified genotyping process. Imputation and quality controls are conducted through the 438 
Trans-Omics for Precision Medicine (TOPMed) server to ensure the integrity and 439 
reliability of the genetic data, as well as to impute the GWAS variants. Step 2 involves 440 
identifying available GWAS variants and weights to create the raw Polygenic Risk Scores 441 
(PRS). The PRS is adjusted for genetic ancestry using reference data such as the 1000 442 
Genomes Project Phase 3 and applied to validation data such as the UK Biobank to 443 
establish risk categories and compute odds ratios. In step 3, these scores are converted 444 
into 3 risk levels based on the established thresholds. In step 4, a report with precision 445 
treatment is created and communicated to both the participant and the provider to make 446 
informed and educated decisions. Behavioral interventionists offer personalized guidance 447 
on behavior change, leveraging the updated genetic insights. The outcome aims to 448 
increase lung cancer screening orders, improve participant adherence, promote smoking 449 
cessation, and highlight the benefits of tobacco treatment.   450 
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 451 
Figure 3. Cross-dataset discrimination of self-reported ethnicity via PCA 452 
Projections in 1000G, UKBB and GISC. This figure illustrates the utility of principal 453 
components analysis (PCA) loadings obtained from the 1000 Genomes Project Phase 3 454 
(1000G) in discriminating ancestries within external datasets, specifically the UK Biobank 455 
(UKBB) and the Genetically Informed Smoking Cessation (GISC) trial. PCA was initially 456 
conducted on the globally diverse genotype data of 1000G. The resultant PCA-space was 457 
then used to project genotype data from both the UKBB and GISC. The scatter plot 458 
displays the first and second PCs for each individual in these datasets, with points 459 
distinctly marked by self-reported ethnicity. 460 
 461 
  462 
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 463 
Figure 4 Ancestry adjustment of PRS for lung cancer and quit difficulty PRS across 464 
ancestral populations. We showcase the adjustment process for polygenic risk scores 465 
(PRS) for lung cancer (Panel A) and difficulty quitting smoking (Panel B) within the 1000 466 
Genomes Project (1000G) and UK Biobank datasets. It displays both raw and ancestry-467 
adjusted PRS, with data points color-coded according to self-reported continental 468 
ancestries. Ancestry adjustment effectively centers the PRS for different ancestries, 469 
mitigating the risk of incorrect stratification due to ancestry-related biases. Dotted vertical 470 
lines correspond to the 20th and 80th percentiles for lung cancer PRS distribution and 33rd 471 
and 67th percentiles for difficulty quitting PRS among all 3,202 samples in the 1000 472 
Genomes Project.  473 
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 474 
Figure 5. Risk stratification through ancestry-adjusted PRS percentiles and 475 
associated odds ratios. This figure illustrates the odds ratios (ORs) calculated for lung 476 
cancer (Panel A) and difficulty quitting smoking (Panel B) among UK Biobank participants 477 
(N=340,154 for lung cancer and N=152,406 for smoking), based on selected cut points 478 
within the ancestry-adjusted PRS distribution. The dashed lines mark the upper 479 
percentiles used for defining risk categories in our study: the 80th percentile for lung 480 
cancer, correlating with an OR of 1.85 (95% CI: 1.58 – 2.18) and the 67th percentile for 481 
quit difficulty, corresponding to an OR of 1.36 (95% CI: 1.32-1.41).482 
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 483 
Figure 6. Example clinical reports for lung cancer (left) and smoking (right). We 484 
present two genomically-informed interventions using the GREAT framework. RiskProfile 485 
(left) is designed to motivate lung cancer screening and tobacco treatment among eligible 486 
patients. PrecisionTx (right) is designed to motivate precision tobacco treatment and 487 
smoking cessation. Both tools utilize ancestry-adjusted PRS to stratify patients into “at 488 
risk” (yellow), “high risk” (orange), and “very high risk” (red) genetic risk categories. While 489 
RiskProfile focuses more on prevention and PrecisionTx focuses more on treatment, both 490 
interventions expand beyond personalized risk to also provide personalized benefit of 491 
cancer screening and personalized medication recommendation, and use a multilevel 492 
intervention design directed to both physicians and patients in clinical settings.  493 
  494 
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Tables 495 

