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Abstract

Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a
vector-borne disease targeted for global elimination of transmission (EoT) by
2030. There are, however, unknowns that have the potential to hinder the
achievement and measurement of this goal. These include asymptomatic gHAT
infections (inclusive of the potential to self-cure or harbour skin-only infections)
and whether gHAT infection in animals can contribute to the transmission cycle
in humans. Using modelling we explore how cryptic (undetected) transmission
impacts the monitoring of progress towards as well as the achievement of the
EoT goal. We have developed gHAT models that include either asymptomatic or
animal transmission, and compare these to a baseline gHAT model without either
of these transmission routes, to explore the potential role of cryptic infections on
the EoT goal. Each model was independently calibrated using available historic
human case data for 2000––2020 (obtained from the World Health Organization’s
HAT Atlas) which includes routine data from active and passive screening for five
different health zones in the Democratic Republic of the Congo (DRC).
Our results suggest that when matched to past case data, we estimated similar

numbers of new human infections between model variants, although human
infections were slightly higher in the models with cryptic infections. We simulated
the continuation of screen-confirm-and-treat interventions and found that forward
projections from the animal and asymptomatic transmission models produced
lower probabilities of EoT than the baseline model. Simulation of a (as yet to be
available) screen-and-treat strategy found that removing a parasitological
confirmation step was predicted to have a more noticeable benefit to transmission
reduction under the asymptomatic model compared to the others. Our
simulations suggest vector control could greatly impact all transmission routes in
all models, although this resource-intensive intervention should be carefully
prioritised.

Keywords: Modelling; gambiense human African trypanosomiasis (gHAT);
elimination; transmission; infection reservoir; animal; asymptomatic; model
comparison

Introduction
Gambiense human African trypanosomiasis (gHAT), commonly referred to as

“sleeping sickness”, is a neglected tropical disease that threatens the lives of millions

of the poorest populations in West and Central Africa. The disease, which is caused

by the parasite Trypanosoma brucei gambiense, is transmitted to humans through
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the bite of tsetse (Glossina) [1, 2] and once symptoms develop the untreated disease

is usually fatal. The last gHAT epidemic, which endured from the 1970s until the

late 1990s, reached its peak in 1998 with 37,385 cases reported across Africa [3]. In

response to this epidemic the World Health Organization (WHO), national control

programmes and nongovernmental organizations (NGOs) implemented a range of

interventions in endemic areas which led to a significant reduction in case numbers

[3, 4]. Two approaches were adopted to control the disease: case detection through

passive screening (fixed health facilities for patients presenting with gHAT symp-

toms) and active screening (AS; predominantly mobile teams travelling to at-risk

regions and screening using the card agglutination test for trypanosomiasis (CATT)

or rapid diagnostic tests (RDTs)) [5]. Additionally, vector control (VC; reduction

of tsetse populations in endemic areas) has been used in some settings including

geographically contained foci and some of the regions with highest case reporting.

The success of these global and national efforts led to fewer than 1000 annual cases

being reported in 2019–2022 [3, 6].

In 2012, following a decade of sustained control efforts, the WHO included gHAT

in its “roadmap for eradication, elimination and control of neglected tropical dis-

eases” [7]. The goals identified were for the elimination of gHAT as a public health

problem by 2020 and zero transmission in humans by 2030. Steady progress has

been made towards these goals with Togo and Côte d’Ivoire being the first to have

elimination as a public health problem validated, followed by Benin, Uganda and

Rwanda and other countries are working towards building and submitting dossiers

[8]. Even with falling case numbers and the sustained progress made by national

programmes and their partners towards achieving the WHO goals, uncertainties

remain. Undetected or cryptic hosts, including asymptomatic gHAT infections and

animal infections, represent a significant uncertainty, and understanding the role

they play in maintaining the human transmission cycle will be critical for elimina-

tion efforts [9].

Although the classical gHAT disease course is typically characterised by an early

and a late stage [10] it is now clear that there is a range of potential clinical out-

comes with some infected individuals displaying no symptoms following infection

(asymptomatic) and some able to clear the parasite spontaneously (self-cure) [11].

Healthy carriers of gHAT have been documented for half a century and can remain

infected for years, possibly even decades [11, 12]. The parasite, in such cases, can

evade detection by parasitological tests used for routine screening of blood, lymph

node aspirate or cerebral spinal fluid, by residing in the extravascular space of or-

gans including the heart and the skin [13, 14, 15]. Consequently, these individuals

may act as a human maintenance reservoir or at least hinder intervention efforts

(although it has yet to be established how infective asymptomatic humans are to

tsetse [16]). An indicator of asymptomatic infection is consistently high titres in the

CATT [17] used for mass screening in endemic locations. The CATT test, however,

may not be sufficiently specific to T.b. gambiense infections[18]. Other tests that

are more specific to T.b. gambiense infections, including immune trypanolysis, may

more accurately correlate with infection prevalence, however, these tests are labora-

tory rather than field tests and therefore they are not routinely used for population

screening [18, 19]. Consequently, under the standard “screen-confirm-and-treat” AS
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algorithm, not all individuals infected with gHAT have a chance of being diagnosed

and treated due to the parasite confirmation criterion for the currently available

drugs: fexinidazole, pentamidine and nifurtimox-eflornithine combination therapy

(NECT) [20]. A “screen-and-treat” (S&T) scenario in which all individuals with a

positive screening test (CATT or RDT) may be a feasible option, particularly in

light of the ongoing progress in the development of a single-dose oral cure, acozibo-

role [21].

