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ABSTRACT

Substantial advances in multi-modal Artificial Intelligence (AI) facilitate the combination of di-
verse medical modalities to achieve holistic health assessments. We present COMPRER , a novel
multi-modal, multi-objective pretraining framework which enhances medical-image representation,
diagnostic inferences, and prognosis of diseases. COMPRER employs a multi-objective training
framework, where each objective introduces distinct knowledge to the model. This includes a multi-
modal loss that consolidates information across different imaging modalities; A temporal loss that
imparts the ability to discern patterns over time; Medical-measure prediction adds appropriate medical
insights; Lastly, reconstruction loss ensures the integrity of image structure within the latent space.
Despite the concern that multiple objectives could weaken task performance, our findings show that
this combination actually boosts outcomes on certain tasks. Here, we apply this framework to both
fundus images and carotid ultrasound, and validate our downstream tasks capabilities by predicting
both current and future cardiovascular conditions. COMPRER achieved higher Area Under the Curve
(AUC) scores in evaluating medical conditions compared to existing models on held-out data. On the
Out-of-distribution (OOD) UK-Biobank dataset COMPRER maintains favorable performance over
well-established models with more parameters, even though these models were trained on 75X more
data than COMPRER. In addition, to better assess our model’s performance in contrastive learning,
we introduce a novel evaluation metric, providing deeper understanding of the effectiveness of the
latent space pairing.

1 Background

The evolution of Al within healthcare is promoting an era of precision medicine, marked by enhanced diagnostic
accuracy, improved prognostic evaluations, and personalized treatment strategies (Bajwa et al.| [2021}; |[Esteva et al.,
2019), where deep learning is increasingly central to medical imaging analysis (Huang et al., 2023)). Technologies such
as fundus imaging and carotid ultrasound are pivotal in cardiovascular health assessments, granting insights into micro
and macrovascular structures and pathologies (Poplin et al., 2018}; |Spence}, [2006). Fundus imaging, a non-invasive
procedure, reveals the retinal microvasculature and is used to detect early manifestations of diseases like diabetes and
hypertension (Dai et al., [2021; Yan et al.,[2019). Such microvascular changes are significant indicators of systemic
conditions, enabling broader health monitoring. Carotid ultrasound complements fundus imaging by providing a
structural assessment of the carotid arteries, crucial for identifying risks of stroke and atherosclerosis through blood flow
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Figure 1: Schematic representation of COMPRER, our Contrastive Multi-objective Pretraining approach for Multi-
modal Representation. We utilize ViT-Base encoders equipped with DINOV?2 pre-trained weights for processing each
imaging modality, accompanied by a linear projection head. Our method is defined by a combination of multiple loss
objectives: (1) an ID-centric multi-modal contrastive loss that bridges features between fundus images and carotid
ultrasound images; (2) a patient visit-based contrastive loss that discerns temporal discrepancies across repeat visits for
each patient; (3) a contrastive scheme for the bilateral fundus images to ensure coupling of right and left eye data per
patient; (4) a decoding objective to restore original images from condensed latent representations; and (5) a predictive
mechanism to estimate general medical measures directly from modality-specific embeddings.

dynamics and plaque visualization (Yu et al, 2021}, [Siontis et al.| 2021). The integration of both the fundus imaging,
and carotid ultrasound modalities, offers a comprehensive representation of cardiovascular health, capitalizing on their
individual strengths to assess conditions at various scales of the vascular system. However, the full potential of Al in
medical imaging is challenged by the limited availability of large, annotated datasets necessary for traditional supervised
learning 2023). This dataset scarcity is addressed by initiatives such as the Human Phenotype Project
(HPP), which embraces a multi-modal deep-phenotyping approach, capturing a vast range of data modalities, from
high-resolution images to comprehensive clinico-pathological records 2021). Such datasets are ideal for
investigating and improving Al models that surpass existing boundaries in medical diagnostic capabilities. (Moor et al.|
2023). To overcome these limitations self-supervised learning (SSL) has become a key tool in this field. (Huang et al.
2023)). SSL circumvents the need for extensive labeled datasets by utilizing the data itself to derive informative features
through the resolution of proxy tasks. It enables the extraction of significant patterns intrinsic to the data, fostering a
model’s ability to generalize robustly to unseen data (Grill et al.} 2020} [Chen et al} [2020). SSL with multi-modal data
are particularly potent, with each modality enhancing the model’s capabilities and utility across various health signals
(Radhakrishnan et al., 2023).
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2 Introduction

