SUPPLEMENTARY MATERIAL

Global Rearrangement of Degree Centrality Reflects Cognitive Impairment and Fatigue in Multiple Sclerosis

Pavel Hok^{*,1,2,3}, Quang Thong Thai², Barbora Rehák Bučková^{4,5}, Martin Domin², Kamila Řasová⁶, Jaroslav Tintěra⁷, Martin Lotze², Matthias Grothe^{†,1}, Jaroslav Hlinka^{†,4}

¹Department of Neurology, University Medicine Greifswald, Greifswald, Germany;

²Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany;

³Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czechia;

⁴Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia;

⁵Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands;

⁶Department of Rehabilitation, Third Faculty of Medicine, Charles University, Prague, Czechia;

⁷Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czechia.

*) Corresponding Author

MUDr. Pavel Hok, Ph.D. Department of Neurology, University Medicine Greifswald Ferdinand-Sauerbruch-Str. 1, 17475 Greifswald, Germany Phone: +49 3834 86-6855 Fax: +49 3834 86-6875 Email: <u>pavel.hok@med.uni-greifswald.de</u> URL: <u>https://www2.medizin.uni-greifswald.de/neurolog</u>

⁺) Both authors contributed equally to this work.

1. Supplementary Methods

1.1 De-noising procedure

Segmentation of the T1-weighted structural image for the denoising procedure was carried out using CAT12 Toolbox (v.12.8r1932; Christian Gaser, Jena University Hospital), yielding gray matter, white matter and cerebro-spinal fluid masks in the MNI template space. Denoising was carried out using an anatomical component-based noise correction procedure (aCompCor),¹ implemented in CONN toolbox v. 21a,² incorporating linear regression of noise signal extracted from the subject-specific white matter and cerebrospinal fluid masks (5 time series from principal component analysis [PCA] of each source), a regressor for each outlier volume with excessive motion (criteria: composite motion > 0.9 mm or global signal volume-to-volume change beyond 5 standard deviations [SD]), and 6 motion parameters including their 6 first-order temporal derivatives (imported from previous preprocessing steps).

1.2 Voxel-wise whole-brain regions of interest (ROI)

A whole-brain voxel-wise parcellation consisted of 6-mm cubic regions of interest (ROIs) within the group-wise gray matter mask.³ To obtain the voxel-wise parcellation with approximately 6,000 ROIs, individual gray matter segments from T1-weighted images were averaged, down-sampled to a 6-mm space with trilinear interpolation, thresholded at p < 0.3, and binarized. The parcellation was finally masked with a down-sampled common brain mask based on blood oxygenation level-dependent (BOLD) data, yielding 4,632 ROIs.

1.3 Calculation of global degree rank order disruption index (k_D)

The k_D was calculated using custom Matlab script (available at https://github.com/pavelhok/calculate_kd/tree/MS-project) implementing a modified approach according to Achard et al.⁴ and Mansour et al.³ To overcome the necessity for an off-site control group as in Mansour et al.,³ we employed random sampling of a half of the control group. First, mean nodal degree (see article Section 2.5 Data pre-processing and analysis in the main manuscript body for

details on degree calculation) of the control group was subtracted from the degree of the corresponding node in each participant. The difference between individual nodal degree and the control group mean was then plotted against the control group mean and k_D was obtained using a linear regression ($y = k_D * x + b$), where y = individual nodal degree – mean control group nodal degree, x = mean control group nodal degree, and b = intercept of the regression. The procedure was repeated across 100 random splittings of the control group and final k_D in each patient and healthy control (HC) was calculated by averaging the k_D values obtained in each iteration. For each HC participant, the final averaged k_D was based on 100 splittings in which the participant was not included in the control group mean.

1.4 Figure preparation

Fig. 1 was created using an open-source Python implementation of Raincould Plots available at https://github.com/pog87/PtitPrince. Fig. 2 was generated using SPSS v29.0.1.1 (IBM, Armonk, NY, USA). Plots for Fig. 3 and Fig. S4 were created in Matlab v. R2018a. Brain reconstructions and slices for Fig. 4 and Fig. S3 were prepared in Mango v. 4.1 1531 (https://rii.uthscsa.edu/mango/). Brain slices for Fig. S1 were prepared using FSLeyes v. 1.10.2 (FMRIB Centre, Oxford, UK, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes).