 496 
* PCP=primary care provider 497 
** BrCa=breast cancer, PrCa=prostate cancer, CRCa=colorectal cancer, Afib=atrial 498 
fibrillation, CAD=coronary artery/heart disease, T2D=type 2 diabetes, T1D=type 1 499 
diabetes, BMI=body mass index/obesity, CKD=chronic kidney disease, 500 
HCL=hypercholesterolemia, lung cancer=lung cancer 501 
 502 
Table 1. Research on PRS use in clinical settings. We compare the PRECISE and 503 
MOTIVATE trials, part of our GREAT framework, with existing PRS-informed trials: 504 
GenoVA, eMERGE, and WISDOM. Bolded text in the PRECISE / MOTIVATE column 505 
highlight the points where our trials differ from the current trials. Namely, the PRECISE 506 
and MOTIVATE trials investigate lung cancer and smoking and will focus on high risk 507 
patients who are smokers or eligible for lung cancer screening. We also look at lung 508 
cancer screening, tobacco treatment, and smoking cessation as unique target outcomes. 509 
Finally, in addition to genetic and clinical risk messaging, the two trials have a unique 510 
emphasis on behavior mechanisms around lung cancer and smoking.  511 

512 

PRECISE / MOTIVATEWisdomeMERGEGenoVA

Motivate lung cancer 
screening (LCS) / 
tobacco treatment

Personalized screening 
frequency

Increasing clinical 
actions to mitigate risk of 

future disease
Motivate early diagnosisGoal

Targets

High risk PC patients 
(LCS eligible / smokers) 

and their PCPs

All women can sign up 
online

Patients in the large 
healthcare system

All general Veterans’ 
Affairs PCP* and 

patients
Target population

LC, smoking cessationBrCA
BrCa, PrCa, CRCa, Afib, 

CAD, T1D, T2D, BMI, 
Asthma, CKD, HCL

BrCa, PrCa, CRCa, Afib, 
CAD, T2DCondition(s)**

LCS, tobacco tx, and 
smoking cessation

Screening compliance 
and cancer detection

Change screening 
practice or lifestyleNew diagnosesTarget outcome

Polygenic Risk Scores

23andMeColor genomicsStudy teamGenotyping

TOPMedAll of Us1000 GenomesImputation

Top independent 
variants Multi-ancestry 

weights 
Ancestry calibration

Color genomics
Terra cloud platform

Ancestry calibration

Top or many variants
European weights

Ancestry calibration
Create PRS

3 levels (top 20%, 
middle, bottom 20%) or 

tertiles
OR of 5-102 levels (OR of 2)Risk Stratification

Intervention Design
Separate genetic + 

clinical
Format of relative risk

Combined clinical + 
genetic

Format of absolute risk

Combined clinical + 
genetic

Format of absolute risk

Only genetic
Format of relative riskRisk representation

At risk, at high risk, or at 
very high risk

No discussion of risk
Only recommend 

screening schedule

Average vs. elevated
risk

Average vs. elevated
riskMessaging

Perceived risk/benefit, 
Self efficacy, Personal 

relevance
Behavior mechanisms 
targeted
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Methods  669 
Reference and validation data 670 