In this paper, we present COMPRER (COntrastive Multi-objective PREtraining for multi-modal Representation), a
multi-modal, multi-objective pretraining framework that can be used in numerous downstream tasks and applications
through the analysis of fundus imaging and carotid ultrasound. These include: diagnosing current patient diseases,
predicting clinically significant medical features, and prognosing the probability of developing a medical condition in the
future. As seen in Figure 1, COMPRER using a multi-modal approach, where it integrates distinct but complementary
data sources— fundus imaging and carotid ultrasound imaging. Each modality offers a unique glimpse into the
cardiovascular health of patients, capturing a diverse array of medical measures that, when combined, provide a
comprehensive assessment framework. Our framework leverages ViTs (Dosovitskiy et al.l [2020), specifically the
DINOV2-Base pre-trained model (Oquab et al., 2023)), as our architectural backbone, augmented by a multi-objective
learning strategy that incorporates reconstruction via an image decoder, predictive heads, and contrastive learning
losses.

2.1 COMPRER Training Objectives

In this section, we describe the training objectives utilized for our model. Our approach employs paired batches of
fundus images and carotid ultrasound images to learn a joint embedding space, inspired by the CLIP training paradigm
(Radford et al.| 2021)). This multimodal training maximizes the similarity of embeddings from matching image pairs
and minimizes it for non-matching pairs within a batch.

The contrastive loss function specific to a set of two embeddings types u and v is defined as:

exp (sim(t-’b—i,m) )

Z;\]:l eXp (Sim(’l:—i,vj))

. T . . . . .
where sim(u, v) = m and N is the batch size. The contrastive loss is as in CLIP:

ﬁcontr_CLIP (’U,, U) = % (Lcontr(u7 U) + Ecnntr(v7 u))
Several contrastive losses based on the relationship between the embeddings compared: For fundus (f) and carotid (c)
image embeddingS: ﬁcontr_fc = Lcontr_CLIP(.ﬁ C).

1 N
»Ccontr(uv U) = Z 1Og
N =1

For fundus images across different visits ¢ and ' Leoni tv = Leoner cuip(f, 1)

For carotid images over time ¢ and ¢: Leontr ov = Leone cLp(c?, ¢! )

For right (R) and left (L) eye fundus images: Leont eye = Leoner_cLip(f EfLy

Predictive accuracy for fundus and carotid embeddings is assessed with Mean Squared Error (MSE) losses:

N

. 1 .
Epred(m:m) = N Z(mz - mi)2

i=1

Yielding Lpreq  for fundus with N = N,., and Lpq ¢ for carotid with N = N, with their respective medical
measurements predictions. Finally, the total loss £ combines individual contrastive and predictive components:

L= Ecomr_fc + Lcontr_fv + Ecomr_cv + ‘Ccontr_eye + Epred_r + Epred_c:

2.2 Model Summary and Key Contributions

We evaluate COMPRER through validation across individual learning objectives and demonstrate its capabilities
not only in extracting meaningful representations but also in projecting these representations into actionable clinical
insights. Notably, we show that our multi-objective framework results in enhanced diagnostic and prognostic accuracy.
Moreover, the model’s ability to outperform not only a baseline pretrained DINOV?2 but also dedicated models with
substantial advantages in terms of parameters and data scale demonstrates the efficacy of our approach. In conclusion,
our contributions are:

1. We introduce COMPRER, a novel deep learning framework that leverages multi-modal, multi-objective
pretraining to forecast and predict the development of future diseases from medical imaging data.