In addition, and despite an abundance of evidence that T.b. gambiense parasites

are present in both wildlife and domestic livestock, it is uncertain if and to what

extent they contribute to the transmission cycle [9]. It has been suggested by several

studies that animals can act as parasite reservoirs [22, 23, 24, 25, 26, 27] however,

studying the infectivity and transmissibility to humans is challenging. Mathematical

modelling has been used to great effect to predict what impact non-human animal

infections may have on transmission and the effectiveness of control measures. In

one such study it was shown that although the probability of elimination would be

expected to remain high in the presence of animal transmission (at least 77% prob-

ability of gHAT elimination as a public health problem in Boffa East, Guinea by

2020), intervention strategies would need to remain in place even after elimination

as a public health problem to prevent recrudescence [28]. Another study presented

a model of heterogeneous exposure of humans to tsetse with animal populations

that differed in their ability to transmit infections [29]; it concluded that increasing

the intensity of VC was more likely to eliminate transmission while increasing the

intensity of human screening reduced the time to elimination. The latter model,

however, was not fitted to gHAT case data. Another cautionary study, that used

human and animal case data to quantify how different species and groups of species

(domestic and wild animals) contribute to transmission dynamics, indicated that in-

dependent transmission cycles are likely in wild animals [30] and that interventions

targeting humans alone are likely insufficient for elimination of gHAT. Previous

work by Crump et al. [31] directly compared whether there was statistical support

for a model with animal infection, rather than solely anthroponotic transmission

and concluded that there are some health zones (administrative regions of around

150,000 people) of the Democratic Republic of Congo (DRC) where human case

data indicated there may be some evidence of this. However, the amount of trans-

mission from animals would not be sufficient to maintain infection in the long term

without human transmission. Some health zones had more than a 10% difference in

the probability of elimination by 2030 between the model predictions made with and

without animal transmission. Some other modelling studies have remained incon-

clusive on the existence of animal transmission having a substantial contribution

to human-tsetse infection cycles, however, optimistically, falling case numbers in

many regions have indicated that if they do exist then we might expect negligible

to minor delays to EoT [32, 33].

In this study, we explore three alternative model variants which describe the

transmission of gHAT in the DRC, which currently has the highest global case

burden and also great geographic heterogeneity in case reporting [3]. We ask the

following questions for model variants with asymptomatic human transmission and

animal transmission: (1) is there statistical evidence – based on routinely collected
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active and passive case data – to support using a model with asymptomatic human

infection, and (2) would we expect predictions of case reporting and elimination

to be modified using such a model? Whilst other modelling studies have presented

[34, 35] and even fitted [36, 37] models with either self-curing human infections or

skin-only infections, none have been conclusive on whether there is more statistical

evidence for the use of this more complex model variant or if simpler models without

these additions can explain the data as well.

Methods
Model variants

In this study, we utilised three previously developed variants of the Warwick gHAT

model that can be visualised via the schematic diagram shown in Figure 1. Briefly,

the baseline model (known in our previous publication as “Model 4” [38, 32, 39, 33])

is a solely anthroponotic human-tsetse model that includes heterogeneity in peo-

ple’s exposure to tsetse bites. This model, in which low-risk people may attend AS

but high-risk people do not participate, was found to match longitudinal trends in

the data well and outperformed other simpler anthroponotic variants (referred to

as Models 1, 2 and 3 as detailed in previous work [38, 32, 33]). The model with

possible animal transmission (“Model 7” in previous publications) is the same as

the baseline model but includes the addition of non-human animal transmission to

and from tsetse [31]. This model has two extra parameters – the relative density

of animals capable of acquiring and transmitting infection compared to the human

population size, kA, and the probability that a tsetse takes a blood meal on this

animal population, fA. The model with animal transmission has been found to have

similar statistical evidence to the baseline model when matched to human case data

in various regions [38, 32, 31]. Finally, the asymptomatic model with possible self-

curing human infections (“Model 9”) is very similar to the baseline model with a

high-low-risk structure but with alternative disease progressions (natural history)

possible in humans [34]. In particular, upon passing through the intrinsic incubation

period (EH), individuals have a probability (pbs) of developing stage 1 blood infec-

tion (Ib1H) or skin-only infection (Is1H). It is assumed that both blood and skin-only

infections are infectious to susceptible tsetse, however, skin-only infections have re-

duced infectiousness to tsetse by a factor (x). Unlike the baseline model and model

with animal transmission, we also assume that either of these infected types of in-

dividuals can self-cure and that this happens at rates ωs
H and ωb

H for skin-only or

stage 1 blood infections respectively. We assume that skin-only infections which do

not self-cure become stage 1 blood infections at a rate θ. The asymptomatic model

therefore has five extra parameters compared to the baseline model. This variant

has not previously been fitted to data.

For each variant, there are both deterministic and stochastic versions. Determinis-

tic models of gHAT, described by systems of ordinary differential equations (see SI),

have been predominantly used in the literature due to their quick computational

run time and because they are simpler to fit to data. It has also been demon-

strated that, despite gHAT being such a low prevalence infection, deterministic and

stochastic models of gHAT have very similar mean dynamic behaviour and there-

fore their ubiquitous use is not unreasonable [40, 41]. Further work has found that
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Figure 1 Model diagrams Schematic for the three model variants considered in this study. Blue
components form the baseline model and are also included in the other two model variants. The
pink boxes and arrows are only found in the animal model and the green box and arrows are only
in the asymptomatic model variant. Births, deaths and transmission pathways are not shown to
aid readability. Arrows relating to disease/infection progression are shown. The grey oval and
dashed lines indicate infection classes assumed to be detectable using a traditional
screen-confirm-treat approach in AS (although some infections still may be missed due to
imperfect diagnostic sensitivity). An alternative version showing the mathematical notation used
in the model and transmission pathways is shown in SI Figure 6.

fitting deterministic variants of gHAT models but using the analogous stochastic

variant for sampling and projections works well to reduce computational challenges

but still outputs better estimates for elimination [42]; the main advantage in this

instance is for the evaluation of the probability of EoT as it obviates the need for

a proxy threshold to determine when the last transmission event occurs. Whilst it

is not highly pertinent in the present study, stochastic models of gHAT are also

particularly useful when population sizes being modelled are smaller than health

zones – for example at village level [43, 44].