We conducted our analyses using data from three prominent datasets: UK Biobank 671 
(UKBB)20, 1000 Genomes Project (1000G)50, and Genetically Informed Smoking 672 
Cessation Trial (GISC)51. The UKBB, a widely recognized dataset, encompasses rich 673 
genetic and clinical data from approximately 500,000 British individuals. Our study 674 
specifically used data from 340,154 unrelated multi-ancestry individuals, up to third-675 
degree relatives52, who had consented as of September 5, 2023 (Supplementary Table 676 
1). The 1000G dataset provides a globally diverse genetic reference of 3,202 individuals, 677 
with 633 Europeans (EUR), 893 Africans (AFR), 585 East Asians (EAS), 601 South 678 
Asians (SAS), and 490 Admixed Americans (AMR). We synchronized our data by using 679 
the latest data release on hg38 reference genome and using liftOver53 to convert to hg37 680 
and align with our UKBB genotype data. 681 

UKBB was used for the primary validation of our PRS due to its considerable 682 
sample size and inclusion of non-European ethnicity. We used self-reported ethnicity 683 
using UKBB Field 21000, defining European (EUR) as White, British, Irish, or any other 684 
white background; African (AFR) as Black, Caribbean, African, Black or Black British, or 685 
any other black background; East Asian (EAS) as Chinese; and South Asian (SAS) as 686 
Indian, Pakistani, Bangladeshi, Asian or Asian British, or any other Asian background. 687 
From the 340,154 participants, the breakdown was 318,043 EUR, 6,409 AFR, 599 EAS, 688 
7,520 SAS, and 7,583 with other self-reported ethnicity. Participants’ mean age was 56.6 689 
years (SD 8.2; range 38-81 years), and the cohort was 54.1% female (183,969 690 
individuals). Our lung cancer analyses included 1,830 lung cancer cases in the UKBB, 691 
defined by whether a patient had at least one ICD10 code in C34.0-CD34.9 under Field 692 
40006, and 338,334 controls with no ICD10 codes recorded (Supplementary Table 1). 693 
The smoking cessation analysis involved 152,406 “ever-smokers”, including 117,483 694 
former and 34,923 current smokers, with the latter defined as having difficulty quitting 695 
based on Field 20116. We excluded 186,040 'never smokers' and 1,312 participants who 696 
opted for 'prefer not to answer'. 697 

The Genetically Informed Smoking Cessation (GISC) trial is a prospective, 698 
randomized, placebo-controlled smoking cessation trial conducted at Washington 699 
University in St Louis51. This study includes 822 total individuals, all of whom are smokers. 700 
We focused on 796 individuals with genetic information, including 503 of European self-701 
reported ethnicity, 257 African self-reported ethnicity, and 36 self-reported as “Other”. 702 
GISC data was used for secondary validation, as the patient population more closely 703 
resembles the expected patients enrolled in our PRECISE and MOTIVATE trials.  704 
 705 
Construction of polygenic risk scores 706 

Our trial incorporates the latest findings by utilizing recently genome-wide 707 
association study (GWAS) summary statistics for lung cancer47 and difficulty quitting48 708 
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which exclude samples from the UK Biobank to avoid overlapping with our validation data. 709 
While these meta-analyses predominantly consist of individuals of European ancestry, 710 
they also include a substantial proportion of non-European ethnic background—about 26% 711 
for lung cancer and 21% for difficulty quitting—which enhances the generalizability of the 712 
findings54,55.  713 

For lung cancer risk, we started with a set of 128 published SNPs found to be 714 
predictive of 5-year and lifetime cumulative risk for lung cancer15. Out of these, 101 SNPs 715 
overlapped with the published summary statistics, reference, and validation data (1000G, 716 
UKBB, and GISC), and the 23andMe genotyping array used for the trial (Supplementary 717 
Figure 1). These SNPs were then assigned effect sizes from the fixed-effect meta-718 
analyses estimates in the most recent lung cancer GWAS that includes EUR, AFR, and 719 
EAS ancestry47. Use of 23andme has been an incentive for patient participation.  720 

For difficulty quitting, we started with 206 SNPs and SNP effects identified as 721 
predictive of smoking cessation48. Among these 206, we identified 177 SNPs following 722 
the same filtering procedure for lung cancer and used a final list of 175 SNPs after 723 
removing 2 multiallelic SNPs.  724 

