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Abstract 30 

Long COVID, or Post-Acute COVID Syndrome (PACS), may develop following SARS-CoV-2 infection, 
posing a substantial burden to society. Recently, PACS has been linked to a persistent activation of the 
complement system (CS), offering hope for both a diagnostic tool and targeted therapy. However, our 
findings indicate that, after adjusting proteomics data for age, body mass index and sex imbalances, 
the evidence of complement system activation disappears. Furthermore, proteomic analysis of two 35 

orthogonal cohorts—one addressing PACS following severe acute phase and another after a mild acute 
phase—fails to support the notion of persistent CS activation. Instead, we identify a proteomic 
signature indicative of either ongoing infections or sustained immune activation similar to that 
observed in acute COVID-19, particularly within the mild-PACS cohort. 

 40 

 

Main 

 

Long COVID or Post acute COVID Syndrome (PACS) may emerge upon SARS-CoV-2 infection, causing a 
considerable societal burden (1–3). The underlying mechanisms are complex with evidence for 45 

immune activation and dysregulation, autoantibodies, vascular perfusion and mitochondrial 
disturbance and viral persistence or reactivation playing a role (4). There is no causal therapy available 
yet. Recently, a study by Cervia-Hasler et al. (5) thus generated great interest as it linked the disease 
to a persistent activation of the complement system (CS), and therefore of the innate immune system, 
providing a causal explanation for PACS. The results raised hopes for a diagnostic tool and a targeted 50 

therapy.  

Our curiosity was stirred by a result shown in Figure 8b, demonstrating that in their cohort, age and 
body mass index (BMI) alone predicted PACS with an area under the Receiver Operating Characteristic 
(ROC) curve of almost 0.8. This result stands in contrast with other studies in the field. While these 
agree that age and BMI can be risk factors of PACS, age and BMI alone are deemed insufficient to 55 

predict which individuals would develop PACS (6).  

In seeking to explain why age and BMI are such strong predictors of PACS in this study, we noticed that 
the cohort was substantially imbalanced for age and BMI. The non-PACS control group predominantly 
consisted of young individuals with a median age of 36 years and a mean BMI of 25, while individuals 
in the PACS group were considerably older (median age of 58 years) and had a mean BMI of 28.  60 

We were wondering whether this imbalance might have also affected other results. When comparing 
the mass-spectrometry based proteomes of the control (non-PACS) and the PACS group without 
balancing for these demographic factors, CS components indeed appear to be up-regulated in PACS 
(Figure 1A). However, the CS is known to be age and BMI dependent (7, 8). In their data analysis, 
Cervia-Hasler et al. attempt a correction for demographic effects using linear regression (5). 65 

Nonetheless, age, sex and BMI can have complex interactions with the plasma proteome, and a simple 
linear model might hence not be sufficient to capture these interactions. To mitigate the age and BMI 
imbalances, we used a balanced factorial design strategy by splitting all patients in disease groups by 
age and sex (Figure 1B). Because the cohort was too small to balance all parameters, we excluded 
those individuals with vastly different age and/or BMI (Supplementary Table 1). While this strategy 70 

reduced the cohort, it resulted in a reasonable balancing by age and BMI in subgroups. The final set 
consisted of 85 individuals (56 controls and + 29 PACS), with approximately the same ratio of PACS to 
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non-PACS as the initial data set. Comparing the proteomes between PACS and non-PACS in this 
balanced cohort, none of the complement components was significantly changed in PACS, using the 
same significance level set by Cervia-Hasler et al. (5) (Figure 1C). In contrast, this analysis revealed a 75 

different set of plasma proteins that emerged as discriminators of PACS. Apart from immunoglobulins, 
BCHE was significantly higher in males above 48 years of age, Paraoxonase 3 (PON3) was increased in 
PACS patients and Syntax Binding Protein 5 (STXBP5) was decreased in PACS patients (9).  