In this study, we will use a combined approach to take advantage of both deter-

ministic and stochastic model versions of the three model variants. Fitting of the

models to data and assessment of model evidence will be performed using the de-

terministic model, whilst forward projections to evaluate possible trajectories under

different strategies and assess the probability of EoT will be simulated using the

equivalent stochastic version, parameterised by the posteriors of the deterministic

fit. Specifically, in this work, we are defining EoT as being the first year after the

final transmission event occurs in the simulation.
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Data

The WHO define risk thresholds of “high risk” as > 1 annual case per 1,000 pop-

ulation, “moderate risk” as 1–10 annual cases per 10,000 population, “low risk” as

1–10 annual cases per 100,000 population, and “very low risk” as 1–10 annual cases

per 1,000,000, all averaged for five years [45]. These thresholds apply to spatially

smoothed risk areas with 30km radii, which do not align with administrative areas

[4]. Although different, one can also look at a similar health-zone-level risk measure

of the average number of cases averaged over the last five years per 10,000 people

across the health zone – this measure is interesting as <1 annual case per year per

health zone does correspond with one of the country-level indicators for elimination

as a public health problem [6]. Almost all health zones of the DRC were classified

as having < 10 annual cases on average per 10,000 population during 2011–2015

with only 4 of 516 with >10 average annual cases per 10,000. For 2016–2020 cases

fell further with only 17 health zones having > 1 cases per 10,000 people and none

having > 10 cases per 10,000. The health zones selected for this model compari-

son study were chosen as they represent a variety of health-zone-level risk levels

observed across the country and they also represent a range of present-day and

historical coverages of AS activities. Table 1 shows summary information for each

health zone and their geographical position in the country is shown in Figure 2.

It is noted that recent (mean) coverage of AS is correlated to risk in two different

ways: firstly, one year’s AS is supposed to be dictated by the previous years’ case

reporting – according to WHO guidelines, villages reporting cases within the last

three years should continue AS, whereas, for those with no reporting in this period

and a further year of no case reporting (in year four or five), AS may be stopped [7].

Secondly, if AS is low then there is less chance of finding extant infections, so low

coverage will also result in low reporting and therefore lower risk categorisation.

We see this played out in the selected health zones – the two health zones with

>1 annual case per 10,000 for 2011–2015 had higher mean AS, and the two health

zones with <1 annual case per 100,000 for 2011–2015 had virtually no AS coverage

in the last ten years.

Table 1 Summary information for the example health zones used in this modelling analysis. The
percentages of active screening (AS) coverage are presented here as the mean number out of the
health zone population size for the corresponding years.

Health zone Coordination Estimated
population
size (2018)

Mean re-
ported cases
per 10,000
(2011–2015)

Mean AS
coverage per
year (2011–
2015)

Mean re-
ported cases
per 10,000
(2016–2020)

Mean AS
coverage per
year (2016–
2020)

Bagata Bandundu Nord 181000 41.9 31.4% 8.3 30.9%
Bominenge Equateur Nord 171000 1.85 3.6% 0.6 6.9%
Budjala Equateur Nord 142000 0.46 1.4% 0.2 0.3%
Mbaya Equateur Nord 73000 0.45 0.1% 0 0%
Mosango Bandundu Sud 133000 13.8 12.7% 3.0 4.7%

For each health zone, annual case data for the period 2000–2020 was extracted

from the WHO HAT Atlas using geolocation information (where known). The data

were aggregated to the health zone level, however, the method of detection (active

or passive) and staging information (generally known from 2015) were separated.

More information on data extraction can be found in the original fitting paper for

the baseline model (Model 4) using 2000–2016 data [39] and in an update paper

using 2000–2020 data [46]. None of the five health zones had had large-scale VC
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Figure 2 Locations of the health zones considered in this study. The whole DRC is shown in
grey with coordination boundaries for gHAT control shown in white. The five health zones under
analysis in this study are shown as coloured regions with a black border and the names of the
coordinations they are in are labelled.

implemented before 2020, however, Bagata health zone did commence Tiny Target

deployments in mid-2021 and it is possible that there were some minor effects of

VC in Mosango health zone due to deployments along a shared river with the

neighbouring health zone (Yasa Bonga) since mid-2015. These VC activities have

been included in the model simulations – including during the fitting for Mosango,

and during projections for 2021–2023 for Bagata (as described in Antillon et al.,

[46]).

Visualisations for case reporting in the five health zones over time can be found

in the Supporting Information.