The PRS construction began with the alignment of genotype data to the summary 725 
statistics, ensuring consistent PRS regardless of initial reference and alternative allele 726 
coding. Specifically, for any SNP 𝐺 with reversed alleles, we recoded it as 2 − 𝐺 to avoid 727 
discrepancies. If we were to instead change the sign of the corresponding effect size 𝛽, 728 
there would be an added constant of 2𝛽 within the PRS, which can alter the overall PRS 729 
distribution and subsequent risk stratification if patient genotypes are coded differently. 730 
Once flipped SNPs were recoded, we generated the PRS as a weighted sum of SNP 731 
dosages, utilizing the effect sizes 𝛽 from the published summary statistics. The raw PRS 732 
for an individual patient 𝑖 with 𝑀 SNPs was computed as 733 

𝑃𝑅𝑆! = 𝛽"𝐺!" + 𝛽#𝐺!# +⋯+ 𝛽$𝐺!$ . 734 
PRS calculations were performed using R, with genotype data input via the genio 735 
package56. PRS SNPs and weights for lung cancer and difficulty quitting are provided in 736 
Supplementary Tables 2-3, respectively. 737 

 738 
Principal components analysis of the 1000 Genomes Project 739 
To ensure our PRS can be applied universally across ancestries, we conducted ancestry 740 
adjustment using the 1000G dataset, which provides a representative cross-section of 741 
the five major global superpopulations: AFR, AMR, EAS, EUR and SAS18. Principal 742 
components analysis (PCA) is popular tool in ancestry inference, as it can capture 743 
continental genetic diversity and provide a continuous, label-free quantification of genetic 744 
ancestry16,17,57. We performed PCA on all 3,202 1000G samples, using 55,248 SNPs that 745 
are shared among the recommended SNPs set by gnomAD49, 1000G reference data, 746 
UKBB and GISC validation data, and the 23andMe genotyping array used for the trial 747 
(Error! Reference source not found.). PCA was performed using plink 2.058 with the 748 
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following command to generate the top five PCs: “--pca allele-wts 5”. This process 749 
resulted in a set of loadings or weights for each of the 55,248 SNPs corresponding to 750 
each principal component. We then applied these loadings to genotype data from 1000G, 751 
UKBB, and GISC within plink 2.0, employing the command: “--score [i] [j] header 752 
cols=+scoresums,-scoreavgs,-dosagesum,-nallele --score-col-nums [k1]-[k2]” to 753 
generate the PC scores.  754 
 755 
Standardizing PRS distributions across the continuum of genetic ancestry 756 

We standardized the PRS distributions for lung cancer and difficulty quitting using 757 
data from the 1000G dataset, employing a regression-based method to adjust for 758 
distributional differences across ancestries11,19,59. This adjustment process involves two 759 
key steps:  760 

First, we conducted a linear regression of the raw PRS against the top five PCs 761 
derived from the PCA, such that the PRS of individual 𝑖 is a linear model of their PCs with 762 
random noise:  763 

𝑃𝑅𝑆! = 𝛼% + 𝛼"𝑃𝐶!" + 𝛼#𝑃𝐶!# +⋯+ 𝛼&𝑃𝐶!& + 𝜖!'()*. 764 
We obtained an estimated intercept 𝛼%2,  and weights (𝛼"2,⋯ , 𝛼&2)  for each PC. The 765 
residuals of the raw PRS, accounting for the linear effects of the PCs, were calculated as: 766 

𝑅! = 𝑃𝑅𝑆! − 𝛼"2𝑃𝐶!" −⋯− 𝛼&2𝑃𝐶!&. 767 
This first step is designed to remove mean differences in the PRS distribution across 768 
ancestries. Subsequently, we used the square residuals 𝑅!#  as a measure for PRS 769 
variance, and ran a secondary linear regression model with: 770 

