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Abstract 34 

In a subset of patients with mental disorders, such as depression, low-grade inflammation 35 

and altered immune marker concentrations are observed. However, these immune 36 

alterations are often assessed by only one data type and small marker panels. Here, we 37 

used a transdiagnostic approach and combined data from two cohorts to define subgroups 38 

of depression symptoms across the diagnostic spectrum through a large-scale multi-omics 39 

clustering approach in 237 individuals. The method incorporated age, body mass index 40 

(BMI), 43 plasma immune markers and RNA-seq data from peripheral mononuclear blood 41 

cells (PBMCs). Our initial clustering revealed four clusters, including two immune-related 42 

depression symptom clusters characterized by elevated BMI, higher depression severity and 43 

elevated levels of immune markers such as interleukin-1 receptor antagonist (IL-1RA), C-44 

reactive protein (CRP) and C-C motif chemokine 2 (CCL2 or MCP-1). In contrast, the RNA-45 

seq data mostly differentiated a cluster with low depression severity, enriched in brain 46 
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related gene sets. This cluster was also distinguished by electrocardiography data, while 47 

structural imaging data revealed differences in ventricle volumes across the clusters. 48 

Incorporating predicted cell type proportions into the clustering resulted in three clusters, 49 

with one showing elevated immune marker concentrations. The cell type proportion and 50 

genes related to cell types were most pronounced in an intermediate depression symptoms 51 

cluster, suggesting that RNA-seq and immune markers measure different aspects of immune 52 

dysregulation. Lastly, we found a dysregulation of the SERPINF1/VEGF-A pathway that was 53 

specific to dendritic cells by integrating immune marker and RNA-seq data. This shows the 54 

advantages of combining different data modalities and highlights possible markers for further 55 

stratification research of depression symptoms. 56 

 57 

Keywords 58 

Major depressive disorder; Immunopsychiatry; CRP; IL-1RA; Multi-omics; Transdiagnostic; 59 

BMI; Chemokines; RNA-seq 60 

1. Introduction 61 

Mental disorders significantly impact human health, health care systems, and economies, 62 

accounting for up to 16% of global disability-adjusted life years (Arias, Saxena, and Verguet 63 

2022). Despite this substantial impact, the development of effective and innovative 64 

treatments remains a challenge (O’Donnell et al. 2019). Major depressive disorder (MDD) 65 

exemplifies these challenges, being the foremost psychiatric contributor to global disability 66 

(Vos et al. 2020). 67 

 68 

The difficulty in understanding the underlying molecular causes of MDD arises from its 69 

biological heterogeneity. MDD manifests with a wide range of symptoms and is often 70 
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comorbid with other mental disorders (Kessler et al. 2017; Kaufman and Charney 2000), 71 

which complicates its precise characterization. While the heritability of depression has been 72 

known for decades (McGuffin et al. 1996), genome-wide associations studies (GWASs) 73 

using minimal phenotyping have only yielded significant insights with extremely large sample 74 

sizes (Howard et al. 2019). Adopting a transdiagnostic approach that includes disorders 75 

across diagnostic categories and uses biological pathways, revealed associations between 76 

GWAS findings from MDD, schizophrenia and bipolar disorder with cytokine and immune 77 

pathways (O’Dushlaine et al. 2015). 78 

 79 

Further evidence supports the pivotal role of the immune system in the pathology of MDD. 80 

Stress, a risk factor for depression, can lead to increased inflammation (Hammen 2015; 81 

Rohleder 2019). Accordingly, a subgroup of roughly 30% of MDD patients shows a 82 

proinflammatory profile - often referred to as low-grade inflammation - characterized by 83 

elevated levels of C-reactive protein (CRP) (Osimo et al. 2019). Our recent research 84 

corroborated this observation of immune-related depression, demonstrating genetic 85 

correlation between increased CRP level and depressive symptoms, e.g., tiredness, 86 

changes in appetite, anhedonia and feelings of inadequacy (Kappelmann et al. 2021). 87 

Immune markers such as interleukin (IL)-6, IL-1beta and tumor necrosis factor (TNF) are 88 

often measured to evaluate immune dysregulation (Haapakoski et al. 2015) and contain 89 

genetic variants relevant for depression (Barnes, Mondelli, and Pariante 2017). Several 90 

studies have provided evidence that an inflammatory stimulus can lead to depressed mood, 91 

and that the pre-existing inflammatory status can predict the severity (Lasselin et al. 2020; 92 