Model fitting and evidence

Model fitting of the deterministic baseline (Model 4) and animal (Model 7) variants

has already been presented in previous work [39, 31] (using 2000–2016 data) and [46]

(using 2000–2020 data), however, the asymptomatic model has not previously been

fitted to case data. To directly compare the outcomes of the three model variants we

utilise the same adaptive Metropolis-Hastings random walk Markov chain Monte

Carlo (MCMC) methodology [47] to fit the asymptomatic model (Model 9) to the

same longitudinal case data (2000–2020) for five health zones of the DRC (see

Table 1). However, with the asymptomatic model, we follow an additional step

called sequential Bayesian updating (SBU) after the initial fitting so that we can

share information from health zones that are more informative for this model with
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health zones with less information. Unlike the animal model, where we believe there

should be geographical variation in the extra parameters: the density of non-human

animal hosts and the proportion of tsetse feeds taken on them, the five additional

asymptomatic model parameters should be intrinsic biological variables and not

vary between health zones. Ideally, all health zones would be considered jointly

with some form of spatial structure. However, this would be very computationally

demanding when performed across the whole of the DRC so SBU was chosen as a

more feasible option.

In this approach, we first assess the asymptomatic model fits for the five health

zones and rank the health zones in order of how much the asymptomatic parame-

ter posterior distributions have shifted from their priors. We take the health zone

where we have learnt the most information (have the highest deviation – measured

by the total Kullback-Liebler divergence (DKL) across the five additional asymp-

tomatic model parameters and reorder this to be our first health zone. We then

rank the other four health zones from most to least information learnt using DKL.

After re-ordering we perform refitting. For the health zone with the most informa-

tion, we can keep the original model fit, however starting from the second highest

ranked health zone we first update the five asymptomatic parameter priors to be

a multivariate parametric approximation of the posterior parameter distributions

from the previous model fit, using a Gaussian mixture model (GMM). Each of the

five asymptomatic model-specific parameters was transformed to a (−∞,+∞) scale

and then to have a mean of zero and a standard deviation of one. The GMM was

fitted multiple times to the transformed parameters using the MATLAB routine

fitgmdist with different numbers of Gaussian distributions and Akaike’s Infor-

mation Criterion (AIC) was used to select the final number of components in the

GMM. After re-fitting the second-ranked health zone using the updated prior we

take the new posterior and use this in turn to provide the new prior for the third-

ranked health zone. This process of prior updating and re-fitting continues until we

have an updated fit for the lowest-ranked health zone. A graphical illustration of

this process can be found in Figure 3.

In the MCMC analysis of the baseline and animal transmission models, we ran

two chains resulting in 2,000 sets of posterior samples. To facilitate the sequential

Bayesian updating we ran 5 MCMC chains in the asymptomatic model analyses

to give 5,000 sets of posterior samples, improving the chances of sampling in the

extreme tails of the parameter distributions and consequently incorporating this

information into our multivariate priors.

Following the fitting of all three model variants to the five health zones we use the

model evidence, or marginal likelihood, to compare the fit of the models. Importance

sampled estimates of the model evidence [48] were generated, using a defence mix-

ture [49] consisting of a weighted combination of a multivariate Gaussian mixture

model fitted to all of the posterior samples (weight=0.95) and the prior distribu-

tions of the fitted parameters (weight=0.05) [31]. To create the weighted ensemble

model in each health zone, samples were randomly selected from the individual

model posterior samples in proportion to their relative model evidence to give an

ensemble of 2,000 posterior parameter samples. All of the projected samples asso-

ciated with each of these posteriors from the individual model runs, 10 for each
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Figure 3 An illustration of the sequential Bayesian updating method used to improve the
estimation of the five asymptomatic model parameters. In this example, locations A, B and C
have been analysed to estimate a single parameter. In the first round of analyses, the same prior
(purple lines) was used in each location. Following this analysis the locations were ranked in terms
of how much the posterior distribution (orange lines) diverged from the prior distribution – the
more divergence the more information was in the data – such that the order for re-evaluation was
B then A then C. Location B did not require re-analysis. Location A was analysed with the
posterior for location A acting as the prior. The resulting prior from location A was then used as
the prior in a re-analysis of location C. We can see that the posterior parameter distributions for
locations A and C are now far more like the ones for the informative location B.

posterior set, were taken to produce the ensembled projection results, i.e. 20,000

ensemble realisations.

Model projections

To assess the impact of possible cryptic transmission on future case reporting and

elimination, we utilise the posteriors from fitting the different model variants and

project forwards using the stochastic model version.

Many different strategies may be considered to control gHAT, comprised of passive

screening in fixed health facilities, AS at different levels of coverage, the introduc-

tion of safer, single-dose drugs, and the use of VC. Here we will consider only a

few strategies, all of which assume that present-day passive screening continues to

operate at the same level (see Table 2).

Under each model variant, AS is assumed to be conducted by mobile teams which

attend villages and screen a certain number of people each year. All of our models

have a high-/low-risk structure and assume that only low-risk people participate in

AS. A key difference between the strategies for AS is which algorithm is used. In

MeanAS and MeanAS+VC, the current algorithm based on an initial screening test

(CATT or RDT) followed by parasite confirmation is simulated. This algorithm is

assumed to have a sensitivity of 91% and the specificity is fitted. Whilst this sen-

sitivity is relatively high, some true infections are likely to get missed from AS,

especially if only the low-risk group is repeatedly screened each year. We assume
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Table 2 Strategies considered for forward projections (2024–2050). AS = active screening. S&T =
screen-and-treat. VC = vector control. Our default strategy, MeanAS, represents a “continuation”
strategy based on recent activity in the health zone.

Strategy name Passive
screening

AS coverage AS diagnostic algorithm Vector control‡

MeanAS* Continues at
present levels

Mean of
2016–2020

Parasite confirmation
needed for treatment.
Assumed 91% sensitivity
and 100% specificity†

None

MeanAS + VC Continues at
present levels

Mean of
2016–2020

Parasite confirmation
needed for treatment.
Assumed 91% sensitivity
and 100% specificity†

80% tsetse reduc-
tion after 1 year
starting in 2024

MeanS&T Continues at
present levels

Mean of
2016–2020

Treatment may be given
with positive RDT from
2028. This is assumed
to increase the algorithm
sensitivity to 95% and
decrease specificity to
99.5%.