2. We provide evidence for the efficacy of our modeling approach through an internal validation scheme, showing
that our embeddings are capable of predicting medical measures with high R? scores.
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3. We introduce a novel, understandable metric for assessing the performance of contrastive learning, offering an
approach to measure the quality of embeddings in identifying correct image pairs across different modalities.

4. We substantiate the translational value of our model through its application in predicting cardiovascular health
conditions, in both our cohort as well as in external cohorts.

3 Related Work

The combination of Al with healthcare represents a significant shift toward redefining clinical methodology and patient
care. At the heart of this transformation, deep learning, particularly through convolutional neural networks (CNNs),
has played a pivotal role in enhancing medical diagnostics. CNNs have demonstrated their efficacy in detection and
classification tasks across a range of medical imaging modalities, including dermatology (Kwasigroch et al., [2020),
radiology (Tiu et al., 2022} Jaiswal et al., |2019), and neuroradiology (Pereira et al., 2016). The profound pattern
recognition capabilities of CNNs have thus become instrumental in medical image interpretation. Recently, the success
of SSL methods, such as SimCLR (Chen et al.,|[2020) and BYOL (Grill et al., 2020), has redirected the focus from
supervised learning reliant on extensive labeled datasets to SSL in extracting features from unlabeled data (Huang et al.}
2023). SSL’s resilience to dataset imbalances (Liu et al.| 2021) particularly proves its adaptability in medical contexts,
making it a cornerstone for foundation models, designed for broad application across multiple tasks (Bommasani et al.}
20215 Moor et al.,2023). Zhou et al. (Zhou et al.| 2023) exemplified this adaptability in a self-supervised masking
strategy applied to a vast array of unlabeled fundus images, yielding a foundation model with an ability to perform
disease detection across multiple scenarios. The breakthrough with OpenAI’s Contrastive Language-Image Pretraining
(CLIP) system has provided a novel perspective on utilizing versatile architectures, specifically transformers (Vaswani
et al.| |2017), for a wide range of modalities (Radford et al.,|2021; Ramesh et al., 2022, 2021}; |Brown et al.| [2020).
CLIP’s revolutionary approach to interpreting images through a natural language lens has revealed the potential of
transformer architectures to tokenize and process multimodal data efficiently. Our COMPRER framework adopts a
similar stance, leveraging the transformer architecture for both image encoders in a contrastive mechanism to align
information across medical imaging types. The methodology rooted in CLIP’s cross-modal learning inspired both the
multi-visit and multi-modal contrastive losses of COMPRER, allowing it to not only decode spatial characteristics but
also trace temporal patterns indicative of disease progression. In the era of multimodal data, significant strides have
been made in cross-modal representations (Radhakrishnan et al.l 2023)) and feature extraction (Holmberg et al.| 2020),
revealing the intersecting pathways of SSL and multimodal methodologies. Complementing this trend are ViTs, which
have remodeled the Al landscape with their extraordinary image processing capabilities (Dosovitskiy et al., |2020) and
interpretability (Chefer et al.| 2020). The advent of multi-task learning frameworks further amplifies these models’
ability to assimilate diverse data and objectives, showcasing their robustness across a spectrum of tasks relevant to
cardiovascular health analytics (Ruder}, |2017; |Crawshaw), [2020).