Cho et al. 2019). For an overview on how cytokines and immune cells may mediate 93 

depressive symptoms see Miller and Raison 2016. 94 

 95 

Many studies have employed case-control designs to find differences in immune markers 96 

between individuals with depression and healthy controls (Wittenberg et al. 2020; Sørensen 97 

et al. 2023; Sforzini et al. 2023). At the same time, various studies have established the link 98 
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between specific depressive symptom profiles and inflammation. Increased inflammation has 99 

been observed in patients with dysregulated metabolism (immuno-metabolic depression) 100 

and linked to anhedonia (Lamers et al. 2013; Milaneschi et al. 2020; Felger et al. 2016; 101 

Lucido et al. 2021). A study by Franklyn et al. 2022 found that inflammation is associated 102 

with symptoms like altered eating patterns, appetite and tiredness. Lynall et al. 2020 103 

focusing on immune cell counts, identified a subgroup of depressed patients with increased 104 

levels of monocytes, CD4+ T cells and neutrophils. This subgroup also demonstrated 105 

increased CRP and IL-6 levels, correlating with more severe depressive symptoms.  106 

 107 

The potential of an inflammatory subtype goes beyond symptom profiles, as a study by 108 

Cattaneo et al. 2020 identified differences in whole blood gene expression related to 109 

inflammation that differentiate patients with treatment-resistant depression from those 110 

responding to treatment. Such findings highlight the potential of precisely characterizing 111 

immune dysfunction within MDD, aiming to identify patients who might benefit significantly 112 

from targeted immunomodulation. In recent years, several randomized control trials 113 

evaluated the effectiveness of adding an anti-inflammatory medication to antidepressants. 114 

Some of these trials adopted elevated CRP concentration as an inclusion criterion or a 115 

measure for secondary analyses. While there is some evidence for beneficial effects (Savitz 116 

et al. 2018; Köhler-Forsberg et al. 2019; Nettis et al. 2021), several other studies reported no 117 

discernible differences between patients treated with anti-inflammatory medication or those 118 

receiving placebos (Husain et al. 2020; Hellmann-Regen et al. 2022), even when stratified 119 

by CRP (Baune et al. 2021). Inspired by advancements in cancer research, Miller and 120 

Raison 2023 suggest shifting from traditional diagnostic evaluations to focusing on 121 

symptoms influenced by inflammation, such as anhedonia, changes in appetite and sleep 122 

(Drevets et al. 2022). This shift underpins our use of a transdiagnostic cohort, aiming to 123 

transcend diagnostic boundaries and explore common biological underpinnings across 124 

psychiatric conditions.  125 

 126 
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This push towards a more integrative and holistic understanding aligns with the broader field 127 

of psychoneuroimmunology. Traditionally, many studies in this area have relied on single 128 

omics approaches (e.g., transcriptomics or protein concentrations of peripheral immune 129 

markers). However, with the recent advancements in multi-omics techniques such as 130 

clustering or factor analysis methods (Li et al. 2021), there is an opportunity to integrate 131 

these individual omics data sets. Together with data from psychological assessments, 132 

imaging, and wearable devices (Moshe et al. 2021; Seppälä et al. 2019), we can further 133 

elucidate the complex interplay between the immune system and mental disorders by 134 

correlating molecular disease pathologies with clinical data (Mengelkoch et al. 2023; Halaris 135 

et al. 2019). 136 

Building on this integrated approach, we selected a transdiagnostic sample of 237 137 

individuals from two different cohorts with broad clinical assessments. Our goal was to 138 

comprehensively explore the relationship between the immune system and depression 139 

symptoms across the diagnostic spectrum utilizing multi-omics clustering techniques and 140 

considering a range of diagnoses of mental disorders. We hypothesized that distinct 141 

subgroups, defined by biological indicators of inflammation, would show different clinical and 142 

behavioral profiles. Furthermore, we measured an immune marker panel (p=43 markers) 143 

and the RNA-sequencing (seq) data (p=12210 genes) from their plasma and peripheral 144 

blood mononuclear cells (PBMCs), respectively. Using both the immune markers and RNA-145 

seq data, we clustered the participants and characterized the unique clinical profiles of each 146 
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subgroup (Figure 1). 147 