None

*default strategy
†The active screening diagnostic algorithm specificity is fitted to 2000–2020 data, and is
assumed to increase to 100% from 2015 in Mosango, 2018 in Bagata, and 2024 in the other
health zones simulated.
‡ Vector control began in Bagata in mid-2021 and Mosango had low-level inadvertent benefit
from vector control along shared rivers with a neighbouring health zone from mid-2015. We
assume this stops from 2024 in the MeanAS and MeanS&T strategies.

that 100% specificity is possible to achieve with additional measures in place includ-

ing video confirmation of the parasite via computer tablets which can be validated

by others. We assume this happened in 2018 in the Bandundu Nord and Sud co-

ordinations based on the historical availability of computer tablets for this activity

and would happen elsewhere when case detections are very low (see SI).

The S&T algorithm simulates the treatment of all individuals presenting to screen-

ing with a positive screening test (CATT or RDT). At present this is not possible,

however, it is hoped that the introduction of a single-dose oral cure, acoziborole,

could make this option feasible in the future. In these simulations, we assume that

removing the need for a confirmation test before treatment would lead to higher

sensitivity (95%) but sacrifice specificity (99.5%). This is expected to result in some

“over-treatment” (treatment of false positives) but has the potential to reduce trans-

mission more quickly by treating more of the truly infected individuals. We assume

that post hoc laboratory testing via trypanolysis (or similar) would be performed

after serosuspects are treated and that only laboratory-confirmed infections would

count towards case reporting – this assumption around post hoc confirmation has

no direct impact on transmission in the model, however, could make a large differ-

ence in number of “cases” reported. We also assume that those serosuspects (who

test CATT or RDT positive) but with non-detectable blood parasiteamia would be

equally likely to be confirmed as cases using the highly-specific immune trypanolysis

as those with detectable blood infections.

Under the asymptomatic model, theMeanS&T algorithm is particularly appealing

as it has the potential to detect and enable treatment of skin-only infection where

there is no detectable blood-parasitaemia [50]. Under the standard AS algorithm,

only those with blood infections have a chance of being diagnosed and treated due

to the parasite confirmation criterion. The asymptomatic model still has a high-

/low-risk structure so MeanS&T cannot directly combat high-risk individuals not

presenting to screening.
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Infected people in high-risk groups are assumed to be detected only through pas-

sive screening based on self-presentation after symptoms develop and are severe

enough to seek medical attention. In all models, we assume that late-stage infec-

tions (stage 2) are more likely to be detected than early-stage infections and the

relative detection rate from early and late-stage infections is fitted to the human case

data. We assume that passive case detection rates remain the same even if acozibo-

role becomes available. Under the asymptomatic model, we assume that skin-only

infections have no discernible symptoms that could result in a gHAT diagnosis and

treatment.

In this study, we simulate the introduction of VC through Tiny Targets for strat-

egy MeanAS+VC. We assume that Tiny Targets are deployed twice a year and

achieve an 80% reduction in total tsetse population after one year, which is slightly

more conservative compared to previous reductions observed in the field in several

locations (e.g. >85% in Yasa Bonga health zone in the DRC [51], >90% in Uganda

[52], >99% in the Mandoul focus of Chad [32]), >95% in Côte d’Ivoire [53], and

comparable to the reduction observed in the Boffa focus of Guinea [54]. The de-

tailed model formulation we use can be seen in the Supplementary Information and

is presented elsewhere [39, 55].

For the period 2021–2023 for which we do not have data but has already occurred

we simulate the continuation of the current strategy in all simulations.

By drawing samples from the posterior parameter set for each health zone and for

each model variant, we run each projection strategy from 2024–2053. We run the

model 10 times for each posterior sample, giving a total of 20,000 realisations for

the baseline and animal transmission models and 50,000 realisations for the asymp-

tomatic human transmission model and therefore we incorporate both parameter

and stochastic (chance) uncertainty in our predictions.

We track the number of new human infections occurring each year in the model

and use this to assess when EoT has been met for each iteration. We say that EoT

has been met when 10 consecutive years with no new human infections are produced

in the iteration and so can assess the probability of EoT up until 2040. This method

was previously used to assess the likelihood that EoT had been or would be met

in three health zones of the Equateur Nord coordination (Budjala, Bominenge and

Mbaya) using the baseline model elsewhere [56].

Across all three models and all five health zones under the continuation strategy,

we found that 99.95% of simulations which had the last year of transmission between

2000 and 2040 achieved elimination of infection within 13 years of reaching EoT.

This being all realisations under the baseline and animal models, and 99.91% under

the asymptomatic model. For simulations of the asymptomatic model that achieved

elimination of infection under the continuation strategy, the average time between

the last year of transmission and elimination of infection was 4.03 years (95% PI: 0–

14 years), with the delay being less than or equal to 13 years in 97.4% of realisations.

For the baseline and animal models, the means were 1.50 (95% PI: 0–4 years) and

1.33 years (95% PI: 0–4 years). Therefore, we believe that using the last year of

transmission in our simulations as the EoT year is reasonable even for EoT in 2040.

This approach is a little different to the modelled cut-off for EoT presented in

Castano et al., [41] which used the first year after which there were five consecutive
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years of no transmission as the metric of EoT in the simulations; this approach

in Castano et al. will slightly overestimate EoT probabilities. The approach in the

present study will give more accurate probabilities, especially for the earlier years

but there is a very marginal bias in the later years towards overestimated EoT

probabilities.