 

Abundance of the complement system in independent PACS cohorts 80 

To add confidence to the results, we set out to orthogonally explore for a persistent complement 
activation in PACS.  We chose two independent cohorts, addressing two different patient groups 
suffering from the syndrome. First, we chose a study cohort that closely resembles the study design 
by Cervia-Hasler et al. (5) and which focuses on individuals that report PACS symptoms at a 6 months 
follow up, after being discharged from Charité where they have been treated for a severe acute phase 85 

(WHO severity grade 3-7) (Charité post severe acute COVID-19 cohort (10)). At the 6-month follow-up 
visit, plasma samples were collected from 130 individuals, of whom 67 reported symptoms consistent 
with PACS. This cohort was largely balanced for age, sex, and BMI. Importantly, among these 
individuals, there was no significant correlation between reporting PACS symptoms and age, sex, BMI, 
or severity in the acute phase (Methods), reflecting other studies investigating PACS (6). Using a high-90 

throughput mass spectrometry platform (11, 12), we investigated the plasma proteome at the 6 
months follow-up. Samples were analysed in a 3-minute water to acetonitrile active gradient on an 
Agilent Infinity II Sciex TripleTOF 6600 mass spectrometer system operating in ScanningSWATH mode 
(13). Comparing the PACS to the recovered group, we observed either no changes in several detected 
CS components, or a slight downregulation, at low effect sizes (Figure 1D). The statistical analysis of 95 

this cohort revealed among others the C-reactive protein (CRP), Apolipoprotein A-II (APOA2), Alpha-1-
acid glycoprotein 2 (ORM2) and the CS regulator Complement factor H-related protein 5 (CFHR5) to be 
less abundant in PACS (Figure 1E). Only Properdin (CFP), a regulator of the alternative complement 
pathway, was significantly, albeit only slightly, upregulated in PACS patients. Thus, in another PACS 
cohort resembling the study (5), we can neither confirm that age or BMI are strong predictors of the 100 

development of PACS, nor do we confirm a persistent dysregulation of a broad set of complement 
factors in these subjects.  

A great societal burden of PACS comes from individuals which suffered not from a severe, but rather 
a mild or moderate acute phase (10, 14). PACS in these individuals is characterised by a complex 
phenotype including fatigue, exertional intolerance, post exertional malaise (PEM) and brain fog as key 105 

symptoms with a subset having developed the most debilitating form of PACS, Myalgic 
Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) (15). These patients are younger and 
predominantly female. We hence chose a third cohort which focuses on PACS with fatigue and 
exertional intolerance (“Charité post mild acute COVID19” cohort). This cohort included 53 PACS 
patients with persisting moderate to severe fatigue with 25 of them fulfilling CCC diagnostic criteria 110 

for ME/CFS (16). A total of 27 non-PACS, Post Covid Healthy Controls (PCHC) were recruited during the 
same time. Serum proteome of participants was determined 5 to 19 months following acute COVID-
19. Like in the previous two cohorts, a factorial design was applied to address an, in this case albeit 
slight, age and sex specific imbalance. Proteome analysis was performed with a more conventional 
proteomic platform, using nano-flowrate, 30-min chromatographic gradient elution on an Ultimate 115 

3000 RSLnano HPLC coupled to a Thermo Scientific Q-Exactive Plus mass spectrometer operating in 
data independent acquisition (DIA) mode (17), followed by raw-data processing using DIA-NN. 
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Statistical analysis of the Charité post mild acute COVID19 cohort (PACS (with ME/CFS and without) 
vs.– Post Covid Healthy Controls (PCHC)) revealed 27 differentially abundant proteins (at significance 
level alpha = 0.05 (fdr <= 0.33) and the estimated fold-change threshold (1.1, Figure 1F), of which 7 120 

(CA1, SAA1, APOB, ITIH3, IGHV1-2, LRG1, CFI) are elevated. In this cohort, the only complement protein 
significantly upregulated, CFI, was correlated with BMI (r ~ 0.56). Most of the 27 proteins that are 
significantly regulated by PACS were previously identified in COVID-19. Increased levels of SAA1 (Serum 
Amyloid A1), ITIH3 (Inter-Alpha-Trypsin Inhibitor Heavy Chain H3), CFI (Complement Factor I), LRG1 
(Leucine-Rich Alpha-2-Glycoprotein 1) and decreased levels of Lumican (LUM), Fibronectin 1 (FN1), 125 