2. Supplementary Results

2.1 Study sample

Here, results including motion outliers (i.e., including 7 patients with multiple sclerosis [PwMS] and 6 healthy controls [HCs] with excessive motion levels were identified) are reported, whereas results without outliers ("final" sample) are provided in the main manuscript body. In the sample with outliers, median age in PwMS was slightly higher than in HCs (Supplementary Table 5).

2.2 Group differences and group differentiation (hypotheses 1 and 2)

PwMS showed significantly lower degree rank order disruption index (k_D) compared to HCs (PwMS: median = -0.316, inter-quartile range [IQR] = 0.498; HCs: median = -0.082, IQR = 0.541; p = 0.001, Mann-Whitney U test).

For hypothesis 2a, the receiver operating characteristic (ROC) analysis for differentiation between PwMS and HCs yielded significant above-chance area under curve (AUC) for k_D (AUC = 0.667, p = 0.001, two-tailed asymptotic significance for null hypothesis AUC = 0.5), the left lateral parietal portion of the DMN (DMN-LLP; AUC = 0.677, p < 0.001), left hippocampus (AUC = 0.608, p = 0.032) and the ACC (AUC = 0.606; p = 0.036), see Supplementary Table 6. In pair-wise comparisons, AUC for k_D was significantly higher than AUC for 11 ROIs and did not significantly differ from the remaining ROIs (Supplementary Table 6).

For hypothesis 2b, we observed no significant improvement in a multiple logistic regression model differentiating between PwMS and HCs) after adding k_D as an additional regressor on top of gray matter volume (GMV), fractional anisotropy (FA), log(lesion load [LL]) (χ^2 step = 0.579, p = 0.447).

2.3 Correlation with cognitive processing speed (hypotheses 3 and 4)

We detected no significant correlation between k_D and SDMT (Spearman's $\rho = 0.20$, p = 0.111, n = 62). In case of regional degree centrality (hypothesis 4a), no significant correlation was observed after correction for multiple comparisons, see Supplementary Table 7. For hypothesis 4b, an ordinal regression model including GMV, FA, log(LL), age, gender, and years since diagnoses as Symbol Digit Modalities Test (SDMT) score as regressors was not significantly improved after adding $k_D (\chi^2 \text{ step } = 3.63, p = 0.057, \text{likelihood ratio test, see Supplementary Table 8).}$

2.4 Correlation with global disability, fatigue, and motor performance (exploratory hypotheses 5 and 6)

We detected a significant correlation between k_D and Fatigue Scale for Motor and Cognitive Functions score (FSMC; Spearman's $\rho = -0.27$, p = 0.030, n = 63), but not for Expanded Disability Status Scale score (EDSS; Spearman's $\rho = -0.08$, p = 0.546, n = 63) or Timed Up and Go Test (TUG; Spearman's $\rho =$ -0.16, p = 0.233, n = 58). For hypothesis 6, k_D significantly improved an ordinal regression model including GMV, FA, log(LL), age, gender, and years since diagnoses as regressors of fatigue (FSMC), but not for EDSS or TUG (Supplementary Table 8).

2.5 Relationship between k_D and structural imaging biomarkers (exploratory hypotheses 7 and 8)

We observed a significant correlation (hypothesis 7) between k_D and LL (Spearman's $\rho = -0.27$, p = 0.033, n = 63), but no significant correlation with GMV (Spearman's $\rho = 0.12$, p = 0.354, n = 63) or global FA (Spearman's $\rho = 0.04$, p = 0.731, n = 63). All structural imaging parameters significantly differed between PwMS and HCs (hypothesis 8), see Supplementary Table 9.

3. Supplementary Tables

Supplementary Table 1. List of regions of interests (ROI)