4 Methodology

In our study, we present a multimodal, multi-objective deep learning architecture designed to create a versatile
pretrained model suitable for a wide range of health-related tasks. This architecture can generate adaptable embeddings
for predicting a multitude of medical features or be fine-tuned for diverse medical applications. The model achieves this
through the analysis of both fundus images and carotid ultrasounds. This part delves into the intricacies of our approach,
which capitalizes on the robust capabilities of ViTs. Initially, we assembled a dataset encompassing approximately
11.5K participants’ fundus and carotid ultrasound images, of which 1.5K have returned for a follow-up visit after two
years. The dataset is divided into training (80% of data), validation (validation is 20% of the training set), and test sets
(20% of the data), with the latter consisting solely of new participants arriving after the start of this research to ensure
the integrity of our evaluation. Our preprocessing protocols ensure high-quality, artifact-free images using AutoMorph
(Zhou et al.,2022)) for fundus images and custom preprocessing to isolate relevant regions in carotid ultrasounds. Both
image types are standardized to a resolution of 280x280 pixels, facilitating uniform processing where even grayscale
ultrasound images are converted to three-channel format to align with the fundus images. The structural backbone of our
model derives from the pretrained DINOV2-Base ViT, a vision transformer by Meta that has shown great performance
in image representation tasks, as well as multiple vision downstream tasks (Caron et al., 2021} /Oquab et al., 2023). As
DINOV?2 was trained on millions of images, we can capitalize on its extensive pretrained ability to represent image
datasets and we can fine-tune it to our unique medical imaging context for enhanced efficiency. To complement the ViT,
a linear projection head condenses high-dimensional embeddings to a more manageable state, serving a dual purpose:
reducing computational demands and assisting with stability and shown to be essential by [Balestriero et al.| (2023). A
transposed convolution neural network, comprising of transposed convolutional layers with gaussian error linear unit
(GELU) activations, reconstructs the original images from latent embeddings, introducing a regularization effect that
underpins the self-supervised learning within our framework. Lastly, a small 2-layer Multi-Layer Perceptron (MLP) is
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added to predict medical measures from the latent space embeddings. To train the model we use multiple different
optimization objectives simultaneously. These include the multimodal and multi-visit contrastive losses used as shown
in CLIP by OpenAl (Radford et al.l |2021), which fortify the model’s time-awareness and cross-modality inference
capabilities. A classic mean squared error (MSE) decoder loss ensures fidelity in image reconstruction, and another
MSE loss is applied when predicting medical measures from the embeddings. We trained the model over four days,
distributed across 8 NVIDIA A40 GPUs. We trained with an AdamW optimizer, with learning of 3 x 10~* and weight
decay of 0.5 with a StepLR scheduler, and a batch size of 9 per GPU. We found that the model does not overfit the train
set in this time period, but due to limited resources we chose to run for only 4 days (even though the model might not
have saturated the training set during this period). Addressing missing data, we introduce four parallel data loaders
that guarantee optimal usage of the available data by including every sample where possible in the training, even when
dealing with missing modalities or visit data. During training, we employ the validation set to discern the model’s
evolving accuracy. To evaluate performance on the validation set, we used different metrics for the different losses
we employed. For the medical measures task, we relied on the R? to gauge the medical measure predictions from
latent embeddings. For the decoding task, we relied on the decreasing MSE loss, as well as human evaluation of the
resulting reconstructions. To evaluate the contrastive learning performance, we have crafted a novel metric, assessing
the proximity of paired image embeddings and optionally adjusting for random chance, thus providing an intuitive
measure of the model’s learning. Essentially, by viewing the contrastive task as a classification task, we can view this
metric as top-K accuracy.

Algorithm 1 Top-K Metrics for Contrastive Learning

procedure TOPK(sim_mat, k)
correct < 0
for i = 0 to |sim_mat| :
if index ¢ in top-k similar items then
correct < correct + 1
return correct / |sim_mat|

kVals « [5,25,100,.. ]
emb;, emb; < embeddings
norm; < 12_normalize(emb; )
norm; <— 12_normalize(emb;)
cosSimMat < norm; - norm]

for k € kVals ’
rand_base < k / |cosSimMat|
metricScore < TOPK(cosSimMat, k)
angleTopK < metricScore
multAngle K <+ metricScore/randBase