Multimerin-1 (MMRN1), Cartilage Oligomeric Matrix Protein (COMP), Transgelin 2 (TAGLN2), and 
Profilin 1 (PFN1) are consistent with protein regulation in severe acute patients (11, 18, 19). The 
proteins mirror the response in inflammation, acute phase, coagulation, extracellular matrix as well as 
activation and degradation of platelets. The proteome in these individuals could therefore indicate a 
persistent infection or persistent immune activation.   130 

Thus, while our reanalysis of the Zurich cohort, the analysis of an analogous post severe acute COVID19 
cohort, and a third cohort specifically focussing on PACS patients with fatigue and exertional 
intolerance subsequent to a mild acute phase, revealed interesting proteomic signatures, we can not 
substantiate a consistent activation of the complement system in PACS. Only two CS proteins (CFI and 
CFP) were found to be significantly upregulated in PACS patients, however only by one cohort each 135 

and with low effect size.  To evaluate the role of age, sex, and BMI on the complement system in the 
different cohorts, we consequently compared the dependence of complement proteins on PACS, and 
the different demographic factors (Figure 1D). This illustration visualises that the dependence of BMI 
dominates over other demographic factors, and PACS, when it comes to the abundance of complement 
proteins in the plasma proteome. We must conclude that the strong signal which indicates a persistent 140 

activation of the complement system, is not a generalizable to in patients suffering from PACS, and 
that this signal may have emerged due to an imbalance in age and BMI between case and controls in 
an exploratory cohort.  
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Figure 1. The regulation of the plasma proteome in post severe and mild acute COVID19: Statistical 155 

analysis of mass spectrometry proteomics data on the Zurich cohort as described by Cervia-Hasler et al. for the contrast 
PACS vs. non-PACS, without further balancing for demographic factors. B: Scheme of the factorial design and linear models 
applied to the Zurich cohort using the linear model log2(P) ~ 0 + Diagnosis + Age + Sex + Severity versus balanced Zurich, and 
Charité post severe acute COVID19 and Charité post mild acute COVID19 cohorts using the linear model log(P) ~ 0 + 
Diagnosis_age_sex + BMI + Severity considering contrasts between age and sex subgroups, where F=female, m=male, 160 
MA=mean age. C) Volcano plot for the contrast PACS vs. non-PACS on the Zurich cohort after balancing and modelling over 
age and sex subgroups. D) Differential abundance between patients with PACS and recovered patients on the complement 
system (rows, coloured by pathway and group of the complement system) for the three cohorts (first four columns) and 
effects of sex, age, BMI and severity during the acute phase; circle sizes represent p-values with an asterisk in the middle if 
the p-value is below the significance threshold of 0.05, the colour intensity as scaled by the colour bar represents over-165 
/underexpression and log2 fold change of the gene product between the given contrasts. In all volcano plots complement 
system activation components are coloured in blue, complement system regulators or receptors are coloured in red, other 
proteins are coloured in grey. Proteins identified to be differentially abundant were labelled. E, F): Volcano plots for the 
Charité post-severe and Charité post-mild acute COVID syndrome cohort, respectively, following the balanced factorial 
design contrasting PACS vs. non-PACS. Thresholds for differential abundance of proteins were set at 1.1/-1.1 for the fold 170 
change and 0.05 for the p-value. Statistical analysis was performed with limma without adjustment for multiple testing. 
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Genes were assigned to the complement system as activators or regulators/receptors using the HUGO gene nomenclature 
committee (https://www.genenames.org/), pathways were assigned using the Gene Ontology Term Biological Process (24, 
25). 