Abbreviation	Description	Side	MNI coordinates ^a (x, y, z) [mm]	Size [voxels] ^b	Source [¢]
DMN-MPFC	default mode network, medial prefrontal cortex		1, 52, -3	34	
	default mode network,	L	-40, -76, 32	32	- CONN network atlas ²
DMN-LP	lateral parietal part	R	47, -66, 29	42	binary labels
DMN-PCC	default mode network, posterior cingulate cortex		1, -61, 37	161	_
Deet	nukam on	L	-25, 0, 1	32	
Put	putamen	R	26, 2, 1	29	
Com	caudate nucleus - globus pallidus -	L	-13, 10, 10	15	_
Cau		R	15, 11, 11	20	_
GP ^d		L	-24, -6, -6	1	- HOSA ⁵⁻⁸
GP		R	18, 6, 0	1	25% maximum probability labels
		L	-8, -20, 7	37	_
Tha	thalamus	R	11, -20, 8	38	_
TT' -	1.	L	-27, -21, -15	21	-
Нір	hippocampus	R	28, -21, -14	24	_
Crbl	cerebellum		2, -61, -31	461	MNI structural atlas ^{9,10} 25% maximum probability labels
CDI		L	-18, -63, 57	18	
SPL	superior parietal lobule	R	21, -66, 51	17	– Spherical ROI (d = 18 mm)
DIREC	demodetered englanded as the	L	-24, -3, 51	9	centered according to Grothe et
DLPFC	dorsolateral prefrontal cortex -	R	33, 0, 60	13	al. ¹¹
ACC	anterior cingulate cortex		9, 15, 39	9	_

Notes: ^{a)}Atlas ROIs: coordinates are centers of mass of final ROIs, spherical ROIs: coordinates are centers of original spheres; ^{b)}voxel size 6×6×6 mm; ^{c)}All ROIs were additionally masked with common gray matter and functional brain mask; ^{d)}region excluded from analyses due to small size after resampling. Abbreviations: HOSA – Harvard-Oxford subcortical atlas, L – left; MNI – Montreal Neurological Institute; R – right; ROI – region of interest.

Number	Hypothesis	Outcome measures	Regressors	Confounders	Statistical Test
1	Group differences in k_D	k_D	Presence of MS	none	Mann-Whitney U test
2	Differentiation between PwMS and	Presence of MS	<i>k_D,</i> regional degree from 18 ROIs	none	ROC analysis with AUC pairwise comparisons
2	HCs	Tresence of Wi3	<i>k</i> _D , GMV, FA, log(LL)	none	multiple logistic regression with likelihood ratio test
3	Correlation with cognitive processing speed	SDMT	k_D	none	Spearman's rank correlation coefficient
4	Regression of	CDMT	regional degree from 18 ROIs	none	Spearman's rank correlation coefficient
4	cognitive processing speed	SDMT	<i>k</i> _D , GMV, FA, log(LL)	age, sex, years since diagnosis	ordinal regression with likelihood ratio test
		Expl	oratory hypotheses		
5	Correlation with global disability, fatigue, and motor performance	FSMC, EDSS, TUG	k _D	none	Spearman's rank correlation coefficient
6	Regression of global disability, fatigue, and motor performance	FSMC, EDSS, TUG	<i>k_D,</i> GMV, FA, log(LL)	age, sex, years since diagnosis	ordinal regression with likelihood ratio test
7	Relationship between k_D and structural imaging biomarkers	k_D	GMV, FA, log(LL)	none	Spearman's rank correlation coefficient
8	Group differences in structural imaging biomarkers	GMV, FA, log(LL)	Presence of MS	none	Mann-Whitney U test

Supplementary Table 2. Summary of outcome measures, regressors and statistical tests

Abbreviations: EDSS – Expanded Disability Status Scale; FA – fractional anisotropy; FSMC – Fatigue Scale for Motor and Cognitive Functions; GMV – gray matter volume; HCs – healthy controls; k_D – degree rank order disruption index; log(LL) – log(lesion load); MS – multiple sclerosis; PwMS – patients with MS; ROIs – regions of interest; SDMT – Symbol Digit Modalities Test; TUG – Timed Up and Go Test.

ROI		AUC	p^{a}	AUC difference ^b	<i>p</i> ^c
DMN-MPF	2	0.570	0.197	0.072	0.116
DIGUD	L	0.671	0.001	-0.029	0.585
DMN-LP	R	0.572	0.188	0.070	0.222
DMN-PCC		0.510	0.860	0.132	0.128
D. 4	L	0.540	0.467	0.102	0.004
Put	R	0.547	0.384	0.095	0.008
Cau	L	0.573	0.182	0.069	0.034
	R	0.584	0.118	0.058	0.054
	L	0.580	0.140	0.062	0.171
Tha	R	0.571	0.191	0.071	0.139
	L	0.560	0.267	0.082	0.075
Hip	R	0.534	0.535	0.108	0.030
Crbl		0.526	0.628	0.115	<0.001
CDI	L	0.509	0.864	0.133	0.123
SPL	R	0.502	0.966	0.140	0.030
DIREC	L	0.506	0.917	0.136	0.059
DLPFC	R	0.555	0.311	0.087	0.314
ACC		0.619	0.026	0.023	0.619
•					