 148 

Figure 1: Analysis overview: 237 participants with a DSM-IV (subthreshold) diagnosis according to the Munich-149 

Composite International Diagnostic Interview were clustered with a multi-omics clustering. The different layers 150 

contained phenotypes (age and BMI, orange), 43 immune markers measured in plasma (green) and RNA-seq 151 

from peripheral blood mononuclear cells (PBMCs, blue). The clustering was performed repeatedly as a 152 

consensus clustering on subsets of the data to obtain stability metrics for the optimal number of clusters. The 153 

stratification into clusters was characterized by several phenotypes. MIDS = mild depression symptoms cluster, 154 

HIRDS = high immune-related depression symptoms cluster, LIRDS = low immune-related depression symptoms 155 

cluster. 156 

2. Methods 157 

For detailed methods see the Supplementary Methods. 158 

2.1 Sample selection 159 

The study sample comprised 246 participants from the Biological Classification of Mental 160 

Disorders (BeCOME) study (ClinicalTrials.gov: NCT03984084, Bruckl et al. 2020) and 115 161 

participants from the OPtimized Treatment Identification at the MAx Planck Institute 162 

(OPTIMA) study (ClinicalTrials.gov: NCT03287362, Kopf-Beck et al. 2020). The Munich-163 

Composite International Diagnostic Interview (DIA-X/M-CIDI, Wittchen et al. 1995; Wittchen 164 

and Pfister 1997) was employed to assess all participants. Out of these with immune marker 165 

measurement, 237 affected participants (BeCOME=134, OPTIMA=103, Figure S1) met 166 

either threshold or subthreshold DSM-IV DIA-X/M-CIDI criteria for any substance use, 167 
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affective or anxiety disorder including post-traumatic stress disorder and obsessive-168 

compulsive disorder within the last 12 months. 192 of these participants had a 169 

(subthreshold) DSM-IV diagnosis of major depression or dysthymia. We also included 36 170 

mentally healthy participants from the BeCOME study without any DSM-IV IDA-X/M-CIDI 171 

diagnosis as controls. 172 

2.2 Ethics approval and informed consent 173 

The BeCOME and OPTIMA studies were approved by the ethics committee of the Ludwig 174 

Maximilian University, in Munich, Germany, under the reference numbers 350–14 and 17–175 

395, respectively. Written informed consent was obtained from all participants before study 176 

enrollment. 177 

2.3 Assessments 178 

2.3.1 Questionnaire data 179 

All participants were assessed by the Beck Depression Inventory (BDI) II (Hautzinger, Keller, 180 

and Kühner 2006) and the Montgomery–Åsberg Depression Rating Scale (MADRS, 181 

Schmidtke et al. 1988). An overview about the sample characteristics for this subset are 182 

provided in Table 1, for more details see Table S1. 183 

 184 

Table 1: Cohort overview with either percent of participants and absolute numbers in brackets or mean and 185 

standard deviation in brackets. The depression diagnosis was assessed by the Munich-Composite International 186 

Diagnostic Interview and includes full and subthreshold cases. Psychotropic drugs include antidepressants, 187 

moodstabilizer, neuroleptics, tranquilizer and herbal psychotropics. BDI = Beck Depression Inventory. Information 188 
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on other diagnoses of mental disorders are available in Figure S5, on somatic diseases and medication in Table 189 

S1. MDD = major depressive disorder 190 

2.3.2 Blood collection 191 

Blood was collected in the morning under fasted conditions, peripheral blood mononuclear 192 

cells (PBMCs) were extracted and stored at the biobank. 193 

2.3.3 Immune marker measurements 194 

We used the V-PLEX Human Biomarker 54-Plex Kit (Meso Scale Diagnostics (MSD), 195 

Rockville, USA, Cat. No. K15248G-2) to measure immune markers in plasma. In addition, 196 

enzyme-linked immunosorbent assay (ELISA) was used to measure the following markers: 197 

high-sensitivity C-reactive protein (hsCRP, Tecan Group Ltd., Männedorf, Switzerland, Cat. 198 