 175 

Methods 

Cohorts 

Charité post severe acute COVID19 

The Charité post severe acute COVID19 cohort is a subcohort of the Pa-COVID-19 study, a 
prospective observational study registered with German clinical trials registry (DRKS 00021688) 180 

aiming to provide a platform for clinical characterisation of acute and post-acute COVID-19 (26). The 
study was approved by the ethics committee of Charité - Universitätsmedizin Berlin (EA2/066/20) 
and conducted in accordance with the declaration of Helsinki. This analysis includes patients from 
the Pa-COVID-19 study, who were followed-up as outpatients after acute SARS-CoV-2 infection. A 
total of 130 patients with plasma samples collected at month 6 post SARS-CoV-2 infection were 185 

included in this analysis. Of these 104 were hospitalised during acute infection and 44 were treated 
at ICU. 26 patients were not hospitalised and treated as outpatients with mild SARS-CoV-2 infection. 
Symptom assessment at outpatient presentation was recorded by a physician as described previously 
(10). Individuals having at least two symptoms out of cough, dyspnea, fatigue, headache, chest pain, 
gastrointestinal or depression symptoms were considered to be in the PACS group. Gastrointestinal 190 

symptoms were assigned to individuals suffering at least from two symptoms out of diarrhoea, 
vomitus, stomachache and nausea, while depression symptoms were assigned if at least two 
symptoms out of fear, panic and major depression were assigned to the individual. 

We assessed the effect of the covariates sex, age, BMI and severity during the acute phase (by WHO 
grade) and identified none of them to be associated with PACS: point-biserial correlation(age) = 0, 195 

Cramér’s V(sex) = 0.12, point-biserial correlation(BMI) = 0.02, Cramér’s V(WHO severity) = 0.16 and 
p-value(age, ANOVA) = 1.00, p-value(sex, Chi² independency test) = 0.17, p-value(BMI, ANOVA) = 
0.82, p-value(WHO Severity, Chi² independency test) = 0.68. 
 

 200 

Charité post mild acute COVID19 

A total of 53 PACS patients from the Pa-COVID-19 study with persistent moderate to severe fatigue, 
exertional intolerance and PEM following mild to moderate COVID-19 were included in this study. Of 
these n=25 fulfilled diagnostic criteria of ME/CFS based on the Canadian Consensus Criteria (CCC) 
referred to as PCS/ME/CFS as described previously (27). Patients were excluded from this study in 205 

case of relevant comorbidities (28), evidence of organ dysfunction, or pre-existing fatigue. The 
demographic characteristics of the study cohorts are presented in detail in Supplementary Table 3. 
Serum samples were collected a median of eight months following SARS-CoV-2 infection. As control, 
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27 healthy non-PACS were recruited a median of seven months after mild to moderate COVID-19 
during the same time span.  210 

To compensate for the difference between ages and achieve equal female/male contributions we 
opted for factorial design and split patients into sex (female/male) – age (above / below 42 years) 
subgroups. The average age of 42 years was taken as a threshold for age binarization. Two PACS non-
ME/CFS samples and one healthy non-PACS sample were excluded due to quality reasons. Final size 
of the cohort was 77 individuals.  215 

 

Sample preparation 

Semi-automated in-solution digestion was performed as previously described for high throughput 
clinical proteomics (11). To reduce variability all stocks and stock plates were prepared in advance 
and stored at -80°C until use. Briefly, 5 μl of thawed samples were transferred to the denaturation 220 

and reduction solution (50 μl 8M Urea, 100 mM ammonium bicarbonate (ABC), 5 µl 50 mM 
dithiothreitol per well) mixed and incubated at 30°C for 60 minutes. Then 5 μl were transferred from 
the iodoacetamide stock solution plate (100 mM) to the sample plate and incubated in the dark at RT 
for 30 minutes before dilution with 100 mM ABC buffer (340 μl). 220 μl of this solution was 
transferred to the pre-made trypsin stock solution plate (12.5 μl, 0.1 μg/μl) and incubated at 37°C for 225 

17 h (Benchmark Scientific Incu-Mixer MP4). For quenching formic acid (10% v/v, 25 μl) was added 
and for cleaning C18 solid phase extraction in 96-well plates (BioPureSPE Macro 96-Well, 100 mg 
PROTO C18, The Nest Group) was used. After drying under vacuum the eluent was reconstituted in 
60 μl 0.1% formic acid. Before sample transferring to a new plate, insoluble particles were removed 
by centrifugation. 230 

 

Mass spectrometry and Computational proteomics 

Charité post severe acute COVID19 

5 µg plasma peptides were chromatographically separated in a 3-minute water to acetonitrile active 
gradient on an Agilent Infinity II HPLC coupled to a Sciex Triple TOF 6600 mass spectrometer 235 

operating in ScanningSWATH mode with minor changes in the liquid chromatography method (13). 