Supplementary Table 3. Receiver operating characteristic (ROC) analysis for group membership - no outliers

Notes: ^{a)}Asymptotic one-tailed uncorrected *p* for null hypothesis: true area = 0.5, significant values at p < 0.05 marked in **bold**; ^{b)}AUC_{*kD*} – AUC; ^{c)}Asymptotic two-tailed uncorrected *p* for null hypothesis: true area difference = 0, significant values at p < 0.05 marked in **bold**.

Abbreviations: ACC – anterior cingulate cortex; AUC – area under curve; Cau – caudate nucleus; Crbl – cerebellum; DLPFC – dorsolateral prefrontal cortex; DMN – default mode network: -LP – lateral parietal part, -MPFC – medial prefrontal cortex, -PCC – posterior cingulate cortex; Hip – hippocampus; L – left; Put – putamen; SPL – superior parietal lobule; Tha – thalamus; R – right; ROI – region of interest.

	PwMS	НС	
	<i>n</i> =56	<i>n</i> = 58	а
	Median ±IQR	Median ±IQR	<i>p^a</i>
Lesion load [mm ³]	2682.7 ±4834.4	91.0 ±114.2	
log(Lesion load) [log(mm ³)]	3.43 ± 0.81	1.96 ±0.52	<0.001
Gray matter volume [cm³]	1410.3 ±236.4	1591.6 ±195.0	<0.001
Global FA	0.588 ±0.033	0.612 ± 0.029	<0.001
Notes: ^{a)} Mann-Whitney U Test.			

Supplementary Table 4. Group differences in structural imaging parameters – no outliers

Abbreviations: FA – fractional anisotropy; HC – healthy controls; IQR – interquartile range; PwMS – patients with MS.

		T	Included	l subjects
		Enrolled subjects -	With outliers	Final sample
łC				
Number		65	64	58
Gender [wor	men/men]	32/33	31/33	27/31
Median age	±IQR [yrs]	40.9 ±17	40.8 ±17	40.5 ±17
PwMS				
Number		65	63	56
Gender [woi	men/men]	39/26	38/25	35/21
p^{a}		0.291	0.214	0.095
Median age	±IQR [yrs]	45.3 ±17	45.4 ±17	45.1 ±17
$p^{ m b}$		0.048	0.039	0.090
	RRMS	38, 58.5%	38, 60.3%	35, 62.5%
Diagnosis	SPMS	20, 30.8%	18, 28.6%	15, 26.8%
[n, %]	PPMS	6, 9.2%	6, 9.5%	5, 8.9%
	no data	1, 1.5%	1, 1.6%	1, 1.8%
Time since d	liagnosis ±SD [yrs]	12.8 ±6.8	12.7 ±6.9	12.6 ±6.2
EDSS ±IQR		4.5 ±2.0	4.5 ±2.0	4.5 ±3.0
SDMT ±IQR	1	45 ±31	45 ±31	45 ±29
FSMC ±IQR		57 ±23	57 ±23	57 ±23
TUG ±IQR [s]	11.2 ±11	10.8 ±9	10.3 ±9

Supplementary Table 5 Demographic and clinical data – sample with and without outliers

Notes: ^{a)} Fisher's exact test between PwMS and HCs; ^{b)} Mann-Whitney U test between PwMS and HCs.

Abbreviations: EDSS – Expanded Disability Status Scale; FSMC – Fatigue Scale for Motor and Cognitive Functions; HCs – healthy controls; IQR – interquartile range; MS – multiple sclerosis; n – number; N/A – not applicable; PPMS – primary progressive MS; PwMS – patients with MS; RRMS – relapsing-remitting MS; SD – standard deviation; SDMT – Symbol Digit Modalities Test; SPMS – secondary progressive MS; TUG – Timed Up and Go Test; yrs – years.