Results
Model fitting

The model captures the different trends in case reporting well across the 21 years

despite the qualitative differences between health zones (see Figure 4 and SI Figures

13–17). All model variant fits to the data look very similar and, visually, there are

no obviously better or worse fits for each health zone. The main difference we see

is the difference in the number of new annual human infections with slightly higher

credible intervals for the asymptomatic model compared to the baseline model or

model with animal transmission. We use the relative model evidence to assess sup-

port for the different models, despite their apparent similarity. Figure 5 shows the

results of this for the five different health zones. We notice that (a) all models have

<13% support for the animal model, (b) Mosango, Budjala, Bagata and Mbaya all

have somewhat similar support for the asymptomatic and baseline models, and (c)

Bominenge, the most informative health zone for the asymptomatic model based on

DKL, has almost all of its support for the baseline model. Despite the inconclusive

nature of this model evidence analysis, by looking at the five asymptomatic model-

specific parameter posteriors for each health zone (see SI Figures 8–12) we notice

that some of them pull away from the prior in the direction that means less contri-

bution from asymptomatics to transmission (i.e. lower relative infectiousness (x),

higher probability of developing blood infection (pbs) and higher rate of self-cure

from skin-only infection (ωs
H)).

In our initial fit of the asymptomatic model, we found that, whilst in some health

zones the additional five asymptomatic posteriors pulled away from the priors in

a direction indicating smaller contributions from asymptomatics to transmission

than our initial belief (lower relative transmissibility, quicker self-cure rates and

a higher probability of being a blood-detectable infection), for other health zones

the asymptomatic model parameter posteriors followed the priors more closely –

meaning little information had been learnt about them during fitting (see SI Fig-

ure 7). By ranking the health zones based on the total Kullback-Liebler divergence

of posterior distributions from prior distributions for the five parameters specific to

the asymptomatic model (see SI Table 3) and then refitting using SBU we passed

some of the information present in Bominenge’s data, and sequentially in other

health zones, down to the least informative health zones (Bagata and Mbaya) and

this meant that the SBU posteriors for Bagata and Mbaya no longer followed the

original prior closely, see SI figures 8–13. There was little information in any of

the data sets on the transition rate from skin infections to blood infections (θ) and

the self-curing rate in blood infections (ωb
H), the posterior distributions for these

parameters very closely followed the prior distributions in all health zones and all

analyses, before and with SBU.
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Figure 4 Comparison of fits in Mosango. The deterministic model was used to perform fitting
and sampling was conducted by using the stochastic model with the fitted posterior distributions.
Blue, pink and green box and whisker plots show the baseline model, model with animal
transmission and asymptomatic model fits respectively. The orange boxes represent the ensemble
model outputs. The central line of each box is the median, the box is the 50% credible interval
(CI) and the whiskers show the 95% CI. Case data are shown as a black line. New infections are
estimated through the model fit, however, there is no way to directly observe this so there are no
corresponding observational data.
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Model evidence and ensemble model outputs

The model evidence for each model was converted into relative model evidence

values, such that the within-health zone sum of the model evidence was 100, and

then used principally in two ways: to compare the statistical support for each model

in each health zone and to produce an ensemble model. The calculation of the

relative model evidence assumes equal prior weight on each of the three models, in

which case our ensemble model is a Bayesian model average. The relative model

evidence is presented as a ternary plot in Figure 5. Alternatively, the log model

evidence can be summed across health zones within a model before normalising to

give an across-health zone relative posterior probability of each model. These values

are 99.9%, 0.002% and 0.126% for the baseline, animal and asymptomatic human

transmission models.

Given the similarity of the individual model fits to the historical data, the en-

semble model’s case reporting during the fitted period is also very similar to the

individual model outcomes whereas the estimated new infections lie between the

baseline and asymptomatic model in most health zones (see Figure 4 and SI Fig-

ures 13–17).
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Figure 5 Ternary plot of relative evidence from the three models. The model evidence for the
baseline model and the models including animals or asymptomatic human infections contributing
to transmission are scaled such that the sum is 100%. These three values are transformed and
plotted on an equilateral triangle with edges forming the axis for each model. To read off the
relative support for one model variant pick the axis for that model and trace the corresponding
coloured line back to the point; e.g. for Bominenge (circle), there is 4% support for the animal
model (this is sitting on the animal axis), 0% support for the asymptomatic model and 96%
support for the baseline model. For Bagata (cross) there are 12%, 49% and 38% for the animal,
asymptomatic and baseline models respectively.
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Model projections under a continuation strategy (MeanAS)

Next, we used our model projections under a continuation strategy (MeanAS) to

assess how the use of the different model variants affects the model predictions.

Comparing the case reporting of the three model variants for 2021–2035 from the

stochastic model (see Figure 6 and SI Figures 18–32) shows that they all overlap,

however, there are some noticeable differences for the three models.

The differences in 2021–2035 are very small in all health zones although Bagata

and Mosango are expected to have marginally higher case reporting under the an-

imal and asymptomatic model variants. The differences in estimated new human

infections are also most visible in Bagata and Mosango, but this is not so clear in

the other health zones.

It is clear that for Mosango, the baseline model produced the most optimistic

probability of EoT by 2030 (96%), followed by the model with animal transmission

(90%) and finally the asymptomatic model is the least optimistic (84%) (Figure 7.