In contrastive learning, the central goal is to learn representations such that similar or "paired" samples are brought
closer together in the embedding space, while dissimilar samples are pushed apart. As we deal with batches of N
samples, we inherently face an N-way classification problem during training. Achieving perfect performance is often
challenging, and a binary assessment of model proficiency via top-1 prediction accuracy may not sufficiently capture the
nuances in the embeddings the model has learned. In practice, it may appear that the model is underperforming when,
in fact, it has developed a representation where correct matches are amongst the nearest neighbors, not necessarily
the immediate first. By introducing a Top-K metric (Algorithm 1) specifically tailored for contrastive learning, we
extend the single-label evaluation to a multi-neighbor perspective, which is analogous to considering a set of K nearest
neighbors in the embedding space. Selecting different values of K enables us to explore the depth of the model’s
understanding of data relationships. Lower values of K can indicate fine-grained discriminatory power, while larger
values suggest a broader comprehension of sample similarity. Furthermore, by adjusting for random chance in our
metric — by dividing the raw Top-K score by the expected score under random matching — we gain insight into how
much more effectively our model is at reconciling these pairs compared to a trivial random embedding model. Notably,
this also allows us to use our hardware efficiently, as to avoid evaluating our model directly using the downstream tasks,
we can evaluate the contrastive task performance at pretraining time.
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Figure 2: Interval Validation, 2.A (left panel). Prediction accuracy of various medical measures over iterative steps.
This figure illustrates the test R? values achieved during the training of predictive models for four different medical
measures: fractal dimension, age, vessel density, and artery average width. The x-axis is the training steps iterations (in
tens of thousands), while the y-axis indicates the R? value observed on held-out test data. 2.B (right panel). Evolution
of Top-K Test Accuracy in Contrastive Learning for Multimodal Image Matching. This figure depicts the test accuracy
of a contrastive learning model for two different values of k: 25 and 100, as labeled Top-25 (orange line) and Top-100
(blue line), respectively. The x-axis is, again, training steps iterations, and the y-axis denotes the Top-K Test Accuracy.
The Top-100 accuracy increases as training goes on, reaching top performance of 0.65. Similarly, the Top-25 accuracy
ends around 0.35.

5 Results

5.1 Internal Validation

Our exploration of COMPRER’s results began with internal validation metrics. Interval validation metrics are composed
of metrics that validate the pretraining phase of our model with multiple objectives. For each one of these objectives,
we report their score on a held-out test set.

5.1.1 Medical Measures Prediction

To evaluate the generalization capabilities of the medical measures prediction head of COMPRER, we engaged in
predicting measures from the test set that have direct clinical applicability. Among the predicted medical measurements
were age, fundus image fractal dimension, vessel density, and artery average width. Predicting age from fundus images
is particularly intriguing, as it suggests a correlation between ocular characteristics and biological aging, which can have
various medical implications (Ahadi et al.,|2023). The Fundus Image Fractal Dimension is a measure of the complexity
and branching patterns of the retinal vasculature, indicative of overall vascular health(Dinesen et al.| [2021; Macgillivray;
et al.,[2007) . Vessel Density refers to the proportion of the retina occupied by blood vessels, a crucial factor in assessing
retinal and systemic circulatory health. Artery Average Width provides insights into vascular caliber, important for
understanding cardiovascular risks. The ability to predict these measures from fundus images is noteworthy, indicating
that our model retains spatial understanding of the images despite the multiple objectives enforced on this image
representation. As detailed in Figure 2, the generalization performance, quantified by R? score — showed differing
degrees of success across the medical measures. An R? score of approximately 0.6 was observed for most medical
measures, indicating a meaningful predictive relationship between the learned representations and the clinical measures.
However, the prediction for Artery Average Width presented a lower R? score of around 0.3, signifying a less robust
prediction capability, or a harder prediction task.