ROI		AUC	p ^a	AUC difference ^b	p°
DMN-MPFC	2	0.585	0.094	0.082	0.060
DIGUD	L	0.677	<0.001	-0.010	0.835
DMN-LP	R	0.586	0.094	0.081	0.132
DMN-PCC		0.526	0.621	0.141	0.079
D. (L	0.558	0.257	0.109	0.001
Put	R	0.573	0.156	0.094	0.004
Cau	L	0.583	0.103	0.083	0.006
	R	0.587	0.089	0.080	0.005
	L	0.581	0.115	0.086	0.041
Tha	R	0.575	0.146	0.092	0.042
	L	0.608	0.032	0.059	0.152
Hip	R	0.576	0.139	0.091	0.045
Crbl		0.531	0.547	0.136	<0.001
CDI	L	0.512	0.814	0.155	0.008
SPL	R	0.522	0.675	0.145	0.012
DIREC	L	0.504	0.937	0.163	0.018
DLPFC	R	0.572	0.162	0.095	0.230
ACC		0.606	0.036	0.061	0.168

Supplementary Table 6. Receiver operating characteristic (ROC) analysis for group membership – with outliers

Notes: ^{a)}Asymptotic one-tailed uncorrected *p* for null hypothesis: true area = 0.5, significant values at p < 0.05 marked in **bold**; ^{b)}AUC_{*kD*} – AUC; ^{c)}Asymptotic two-tailed uncorrected *p* for null hypothesis: true area difference = 0, significant values at p < 0.05 marked in **bold**.

Abbreviations: ACC – anterior cingulate cortex; AUC – area under curve; Cau – caudate nucleus; Crbl – cerebellum; DLPFC – dorsolateral prefrontal cortex; DMN – default mode network: -LP – lateral parietal part, -MPFC – medial prefrontal cortex, -PCC – posterior cingulate cortex; Hip – hippocampus; L – left; Put – putamen; SPL – superior parietal lobule; Tha – thalamus; R – right; ROI – region of interest.

		SDMT n = 62		FSN <i>n</i> =	
		$arrho^{a}$	p^{a}	Q ^a	p ^a
DMN-MPFC	2	-0.354	0.005	0.200	0.116
DMN-LP	L	0.062	0.635	0.098	0.443
	R	-0.129	0.318	0.251	0.047
DMN-PCC		-0.169	0.189	0.152	0.233
Put	L	-0.200	0.119	0.326	0.009
	R	-0.114	0.376	0.254	0.044
Cau	L	-0.184	0.153	0.341	0.006
	R	-0.199	0.121	0.323	0.010
Tha	L	-0.149	0.247	0.240	0.058
	R	-0.191	0.137	0.229	0.071
Hip	L	-0.170	0.188	0.172	0.178
	R	-0.306	0.016	0.236	0.063
Crbl		-0.243	0.057	0.357	0.004
SPL	L	-0.112	0.384	-0.131	0.304
	R	-0.170	0.186	-0.041	0.748
DLPFC	L	-0.143	0.266	-0.157	0.220
	R	-0.111	0.388	0.068	0.595
ACC		-0.104	0.421	0.006	0.960

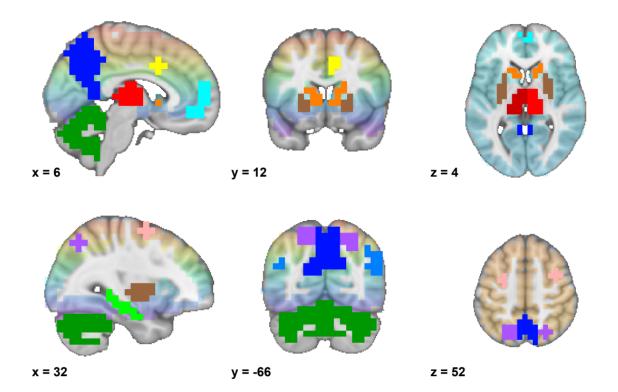
Supplementary Table 7. Correlation between regional degree and clinical scores - with outliers

Notes: ^{a)}Spearman's rank correlation coefficient ρ , significant correlations at Bonferroni-Holm-corrected alpha = 0.0028 are marked in **bold** type, significant correlations at uncorrected alpha = 0.05 are marked in *italics*.