No. EU59151), cortisol (Tecan Group Ltd., Männedorf, Switzerland, Cat No. RE52061), 199 

interleukin (IL)-6 (Thermo Fisher Scientific, Waltham, USA, Cat. No. BMS213HS), IL-6 200 

soluble receptor (sIL-6R, Thermo Fisher Scientific, Waltham, USA, Cat. No. BMS214) and 201 

IL-13 (Thermo Fisher Scientific, Waltham, USA, Cat. No. BMS231-3). All assays were 202 

performed according to the manufacturer’s instructions. Immune markers with high 203 

sensitivity alternatives or with more than 16% missing values, along with participants 204 

statu

s 

n age female BMI MDD or 

dysthymia 

diagnosis 

BDI psychotropic 

drugs 

case 237 38.8 

(13.3) 

58% 

(138) 

25 

(5.2) 

81% (192) 23.6 

(13.2) 

43% (103) 

contr

ol 

36 31.4 

(9.4) 

61% 

(22) 

23.7 

(2.8) 

0% (0) 2 (2.9) 0% (0) 
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showing hsCRP levels suggestive of acute infection, were excluded. This resulted in 43 205 

markers and 273 participants remaining for analysis (Table S2 and Figure S1). 206 

2.3.4 RNA extraction and sequencing 207 

The RNA was extracted with the chemagic 360 instrument (PerkinElmer, Waltham, USA), 208 

rRNA depleted, libraries prepared with the Lexogen CORALL total RNA-Seq Library Prep Kit 209 

with UDIs 12 nt Sets A1-A4 (Cat. No. 117.96, 132.96, 133.96, 134.96) and sequenced on an 210 

NovaSeq 6000 (Illumina, San Diego, USA) yielding an average of 30.6 million paired reads 211 

per library. 212 

2.3.5 Structural magnetic resonance imaging (MRI) data assessment 213 

151 affected participants (BeCOME=117 and OPTIMA=34) and 29 healthy controls had high 214 

resolution T1-weighted images with the identical sequence in both original studies (Sagittal 215 

FSPGR 3D BRAVO, TE 2.3 ms, TR 6.2 ms, TI 450 ms, FA 12°, FOV 25.6 × 25.6 × 20.0 216 

cm3, matrix 256 × 256, voxel size 1 × 1 × 1 mm3) available. 217 

2.3.6 Electrocardiography data assessment 218 

149 affected participants (BeCOME=108 and OPTIMA=41) and 32 healthy controls had an 219 

electrocardiography (ECG) recording that spanned 24h including a sleeping period with the 220 

portable ECG-device Faros 180 (Mega Electronics Ltd, Kuopio, Finland) at a sampling 221 

frequency of 500 Hz available. 222 

2.4 Data analysis 223 

2.4.1 Immune marker analysis  224 

The immune markers were quantile-normalized and corrected for the biobank storage 225 

position. For each immune marker, a linear model was fitted in R version 4.0.2 (R Core 226 
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Team 2023) to regress out the batch variable. The residuals from this regression were then 227 

used for downstream analysis. 228 

2.4.2 RNA-seq analysis 229 

The reads were aligned to GRCh38.p12 (Ensembl version 97, Martin et al. 2023) with STAR 230 

version 2.7.7a (Dobin et al. 2013) and counted with featureCounts version 1.6.4 (Liao, 231 

Smyth, and Shi 2014). 232 

Quality control and exclusion of genes with few counts or high GC content influence left 229 233 

affected participants, 33 controls and 12210 genes (Figure S1). The data was sequentially 234 

corrected for the GC content and a preparation batch variable with ComBat_seq from the 235 

sva package version 3.38.0 (Leek et al. 2021) and normalized with vst from DESeq2 version 236 

1.30.1 (Love et al. 2021). 237 

2.4.3 Cell type deconvolution 238 

The filtered RNA-seq count data, which was not batch-corrected, was converted to TPM and 239 

deconvoluted using the granulator package version 1.6.0 (Pfister, Kuettel, and Ferrero 2023) 240 

in R version 4.2.0 (R Core Team 2023). All cell types with a standard variation of less than 241 

0.5 were excluded, resulting in 14 cell types. 242 

2.4.4 Multi-omics clustering and statistical analysis of cluster differences 243 

Each variable of the normalized and batch corrected immune marker and RNA-seq data as 244 

well as age and BMI was standardized, the distance between the participants calculated and 245 

the clustering method SUMO version 0.3.0 (Sienkiewicz et al. 2022) was applied repeatedly 246 

on a subsample to calculate stability metrics for selecting the number of clusters. 247 