5.1.2 Evaluation of Contrastive Learning

A critical component of the COMPRER framework is the multimodal contrastive loss, which plays a pivotal role in
aligning features across distinct imaging modalities—namely, fundus and carotid ultrasound images. In fact, in the
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whole multiple objective framework, this loss is the only connection between the two distinct image encoders. To
measure the effectiveness of contrastive learning, we devised a scaleless, interpretable metric that provides a concrete
understanding of model performance. While the loss term itself provides an indication of model learning during training,
it lacks direct translatability to practical outcomes. In Figure 3.a, we show the Top-K test accuracy of k € [5, 25, 100],
and in Figure 3.b we show the same plot for the multiplicative metric, which highlights the model getting better than
random performance. The plots show the metric as calculated from algorithm 1. The model exhibited non-trivial,
non-random results in the multimodal matching task, which is notable considering the inherent challenge of this problem
- one that even skilled clinicians do not typically address. As part of our experimental setup, we developed an ablation
model, the Multi-Modal Contrastive Learning (MMCL) model, which was trained on the same data as COMPRER.
Unlike COMPRER, MMCL was trained using a single objective with pretraining - focusing exclusively on multi-modal
contrastive learning. This approach allowed us to evaluate the impact of the other objectives on our main model’s
performance. Interestingly, the COMPRER model outperforms the Multi-Modal Contrastive Learning (MMCL) model,
which has trained on the same data, with only the multi-modal contrastive loss, in multimodal matching accuracy,
emphasizing the advantage of a multiple objective training strategy. In figure 3.b we see that all start off with random

COMPRER vs MMCL in Contrastive Learning Top-K Metric

14 { === COMPRER (Our)
MMCL
Top 100

== Top 25

Top 5 /\/

Mult Top-K

Training Steps Training Steps

Figure 3: Comparative Analysis of Top-K Contrastive Metric on COMPRER and MMCL. We see in green, purple,
and red the Top-100, Top-25, Top-5 contrastive metric respectively. We see in a dotted line the MMCL model, which
trained solely on the multi-modal contrastive loss (trained using only Leontr rc ), and in the straight line COMPRER
which trained on multiple objectives, including the multi-modal contrastive loss. In 3.A We see the multiplicative tok-K
metric, and in 3.B we see the top-K metric. We see that COMPRER consistently outperforms MMCL.

performance (mult top-K score of 1 for all K) , and rise as the optimization starts. In COMPRER, the observed Top-100
accuracy reached 0.65, which is higher than the baseline set by MMCL of 0.56. For the more stringent Top-25 accuracy,
COMPRER obtained an accuracy of 0.35, while the MMCL achieved a lower score of 0.2. This difference not only
underpins our model’s superior matching capability but also implies the potential benefits of multi-objective
training in augmenting the feature space for more nuanced discriminatory powers.

5.1.3 Image Reconstruction Capability

Both fundus image and carotid image reconstructions, while losing some fine details, remain structurally similar to the
original general structure, an encouraging sign for the model’s comprehension of microvascular features. While select
losses in high-frequency details were observed—Ilikely attributable to the inherent information compression within the
network—the structural integrity was maintained.

5.2 Predictive Performance on Cardiovascular Conditions in the HPP Cohort

While internal validation schemes during the pretraining phase provide essential insights into the immediate learning
dynamics of our COMPRER model, the true test of its effectiveness lies in its clinical application. Thus, our goal is
to demonstrate that our model pretraining not only captures intricate data patterns but also translates into significant
improvements in real-world clinical diagnostics. To this end, we focused our attention on fine-tuning COMPRER to
predict cardiovascular health conditions. Figure 4 shows the model’s capacities in both a diagnostic and prognostic
context, providing valuable insights into cardiovascular health. The performance metrics presented in Figure 4 were
constructed using the models, which was fitted with a 1-layer MLP regression head. To find appropriate hyperparameters,
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Figure 4: Comparative Analysis of Model Performance in Predicting Cardiovascular Conditions from Fundus Images.
4.A illustrates the AUC results for various models fully finetuned to predicting current cardiovascular condition based
on fundus images taken at the participants’ first visit. The models compared include, our proposed COMPRER, MMCL,
DINOV2-Base, and a Retina Foundation Model. The boxplots represent the distribution of AUC scores achieved on
the test set after selection of top 5 hyperpameters for each model based on validation performance. 4.B depicts the
AUC results for the same set of models, but focuses on predicting the future onset of cardiovascular conditions. This
analysis only includes participants who were healthy at baseline, with the goal of determining if the models can predict
the development of cardiovascular conditions at a follow-up visit. While the AUC scores on their own are not high,
COMPRER consistently outperforms the competition. It’s also worth observing that MMCL has also some gains with
respect to DINOV?2 and the retina foundation model, which goes to show that even just applying multi-modal contrastive
learning on its own can increase downstream performance.