Bominenge and Budjala also have the asymptomatic model as the most pessimistic

but with no difference between the baseline and animal models, whereas Bagata and

Mbaya have the animal model as being more pessimistic than the asymptomatic

model (see SI Figure 33).

Unsurprisingly, Bagata, which is one of the health zones classified as high riskbased

on 2011–2015 reporting, has lower probabilities of EoT (all model variants are under

93% by 2030 for the MeanAS strategy. Mosango (the other high riskhealth zone)

has around 96% probability of EoT by 2030 under the baseline model, whereas

the health zones classified as moderate or low riskfor 2011–2015 all have a high

probability of EoT (around 99%) under the baseline model for the same MeanAS

strategy.

Model projections under other strategies

In line with previously published work, the addition of VC through relatively rapid

and high levels of tsetse reduction has a dramatic impact in turn on new infections

to humans (Figure 7 and SI Figure 33). In all model variants, we predict that the

simulated 80% reduction of tsetse would quickly curtail transmission via all possible

hosts, including putative non-human animals and/or asymptomatic humans. This

intense intervention may not be needed in all settings, however, it may prove a

powerful tool in regions of persistent transmission, whatever the cause.

This is the first time the Warwick gHAT model variants have been used to predict

the impact of an S&T strategy on infection dynamics. Figure 7 shows how the

outcome may be more noticeable for the asymptomatic model compared to the other

variants. In the baseline model and the model with animal transmission, MeanS&T

does little to the projected probability of EoT. The main difference betweenMeanAS

andMeanS&T in those models is the slight improvement to AS algorithm sensitivity

(91% to 95%), however, the model assumption that high-risk people still do not

present in AS overwhelms this small improvement. In contrast, in the asymptomatic

model, the change to S&T also allows for the treatment of infections which are not

detectable in the blood and would not have met the confirmation threshold in

current AS algorithms. For Bominenge, Budjala and Mbaya, it is predicted that

there is already a high probability that the health zone has achieved EoT in the

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2024.03.19.24304554doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.19.24304554
http://creativecommons.org/licenses/by/4.0/


Crump et al. Page 16 of 23

C
o
n
fir

m
e

d
 c

a
s

e
s

T
re

a
tm

e
n
ts

N
e

w
 h

u
m

a
n

in
fe

c
ti

o
n
s

0

5

10

15

20

2020 2025 2030 2035

0

5

10

15

20

2020 2025 2030 2035

0

3

6

9

2020 2025 2030 2035

Modelled: Baseline Animals Asymptomatics Ensemble

Figure 6 Projected dynamics in Mosango health zone in Bandundu Sud coordination under
Mean active screening strategy. Comparing three model variants using the stochastic model
including projections for 2021–2035 under a MeanAS strategy (using AS coverage for Mosango
from 2016–2020). Blue, pink, green and orange box and whisker plots show the baseline model,
model with animal transmission, asymptomatic model and ensemble model projections
respectively. The central line of each box is the median, the box is the 50% prediction interval
(PI) and the whiskers show the 95% PI.

simulations when S&T begins in 2028 so we don’t see an impact of this novel

screening approach (see SI Figure 33).

Discussion

In this study, we have fitted a gHAT model with asymptomatic transmission to data

from the DRC for the first time and compared it to models without asymptomatic

and with or without animal transmission. Using human case data from five health

zones of the DRC from 2000––2020 we have concluded that there is minimal statis-

tical evidence for animal transmission in these locations, however, when we create

our ensemble model for these five health zones there is between 0% (in Bominenge)

and 49% (in Bagata) of these samples selected from the model with asymptomatic

transmission. By using sequential Bayesian updating to learn information about

asymptomatic parameters between different health zones, our results indicate that

whilst the model results with asymptomatics are more pessimistic about the elim-

ination of transmission compared to the baseline model with continued medical
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Figure 7 Comparing the probability of EoT in Mosango health zone, under each model variant
and three different strategies. The blue, pink and green curves represent the model-estimated
probability of EoT by each year, calculated by taking the number of realisations where there are
no new infections to humans in or after that year until the end of the simulation and diving by the
total number of realisations (20,000 for the baseline and animal models and 50,000 for the
asymptomatic model) The ensemble results are given by the orange curve which is computed as
the weighted average of the probability of EoT from the individual model variants. As per Table 2,
for the second strategy with vector control (VC), we assume this novel intervention begins in
2024, and for the third strategy using screen-and-treat (S&T) we assume this novel intervention
begins in 2028.

strategies, the probability of elimination by 2030 in each location is only a little

lower.

The relative posterior probability of the models highly favours the baseline model

(99.9% probability). This is, of course, dependent on both our choice of health zones

and our small set of models (even within the scope of this study we rejected the

alternative model in which the asymptomatic parameters vary between locations).

There may be alternative models that better represent disease transmission, and

the results may vary in other locations (the current result is heavily influenced by

the outcome in Bominenge health zone) if there are informative locations that give

more support to the animal or symptomatic human transmission models.

The ensemble model represents appropriately weighted results taking account of

uncertainty about which model to favour appropriately. The use of an ensemble

model here makes our outcomes slightly more pessimistic compared to the baseline

model. Fortunately, this appears to suggest the worst-case scenario of the asymp-

tomatic model having a lower endemic equilibrium but being prevented from reach-

ing zero cases, discussed in previous modelling work by Aliee et al. [34] through a

model sensitivity analysis, does not appear to be the case in these regions of the

DRC and the impact of asymptomatic transmission is to slightly delay elimination

rather than prevent it. Furthermore, as we believe the asymptomatic model pa-

rameters will be the same across the DRC since they relate to the parasite-human

interaction and are not dependent on the local geography, this modelling indicates

that we should expect qualitatively similar results across health zones for the DRC

with the asymptomatic model if we can assume that the most informative health

zones will continue to be those that do not favour the asymptomatic model.