If not otherwise stated, we used R version 4.0.2 (R Core Team 2023) and determined the 248 

variable importance based on the F-value from ANOVA tests. A higher variable importance 249 

indicates a more distinct separation between the clusters. For continuous variables not used 250 
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in the clustering, we applied the Tukey Honest Significant Differences (TukeyHSD) test and 251 

reported adjusted p-values, for categorical variables the Fisher’s exact test. 252 

We did not report p-values for group differences for variables that were used in the clustering 253 

as differences were anticipated (Kriegeskorte et al. 2009). 254 

2.4.5 Gene set analysis 255 

For each participant, a score was calculated for every biological process and molecular 256 

function GO term gene set using GSVA version 1.36.3. (Hänzelmann, Castelo, and Guinney 257 

2013) based on the batch-corrected and normalized RNA-seq data. The distribution of these 258 

gene set scores across clusters was tested using an ANOVA and F-values reported as 259 

variable importance. 260 

2.4.6 Prediction of responder status 261 

The baseline values from gene expression data with accession number GSE45468 were 262 

mapped to ENSEMBL IDs. 8431 genes overlapped with our data and were used in a lasso 263 

model using glmnet version 4.1-8 (Friedman et al. 2023), the p-value was empirically 264 

calculated based on random genes. 265 

2.4.7 Imaging analysis 266 

Morphological differences were investigated at the global, regional (FreeSurfer) and voxel 267 

level. FreeSurfer v7.1.1 (Fischl 2012) based phenotypes were restricted to those with strong 268 

meta-analytical evidence for an effect in MDD (Schmaal et al. 2016; 2017). Analysis of 269 

covariance (ANCOVA) was applied to the clusters covarying for intracranial volume, age and 270 

sex, and cluster effects were FDR corrected at 5%. 271 
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2.4.8 Electrocardiography analysis 272 

Raw data was preprocessed using the PhysioNet Cardiovascular Signal Toolbox (Vest et al. 273 

2018) in Matlab version 2020b (The MathWorks Inc. 2020). Time domain metrics were 274 

calculated for every minute using a sliding window of 5 minutes. 275 

2.4.9 Single-cell RNA-seq data analysis 276 

Single cell PBMC RNA-seq data from 14 individuals with depression and other mental 277 

disorders with accession number GSE185714 was processed with scanpy version 1.9.3 278 

(Wolf, Angerer, and Theis 2018) according to Schmid et al. 2021 and their cell type labels 279 

used. 280 

3. Results 281 

3.1 Multi-omics clustering with age, BMI, immune markers and 282 

RNA-seq data identified 4 clusters with different depression 283 

severity and inflammation status 284 

To discover subgroups with immune-related depression symptoms, we assessed a 285 

comprehensive immune marker panel (p = 43 markers) along with matched RNA-seq data (p 286 

= 12210 genes) in 237 participants (Figure S1) diagnosed with MDD or another stress-287 

related mental disorder within the last 12 months. The mean age of the affected participants 288 

was 39 years and the mean BMI 25 (see Table 1 for sample characteristics). Besides the 289 

biological data, the participants underwent phenotypic assessment. Our approach involved 290 

clustering the participants based on multiple biological datasets and subsequently 291 

characterizing these subgroups using psychometric data. 292 

 293 
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For multi-omics clustering, we employed SUMO (Sienkiewicz et al. 2022), a non-negative 294 

matrix factorization based clustering algorithm, that provides cluster stability metrics via 295 

consensus clustering. This method organizes variables into layers and computes the 296 

distance between the participants within each layer, which subsequently informs the 297 

clustering process. For our study, age and BMI were combined as one layer while the 298 

immune markers and RNA-seq data were each defined as separate layers. According to the 299 

built-in stability metrics (Figure S2A-B), this approach yielded a four cluster solution. These 300 

clusters included 121, 58, 39 and 19 participants, respectively (Table S3). In light of the 301 

findings described below, we termed cluster 1 mild depression symptoms cluster (MIDS), 302 

cluster 2 high immune-related depression symptoms cluster (HIRDS) 1, cluster 3 low 303 

immune-related depression symptoms cluster (LIRDS) and cluster 4 HIRDS2. Each of the 304 

identified clusters showed a different pattern of immune markers and contained participants 305 

from both the BeCOME and OPTIMA cohorts, which differ in the in- and outpatient ratio, 306 

psychopharmacological drug use and sex distribution (see Figures 2A and S3). The 307 

significantly different distribution of the cohorts across the clusters (Fisher’s exact test, p = 308 