Raw proteomics data was processed using DIA-NN, version 1.8 (29). The MS1 and MS2 mass 
accuracies were set to 20 ppm, and the scan window to 6. Peptide ions were annotated with a 
publicly available spectral library for human plasma (30) and spectra and RT information were 
replaced with DIA-NN deep learning-based prediction. Protein inference was switched off and the 240 

match-between-runs (MBR) option was enabled. 

Charité post mild acute COVID19 
Peptide separation was accomplished in a 35-minute water to acetonitrile gradient (buffer A: 0.1 % 
formic acid, buffer B: 80 % ACN, 0.1 % formic acid) on an Ultimate 3000 RSLnanoHPLC coupled to a 
Q-Exactive Plus mass spectrometer (both ThermoFisher Scientific) operating in data independent 245 

acquisition (DIA) mode (17). 
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1 µg peptide mixtures were analysed by a two-linear-column system. Separation was done on a C18 
column (Acclaim PepMap C18, 2 μm; 100 Å; 75μm, 15cm length, Thermo Fisher Scientific) with an 
active gradient from 4-38% buffer B in 30 min. To generate a spectral library, a pool of study samples 
was fractionated using a high pH fractionation kit according to manufacturer instructions (Pierce 250 

84868). Fractionated samples were concentrated and separated as described above in a longer linear 
gradient from 5-28% buffer B in 63 min. Total acquisition time was 100 min. 

The data was annotated with DIA-NN 1.8.1 (29) to the human reference proteome (Uniprot 
UP000005640_9606, accessed 2023-01-17) in library free mode using standard settings. Raw data 
were processed using DIA-NN 1.8.1 with scan window size set to 7 and MS2 and MS1 mass accuracies 255 

set to 20 and 10 ppm, respectively. Additionally, the match between-runs (MBR) option was enabled. 
The output was filtered at 1% FDR on peptide level.  

 

Data processing 

Charité post severe acute COVID19 260 

   Only proteotypic precursors with a Q-Value, Global Q-Value and Library Q-Value below 0.01 were 
used for further analysis. Precursors, which were only identified but could not be quantified due to 
low abundance, as well as precursors that were present in less than a third of all samples containing a 
precursor of the same protein were also excluded from analysis. The sample precursor quantity 
distributions were normalized to the median precursor abundance across all samples using precursors 265 

present in at least 90% of all samples. Missing values were imputed iteratively first across samples 
during the same visite from individuals exhibiting the same severity (WHO grade) during acute phase 
for precursors missing in up to one third of the samples per group, then over the complete 6 month 
followup visit for samples missing in up to one third of the samples per visit and last over all visits from 
acute phase till 12 months follow-up using KNNImputer with k=5 from the scikit-learn impute package 270 

for Python (31). If no precursor of a given protein was identified in the raw data of a sample, then they 
were only imputed on protein level after summarization of precursor to protein quantities. The 
resulting precursors x samples matrix was filtered on outlier samples by applying quality control filters 
on the number of identified precursors, precursor intensity distributions and technical parameter 
collected in the DIA-NN stats-report. After exclusion of samples with insufficient quality, the filtered 275 

raw precursor quantities were again normalised, imputed as described above and summarised to 
protein quantities using the MaxLFQ algorithm (32) implemented by DIA-NN (29, 33). Finally, missing 
values on protein level were imputed with KNNImputer with k=5 from the scikit-learn impute package 
for Python (31). The final protein matrix contained 200 proteins and 120 samples (Supplementary 
Table 4). 280 