In future work, we suggest that this model could be used for fitting in other loca-

tions in the DRC and for other endemic countries to capture this possible hindrance

to interventions happening across these settings targeted at elimination. It could

be that human-parasite interactions in West Africa are sufficiently different that
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these relatively optimistic results will not extrapolate to countries like Guinea or

Côte d’Ivoire. More region-specific data on asymptomatic and skin infections like

that collected in Guinea [50] could improve our priors on some fitted parameters

and would supplement routinely collected case data.

Model assumptions

The model presented here was fitted to health zone level data, where we assumed

independence between neighbouring health zones. Whilst there could be some move-

ment of people and therefore cross-infection between different locations, we believe

this effect to be very small. Previously a small between-village importation rate

was estimated for gHAT in the DRC [43] and we would expect movement to reduce

further for larger spatial scales. Ideally, this model could be used at the health area

level (around 10,000 people) to provide more targeted predictions on a similar scale

to intervention planning by the national programme. Recent work has demonstrated

that the baseline model framework presented here would be suitable for use with

health area fitting [42].

It is noted that in the previous model fitting and comparison of the baseline and

animal transmission models (but with fewer years of data), Mbaya health zone had

strong support for animal transmission, and Bagata had weak support for animal

transmission. Budjala, Bominenge and Mosango had substantial or strong support

for the model without animal transmission [31]. It is unclear whether previous sup-

port for the animal model variant will correlate with support for the asymptomatic

model variant, however, it is possible that in these health zones case reporting has

not fallen as much as would be expected and one explanation is cryptic transmission

by either undetected (or even undetectable) human infections or by animals.

The present study does not aim to make specific policy recommendations, but to

explore structural, parameter and stochastic uncertainty for a variety of settings in

the highest-burden country for gHAT (see SI Table 4 for details on the ways this

research meets the Policy-relevant items for reporting models in epidemiology of

neglected tropical diseases (NTD-PRIME) [57]). Future strategies are selected for

illustration of the general potential impact on reporting and new infections. To use

this framework for guiding policy, the fitting would need to be performed for all

health zones (or health areas) using the latest available data.

Interventions

We have assumed that S&T will become possible from 2028, however, in practice,

we do not yet know if and when acoziborole will be able to be rolled out in such

a manner. Our results here are illustrative of the type of effect we might expect

to see across different regions with this type of intervention. Even after acoziborole

is rolled out, it is possible that some groups in the population (e.g. infants and

pregnant people) may still require parasitological confirmation before treatment.

Conversely, we did not explicitly simulate S&T in passive screening in this analysis,

but this intervention could reduce attribution between initial screening and receiving

treatment and consequently, it could improve passive detection rates.

As routine data on skin infections is not collected, we have a large amount of

uncertainty about how good the CATT and RDTs are at detecting skin infections
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(sensitivity), although data from Guinea suggest there is very good correspondence

between RDTs and confirmed skin infections [50]. More data on this link could

improve our assumptions which are currently that the screening test sensitivity is

the same for both skin-only and blood-detectable infections.

VC interventions target transmission to and from all host types and could be

particularly effective at reducing transmission if there are animal contributions or

asymptomatic human infections. However, widespread VC is infeasible over a short

time period. Health zones like Bagata could conceivably add VC to their strat-

egy as other nearby health zones have recently put this in place, but the extra

resources (both financial and for trained personnel) are non-negligible for this kind

of scale-up. Currently, there are no health zones in Equateur Nord coordination

province with large-scale VC in place. It may not represent a cost-effective use of

resources to deploy Tiny Targets in very low-burden settings in terms of $/DALY

given the opportunity costs (i.e. the DALYs that could be averted by spending on

other higher-burden health zones or other diseases) [58]. As with many diseases at

the end game, pushing to zero is likely to represent fairly large costs for minimal

DALY reduction, but has the advantage of being able to (eventually) scale back

programmes in the long term. The cost-effectiveness of EoT is a complex issue [59].

Recently the Food and Agriculture Organization of the United Nations (FAO) and

WHO convened an expert meeting on VC against gHAT and concluded that more

criteria and approaches are needed to prioritise regions for VC [60]; we hope that

the present study and other modelling and health economic analyses can support

this aim through quantification of benefits and costs in different locations.

In the present study, we have simulated “continue forever” strategies but we will

need a cessation of vertical interventions at some point – particularly we need

a confirmation method if switching to S&T strategy as otherwise we will have

false positive reporting forever with high screening coverage. Our group’s other

work which is designed to support specific decision making does factor in cessation

[58, 46], however, this was not the focus of this analysis.

Conclusion
Whilst recent evidence suggests that some people can harbour gambiense try-

panosomes in the skin and have undetectable blood parasitemia, the modelling work

presented here suggests that such infections do not play a large role in transmission,

if any. We cannot rule out some level of asymptomatic transmission but we expect

the impact of this on elimination targets to be relatively small. Likewise, there is

some small predicted delay to elimination if we simulate animal transmission in the

model, however, in these five health zones of the DRC, it appears relatively unlikely

that non-human animals are contributing to transmission.

If there is some asymptomatic transmission, a screen-and-treat strategy with a

safer new drug would be expected to be more beneficial compared to if there is

no asymptomatic transmission. For infections arising from asymptomatics, non-

human animals or people not participating in screening, vector control could help

to reduce transmission quickly although it should be coupled with suitable detection

and treatment and will not be necessary in all settings.
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