0.000003) was driven by the MIDS cluster; between the LIRDS and HIRDS clusters there 309 

was no different distribution (Fisher’s exact test, p = 0.507320).  310 
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Figure 2: Initial clustering with age, BMI, immune markers and RNA-seq data. (A) Heatmap of immune markers 312 

where the columns are participants while the cohort and cluster are noted at the top. The color denotes the 313 

normalized concentration with green values missing. (B) Barplot displaying the variable importance of the top 40 314 

variables that most differentiate the clusters, calculated using the F-value from an ANOVA model with the 315 

clusters as independent variables. These variable importance values should not be interpreted as p-values, 316 

because the variables were used in the clustering themselves and therefore inflate the p-values. Violin plots 317 

depicting the distribution of (C) age and (D) BMI across the clusters. N = 36 healthy controls not used in the 318 

clustering, MIDS = mild depression symptoms cluster, HIRDS = high immune-related depression symptoms 319 

cluster, LIRDS = low immune-related depression symptoms cluster, cohort 1 = OPTIMA, cohort 2 = BeCOME. 320 

3.1.1 BMI, age, IL-1RA, NRCAM and CRP identified as top 321 

differentiating variables 322 

In order to understand which variables drive the clustering, we calculated the variable 323 

importance (VI) based on an ANOVA model (Table S4). Figure 2B illustrates that BMI (VI = 324 

139.8) and age (VI = 114.8) were most important for the clustering, followed by interleukin 1 325 

receptor antagonist (IL-1RA, VI = 35.7). Other important immune markers included high-326 

sensitivity C-reactive protein (CRP, VI = 21), placental growth factor (PlGF, VI = 17.1), C-C 327 

motif chemokine 2 (CCL2 or MCP-1, VI = 17), tumor necrosis factor (TNF, VI = 15.4), CCL4 328 

(MIP-1beta, VI = 14.4) and CCL13 (MCP-4, VI = 13.1). Among the genes, neuronal cell 329 

adhesion molecule (NRCAM, VI = 21.8), nucleosome assembly protein 1 like 2 (NAP1L2, VI 330 

= 21), fibulin 2 (FBLN2, VI = 18.7), 2-phosphoxylose phosphatase 1 (PXYLP1, VI = 17.4), 331 

SH3 domain containing ring finger 3 (SH3RF3, VI = 16.6), ectodysplasin A (EDA, VI = 15.8) 332 

and XK related X-linked (XKRX, VI = 15.7) were the most important. The genetic location of 333 

these genes are noted in Table S5, compared to the overall chromosomal distribution the top 334 

100 genes show an enrichment in chromosome 7 (Figure S4). The importance of age and 335 

BMI in the clustering process was reflected in their distribution across clusters, as shown in 336 

Figure 2C-D. Age demonstrated an increase from MIDS through to HIRDS2. Notably, 337 

HIRDS2 and especially HIRDS1 showed elevated BMIs (mean BMI of 27 and 32, 338 

respectively) compared to the other clusters. 339 
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 340 

Next, we aimed to provide insights into the distribution of age, BMI, and CRP concentration 341 

across the clusters due to their importance in the clustering and the established role of CRP 342 

as a standard marker for inflammation. Notably, in all clusters except HIRDS2, a positive 343 

correlation was observed between CRP concentration and BMI. Specifically, for the MIDS 344 

cluster the Pearson correlation was 0.13 (t-test, p = 0.155); for HIRDS1, it was 0.40 (t-test, p 345 

= 0.002); for LIRDS, it was 0.39 (t-test, p = 0.015); and for HIRDS2 it was -0.61 (t-test, p = 346 

0.006), as illustrated in Figure 3A. It also shows that the HIRDS clusters predominantly 347 

contained individuals with elevated CRP concentration and elevated BMI. As illustrated in 348 