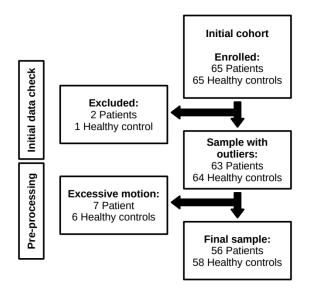
Abbreviations: ACC – anterior cingulate cortex; Cau – caudate nucleus; Crbl – cerebellum; DLPFC – dorsolateral prefrontal cortex; DMN – default mode network: -LP – lateral parietal part, -MPFC – medial prefrontal cortex, -PCC – posterior cingulate cortex; FSMC – Fatigue Scale for Motor and Cognitive Functions; Hip – hippocampus; L – left; n – number; Put – putamen; SPL – superior parietal lobule; Tha – thalamus; R – right; ROI – region of interest; SDMT – Symbol Digit Modalities Test.

Regressand	SDMT		EDSS		FSMC		TUG	
Model	No <i>k</i> _D	With k_D						
Pseudo R ² (Cox&Snell)	0.230	0.274	0.320	0.321	0.125	0.212	0.296	0.301
-2 Log Likelihood	433.806	430.179	282.218	282.123	439.047	432.515	442.300	441.883
χ^2	16.227	19.855	24.333	24.427	8.441	14.973	20.394	20.810
df	6	7	6	7	6	7	6	7
Model Sig.	0.013	0.006	<0.001	0.001	0.208	0.036	0.002	0.004
<i>k</i> _D Wald	N/A	3.307	N/A	0.111	N/A	6.637	N/A	0.454
k_D Sig.	N/A	0.069	N/A	0.739	N/A	0.010	N/A	0.500
χ^2 step	3.	63	0.	09	6.	53	0.	42
df		1		1		1		1
<i>P</i> ^a	0.057		0.759		0.011		0.519	
Notes: ^{a)} One-tailed likelihood ratio test.								

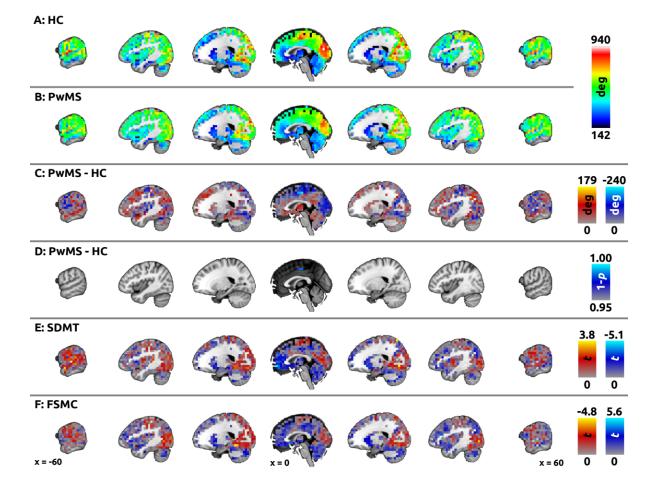
Supplementary Table 8. Ordinal regression of clinical scores – with outliers

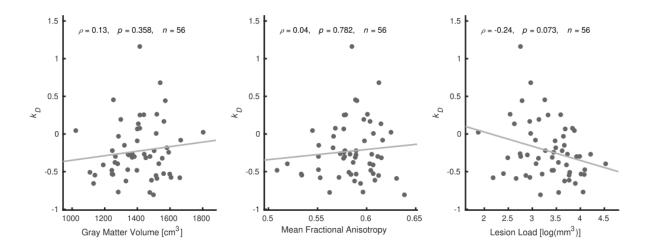

Abbreviations: df – degrees of freedom; EDSS – Expanded Disability Status Scale; FSMC – Fatigue Scale for Motor and Cognitive Functions; k_D – degree rank order disruption index; n – number; N/A – not applicable; SDMT – Symbol Digit Modalities Test; TUG – Timed Up and Go Test.

	PwMS <i>n</i> = 63	HC <i>n</i> = 64	
-	Median ±IQR	Median ±IQR	p ^a
Lesion load [mm ³]	2765.2 ±5115.6	93.7 ±134.9	0.001
log(Lesion load) [log(mm³)]	3.44 ± 0.83	1.97 ±0.58	
Gray matter volume [cm ³]	1399.8 ±250.0	1561.3 ±193.5	<0.001
Global FA	0.588 ±0.039	0.610 ± 0.028	<0.001
Notes: ^{a)} Mann-Whitney U Test.			