Charité post mild acute COVID19 

For data integration we used DIA-NN (Demichev et al, 2020) output matrix of normalised precursor 
intensities for 80 study samples. After quality control three samples were identified as outliers and 
excluded, thus leaving for preprocessing 77 samples. Following pre-processing steps were applied: 
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Cyclic loess group-wise (group levels: PCS(26 samples), PCS/ME/CFS (25 samples), PCHC (26 285 

samples)) pre-normalization (34), implemented in the R package LIMMA (35) with option “fast” (36), 
stepwise imputation of missing values in peptides having completeness over 66% , using bpca 
method (37) implemented in R package pcaMethods (38), total set based cyclic loess normalisation 
(34) and PLM summarisation (39) implemented in R package preprocessCore (40) to get protein level 
data. Final protein matrix size was 233 proteins, 77 samples (Supplementary Table 5). 290 

 

Statistical Analysis 

Statistical analysis of proteomics data was carried out in R using publicly available packages. 
Balancing was achieved per cohort by splitting all patients into disease subgroups by sex – female or 
male and by age – below or above the mean age of individuals. For the Charité post severe acute 295 

COVID19 cohort the threshold for age subgroups was set to 52 instead of the mean of 58 for better 
comparison with the other two datasets. We ensured a sufficient number of individuals per 
subgroup. Individuals with too different age and/or BMI were excluded per dataset. In this way it was 
possible to attain reasonable balancing of age and BMI in disease age-sex subgroups. The final 
balanced Zurich cohort consisted of 85 individuals (56 non-PACS + 29 PACS with approximately the 300 

same odds ratio PACS to non-PACS as in the initial data set), the Charité post severe acute COVID19 
cohort of 120 individuals (61 PACS to 59 non-PACS) and the Charité post mild acute COVID19 cohort 
of 77 individuals (25 PACS/ME/CFS, 26 PACS/non-ME/CFS and 26 non-PACS). The demographic 
characteristics for the three balanced cohorts are summarised in Supplementary Tables 1-3. 

For analysis of all datasets, we used moderated statistics implemented in R package LIMMA (Ritchie, 305 

2015) – due to borrowing information across features it is stable even for experiments with small 
numbers of samples in a group. We applied the same model to the unbalanced Zurich cohort as 
described by the authors (log2(P) is the log2-transformed expression of a protein: log2(P) ~ 0 + 
Diagnosis + Age + Sex + Severity). To the balanced cohort as well as to the two validation cohorts we 
applied a different model accounting age and sex effects and including an additional BMI term: 310 

log2(P) ~ 0 + Diagnosis _Sex_Age + BMI + Severity. Factor Severity was not included into the ME/CFS 
cohort model, as the samples were of mild to moderate severity. In the balanced model the PACS – 
non-PACS difference was calculated as equally weighted average of subgroup differences (below F/M 
stands for female/male, AMA/BMA for age above/below mean age): 

PACS – non-PACS = [(PACS – non-PACS|F, AMA)+(PACS – non-PACS|M, AMA)+ 315 

                                  (PACS – non-PACS|F, BMA)+(PACS – non-PACS|M, BMA)]/4. 

In the Charité post mild acute COVID19 cohort the categorical factor Diagnosis_Sex_Age had three 
levels (see Supplementary Table 3): PCS, PCS/ME/CFS, and PCHC; and was further split into Sex – Age 
subgroups.  In this model the PACS – non-PACS difference was calculated as equally weighted 
average of eight subgroup differences (below ME stands for ME/CFS, F/M stands for female/male, 320 

A/B42 for age above/below 42): 
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PACS – non-PACS= { [(PCS – PCHC|F, A42) + (PCS – PCHC|M, A42) + (PCS – PCHC|F, B42)+(PCS – 
PCHC|M, B42)] + [(PCS/ME – PCHC|F, A42) + (PCS/ME – PCHC|M, A42) + (PCS/ME – PCHC|F, B42) + 
(PCS/ME – PCHC|M, B42)]}/8. 

For finding regulated features we applied the following criteria: significance level alpha was set to 325 

0.05, which was sufficient to guarantee fdr < 0.33 in contrast PACS – non-PACS. The fold change 
threshold FCT=1.1 was set to guarantee that the measured signal is above the noise level. As such we 
have taken half of the median residual standard deviation of the linear model. It was also higher than 
the coefficient of variation in quality control samples. To make cross datasets comparisons easier, we 
applied the same thresholds to all three datasets. 330 
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