𝑅!# = 𝛾% + 𝛾"𝑃𝐶!" + 𝛾#𝑃𝐶!# +⋯+ 𝛾&𝑃𝐶!& + 𝜖!+),. 771 
From this, we derived a second estimated intercept ( 𝛾%7 ) and a new set of weights 772 
(𝛾"7 ,⋯ , 𝛾&7 ) for each PC’s effect on the variance of the PRS. The final ancestry-adjusted 773 
PRS for each individual 𝑖 was then computed as: 774 

𝑃𝑅𝑆!-). =
𝑃𝑅𝑆! − 𝛼%2 − 𝛼"2𝑃𝐶!" −⋯− 𝛼&2𝑃𝐶!&
8𝛾%7 + 𝛾"7 𝑃𝐶!" + 𝛾#7 𝑃𝐶!# +⋯+ 𝛾&7 𝑃𝐶!&

 775 

By scaling the residuals with the fitted values from the second regression, we 776 
standardized the variance of the PRS distribution across ancestries to mean 0 and 777 
variance 1. 778 

We validated this ancestry adjustment procedure in the UKBB and GISC datasets 779 
by applying the PC coefficients (𝛼"2,⋯ , 𝛼&2, 𝛾"7 ,⋯ , 𝛾&7 )  to the raw PRS. This ancestry-780 
adjusted PRS accurately reflects an individual’s genetic risk independent of their ancestry, 781 
facilitating a unified risk stratification methodology. This is especially crucial for individuals 782 
with admixed or unknown ancestry, for whom discrete ancestry-specific prediction models 783 
may be unsuitable or invalid4,16,36,60,61. 784 

 785 
Risk categories determination 786 
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To stratify patients by genetic risk for lung cancer and difficulty quitting, we 787 
calculated odds ratios (OR). These ratios compare the probability of an outcome 788 
occurring in individuals within a percentile range 𝑝 (i.e. 80-100%) of the ancestry-adjusted 789 
PRS distribution with the probability of the same outcome occurring in individuals within 790 
another percentile range 𝑞 (i.e. 0-20%).  791 

𝑂𝑅/0 =
𝑃(𝑌 = 1|𝑃𝑅𝑆 ∈ 𝑝)/𝑃(𝑌 = 0|𝑃𝑅𝑆 ∈ 𝑝)
𝑃(𝑌 = 1|𝑃𝑅𝑆 ∈ 𝑞)/𝑃(𝑌 = 0|𝑃𝑅𝑆 ∈ 𝑞) 792 

Following the determination of the desired OR for each health outcome, we established 793 
cut points within the PRS distribution to categorize individuals into three distinct risk 794 
groups: “at risk”, “high risk”, and “very high risk”.  795 
 We chose clinically meaningful thresholds to define three risk categories – “at risk”, 796 
“high risk”, and “very high risk” – in communicating personalized risks and benefits with 797 
patients in our research. We use these category names because all participants in these 798 
two ongoing trials are high-risk patients eligible for lung cancer screening with active 799 
heavy smoking. For lung cancer, we categorize patients by the bottom 20%, middle 60%, 800 
and top 20%. For difficulty quitting, we divide the PRS distribution into thirds – using the 801 
bottom, middle, and top 33%. Since difficulty quitting is a behavior trait with no established 802 
absolute risk rates like cancer, we use these percentiles to provide slightly more agnostic 803 
risk information.  804 
 For our ancestry-adjusted PRS, we use the distribution among all 1000G samples 805 
to set percentile ranges and evaluate corresponding odds ratios among UKBB 806 
participants. For comparison, we also evaluate odds ratios using ancestry-matched raw 807 
PRS distributions, i.e. European-only 1000G PRS distribution for self-reported European 808 
UKBB participants. For UKBB participants with “Other” ethnic background, we use the 809 
raw PRS distribution among all 1000G samples, rather than matching to a specific group.  810 