we employed a systematic hyperparameter search on the validation set, from which the top 5 models of each type were
identified. These leading models were then assayed on an independent test set, yielding a distribution of results, which
denotes the robustness and consistency of performance across model instances. The MMCL model is an ablation model,
representing a version of our architecture and data trained with only multimodal contrastive loss, to provided a baseline
to quantify the value added by the multi-objective learning. The Retina Foundation Model embodies a high-parameter
(300M parameters, which is 3.5x larger than all other competitor models) alternative, leveraging a considerably larger
latent space (1024, which ~ 1.3 times larger than all other competitors) and trained on an extensive dataset of 1.6M
fundus images (which is 75 x larger than our fundus dataset). Despite these advantages of the retina foundation model,
COMPRER shows superior performance. We also observed that on the prognosis task (figure 4.b) almost all model runs
except COMPRER’s are random. This is interesting because COMPRER is the only model that had in its pretraining
any signal of future events - based on the temporal contrastive learning objective.

5.3 Performance on an OOD External Cohort

Validating the predictive power of a model on an out of distribution (OOD) dataset is often considered the gold standard
for demonstrating the real-world applicability and robustness of a predictive framework. In this section, we evaluate
COMPRER’s performance on the external dataset - the UK Biobank (UKBB), an extensive, well-characterized external
cohort that has been at the forefront of large-scale biomedical research (Sudlow et al.| 2015). After data filtering and
cleaning, it comprises of 44K participants with fundus images. The Retina Foundation model has previously showcased
its traction on this dataset, establishing a performance benchmark for the field. Figure 5 illustrates the comparison
between COMPRER and the Retina Foundation model in predicting various cardiovascular and related diseases from
fundus image representations. Our approach demonstrates competitive, if not superior, predictive performance across
numerous conditions. In the realm of ischaemic stroke prediction, COMPRER conspicuously outperforms the Retina
Foundation model, denoting a higher AUC value. These results affirm the appropriateness of COMPRER’s multi-modal,
multi-objective pretraining paradigm, reinforcing its utility in extracting salient features pertinent to disease states from
medical imagery. Moreover, they underscore our method’s efficiency; by achieving these competitive performance
metrics, COMPRER evidences that well-conceived model architectures coupled with sophisticated pretraining strategies
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Figure 5: Comparative Analysis of COMPRER and Retina Foundation Model Performance in Predicting Diseases from
Fundus Image Representations on an External Dataset (UKBB). The prediction is done from frozen image embeddings
using logistic regression. We see that COMPRER outperforms the Retina Foundation model in the prediction of
ischaemic stroke, evidenced by a higher AUC value. Conversely, the Retina Foundation model exhibits superior
performance in predicting chronic ischaemic heart disease, although COMPRER also shows a test AUC above 0.6. For
the conditions of stroke, heart failure, and acute ischaemic heart disease, the COMPRER method slightly outperforms
the Retina Foundation model, though the margins are not significant. Its also notable that the the retina foundation
model was trained using 75 x more fundus images, and with a 3.5 larger model.

can level the playing field against models with ostensibly more advantageous training conditions (using 75X the data,
and 3.5 x the parameters).

6 Discussion

We presented COMPRER, a novel pretraining method targeted at extracting medical features, specifically aimed at
the enhancement of downstream tasks such as disease diagnosis and prognosis. Our multi-modal, multi-objective
pretraining approach bridges the gap between advancing machine learning architectures and their practical applications
in clinical settings, exhibiting superior predictive abilities compared to specialized models. In the realm of image
representation, COMPRER has demonstrated the ability to distill meaningful insights from a large-scale, longitudinally
derived dataset, diminishing the reliance on arduously curated labels. The empirical advancements evidenced by robust
internal validation and insightful applications in disease prediction advocate for COMPRER’s adoption. Notably, the
model provides competitive performance, transcending the need for vast data volumes and extensive computational
resources, highlighting a quality-centric approach in medical data analytics. We have shown that the integration of
multiple objectives stretches the training duration but enriches the model’s feature representations. This comprehensive
approach, though intensive, equips the model with a deepened understanding and enhanced performance that may
surpass models optimized for single objectives alone. The superior performance in multimodal contrastive matching
demonstrates this phenomenon, suggesting that a more holistic, integrated training regimen can indeed yield models
with robust generalization capacities across various tasks.