Supplementary Table 9. Group differences in structural imaging parameters – with outliers

Abbreviations: FA – fractional anisotropy; HC – healthy controls; IQR – interquartile range; PwMS – patients with MS.


4. Supplementary Figures


Supplementary Fig. S1. Regions of interest (ROIs). Color overlays representing ROIs on top of orthogonal slices of the MNI152 standard brain template. Color coding: color spectrum (transparent background) – included 6-mm voxels; cyan - default mode network, medial prefrontal cortex; light blue - default mode network, lateral parietal cortex; dark blue – default mode network, posterior cingulate cortex; brown – putamen; orange – caudate nucleus; red (light & dark) – thalamus; light green – hippocampus; dark green – cerebellum; purple – superior parietal lobule; pink – dorsolateral prefrontal cortex; yellow – anterior cingulate cortex.

Supplementary Fig. S2. Inclusion/exclusion diagram. Diagram illustrates exclusion rates at each step of the data analysis.

Supplementary Fig. S3. Raw degree centrality, group degree differences, and unthresholded data. Color overlays on top of 1-mm MNI152 standard brain sagittal slices illustrate the underlying data for main analyses. In **panel A**, mean raw degree in healthy control (HC) group is shown (no outliers, n = 58). **Panel B** shows mean raw degree in patients with multiple sclerosis (PwMS, n = 56), using the same color scaling (actual range for PwMS = 172-843). **Panel C** shows mean difference individual degree in PwMS – mean normal degree in HC (n = 56), red overlay indicates higher degree in PwMS, blue overlay indicates higher degree in HC. In **panel D**, statistically significant group differences in raw degree are shown (thresholded using non-parametric threshold-free cluster enhancement with 10,000 permutations, family-wise error-corrected p = 0.05), with blue overlay indicating higher degree in HC in supplementary motor area and adjacent paracentral lobule. **Panels E-F** show unthresholded t-maps illustrating spatial distribution of linear regression of the degree centrality for (**E**) cognitive processing speed (Symbol Digit Modalities Test, SDMT) and (**F**) fatigue (Fatigue Scale for Motor and Cognitive Functions, FSMC). Here, color-coding was inverted for FSMC (positive correlation in blue, negative correlation in red) to match color coding for SDMT (in general, impairment is associated with lower SDMT, but higher FSMC).

Supplementary Fig. S4. Correlation between k_D and structural imaging. Scatter plots illustrating relationship between the degree rank order disruption index (k_D) and global gray matter volume, global white matter fractional anisotropy, and lesion load (after log transform). Spearman's rank correlation coefficient (ρ), two-tailed uncorrected significance, and number of valid observations are provided.

5. References

- 1. Behzadi Y, Restom K, Liau J, Liu TT. A Component Based Noise Correction Method (CompCor) for BOLD and Perfusion Based fMRI. Neuroimage. 2007;37:90–101.
- 2. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connectivity. Mary Ann Liebert, Inc., publishers; 2012;2:125–141.
- 3. Mansour A, Baria AT, Tetreault P, et al. Global disruption of degree rank order: a hallmark of chronic pain. Sci Rep. Nature Publishing Group; 2016;6:34853.
- 4. Achard S, Delon-Martin C, Vértes PE, et al. Hubs of brain functional networks are radically reorganized in comatose patients. Proc Natl Acad Sci U S A. 2012;109:20608–20613.
- 5. Makris N, Goldstein JM, Kennedy D, et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research. 2006;83:155–171.
- 6. Frazier JA, Chiu S, Breeze JL, et al. Structural Brain Magnetic Resonance Imaging of Limbic and Thalamic Volumes in Pediatric Bipolar Disorder. Am J Psychiatry. 2005;162:1256–1265.
- 7. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–980.
- 8. Goldstein JM, Seidman LJ, Makris N, et al. Hypothalamic Abnormalities in Schizophrenia: Sex Effects and Genetic Vulnerability. Biological Psychiatry. 2007;61:935–945.
- 9. Collins DL, Holmes CJ, Peters TM, Evans AC. Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping. 1995;3:190–208.
- 10. Mazziotta J, Toga A, Evans A, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci. 2001;356:1293–1322.
- 11. Grothe M, Domin M, Hoffeld K, Nagels G, Lotze M. Functional representation of the symbol digit modalities test in relapsing remitting multiple sclerosis. Mult Scler Relat Disord. 2020;43:102159.