In addition, we have shown that COMPRER is capable of achieving higher test AUC scores than models that have been
trained with an order of magnitude more data, and with larger models. We have shown this both in our HPP cohort, as
well as, in an external cohort - the UKBB, which shows our model can generalize out of distribution, across diverse
populations from different continents. Interestingly, within the OOD UKBB dataset, a notable divergence in the test
AUC was observed for ischaemic stroke prediction between COMPRER, and the Retina Foundation model. This finding
is particularly intriguing given that ischaemic stroke is a condition diagnosable through carotid ultrasound (Zhang et al.,
2014)). It is worth noting that COMPRER was trained using both fundus images and carotid ultrasound, suggesting that
this multi-modality approach may have played a role in the increase of COMPRER’s predictive accuracy compared to
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the Retina Foundation model. It is also noteworthy that in the internal cohort validation section (5.2), where we showed
future prognosis performance, the majority of model runs, with the exception of COMPRER, exhibit random test AUC
scores. This phenomenon might be interesting, as it underscores the distinctive attribute of COMPRER’s pretraining
methodology. In contrast to the other models, COMPRER benefits from the inclusion of a temporal information during
its pretraining, notably - the temporal, visit-based, contrastive learning objective. This objective provided the model
with insights into future events within the longitudinal data. We hypothesize that this unique aspect of COMPRER’s
training regimen is contributing to its superior performance, even surpassing models like MMCL that have encountered
the same data but lack exposure to the temporal, visit-based contrastive loss. This finding underscores the potential
advantages of incorporating temporal information in pretraining, shedding light on the nuances of disease prognosis
prediction and highlighting the efficacy of our approach.

However, our work has several caveats, calling attention to the simultaneous challenges and potential trajectories for
improvement. Dataset scope and representativeness remain pivotal for model generalization. While the HPP dataset
underpins our current findings, incorporating datasets with broader demographic diversity is essential for enhancing
model robustness and ensuring its translational relevance across patient populations. A more diverse dataset would help
mitigate bias and uphold the model’s diagnostic integrity, especially when encountered with dataset shifts in real-world
scenarios. The generalizability of COMPRER across different diseases and imaging modalities is another frontier to be
explored. Expanding the disease spectrum and experimenting with a variety of modalities are key to consolidating the
framework’s applicability in diverse medical contexts. Moreover, the limited computational resources constrained our
model’s training to 40k steps, hinting at the potential for further refinement. Investments in computational infrastructure
and collaborative efforts could uncover latent performance enhancements and insights into the optimization dynamics of
our model. Interpretability and explainability are indispensable for clinician and patient acceptance. Despite the strides
made with our transformer-based model, elucidating the AI’s decision-making processes remains crucial. Validation
in clinical environments could unravel the efficacy and adaptability of our model and solidify its role within clinical
workflows. It is important to note that we conducted our research on only two modalities, however, we do see how
this method could easily extend beyond only two modalities. In the HPP dataset, we have access to a rich variety of
over 20 distinct data modalities, ranging from visual information and time series data to textual records and tabular
measurements.

We recognize the untapped potential of leveraging multiple modalities within our pretraining scheme. Future iterations
of the methods we described here can harness this diverse data landscape by incorporating additional losses for multi-
modal contrastive learning, introducing multi-visit losses that span across these various modalities, and exploring other
innovative techniques. This multi-modal approach holds promise in further enriching the model’s understanding of
complex medical data, potentially leading to even more robust generalization across a wide array of clinical tasks.

7 Availability of Code and Model Weights

In the interest of transparency and facilitating future research, we plan to release the code and model weights associated
with our study upon publication.
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