Figure 3B, no significant correlation between age and CRP was discernible within the 349 

clusters, with Pearson correlations ranging between -0.16 and 0.01. Interestingly, the LIRDS 350 

cluster contained individuals with a restricted age range. Further examination revealed no 351 

strong correlation between age and BMI except for HIRDS2, with Pearson correlations 352 

ranging from 0.09 to 0.40, which were not significant (Figure 3C). Notably, while the 353 

individuals with a high BMI in HIRDS1 spanned a wide age range, HIRDS2 consisted mostly 354 

of individuals aged 50 or above. 355 
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 356 

Figure 3: Distribution of biological and phenotype data across the clusters in the initial clustering with age, BMI, 357 

immune markers and RNA-seq data. (A) - (C) Scatterplots illustrate the associations between C-reactive protein 358 

(CRP), BMI and age across the four clusters, as determined by locally estimated scatterplot smoothing (LOESS). 359 

(D) Violin plots showing the distribution of Beck Depression Inventory (BDI)-II across the clusters. Significant 360 

differences (p < 0.05) were observed when comparing HIRDS1, LIRDS and HIRDS2 to the MIDS cluster. (E) 361 

Violin plots illustrating the Standard Deviation of normal-to-normal intervals (SDNN), a measure for heart rate 362 

variability, for 149 participants. The significant differences (p < 0.05) were observed between HIRDS1, LIRDS 363 

and HIRDS2 compared to the MIDS cluster. (F) Violin plots illustrating the the cluster-specific effect (global 364 

intercept + cluster-specific effect + residuals) of the lateral ventricle volume from a model including age, sex and 365 

intracranial volume (ICV) derived from structural magnetic resonance imaging for 151 participants. A significant 366 

difference (p < 0.05) was observed between the clusters. Because of the modeling approach, no value for the 367 

controls can be shown. MIDS = mild depression symptoms cluster, HIRDS = high immune-related depression 368 

symptoms cluster, LIRDS = low immune-related depression symptoms cluster. 369 
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3.1.2 Clinical phenotypes, imaging features and heart rate data identified 370 

clusters with elevated depression severity 371 

Next, we explored how the clusters, which were defined solely based on biological data 372 

(including immune markers, RNA-seq data, BMI, and age) without considering depression 373 

severity or symptoms, corresponded to these measures of depression post-clustering. 374 

Interestingly, the LIRDS and HIRDS clusters exhibited greater depression severity, as 375 

measured by the Beck Depression Inventory-II (BDI), than the MIDS cluster (Tukey HSD test 376 

with adjusted p values, p = 0.028961, p = 0.000003 and p = 0.001172, respectively). This 377 

severity was especially pronounced in the HIRDS clusters (Figure 3D). A similar result was 378 

observed using the Montgomery–Åsberg Depression Rating Scale (MADRS) with p-values 379 

of 0.009829, 0.000466 and 0.003718 (Tukey HSD test with adjusted p values) for the LIRDS 380 

and HIRDS clusters, respectively. The proportion of individuals with either no depression or 381 

dysthymia diagnosis was not equal across the clusters (Fisher’s exact test, p = 0.000500, 382 

Figure S5), the MIDS cluster had the highest proportion of participants without such a 383 

diagnosis and also the lowest depression severity. While no single item of the BDI 384 

differentiated the cluster, there was a trend towards increased sleeping and appetite in the 385 

HIRDS clusters as indicated by the BDI (Figure S6A-B). 386 

 387 

To further assess if the identified symptom differences were mirrored in other biological data, 388 

we analyzed heart rate data collected from portable ECG devices (n = 149) and structural 389 

imaging-derived features (n = 151) in a subset of the participants for whom these data were 390 

available. While there were no discernable differences in the median minimum or maximum 391 

normal-to-normal intervals between heartbeats between the clusters (Figure S6C), the heart 392 

rate variability metrics - for short-term (RMSSD) and long-term (SDNN) - were lower in the 393 

LIRDS and HIRDS clusters in comparison to the MIDS cluster (Figure 3E). The p-values for 394 

these differences ranged from 0.000039 to 0.005874 for RMSSD and from 0.000112 to 395 

0.005446 for SDNN (Tukey HSD test with adjusted p values). The clusters showed a trend of 396 
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different total brain volume (TBV) (F = 2.406, p = 0.070), with LIRDS showing higher TBV 397 

compared to the MIDS and HIRDS clusters; a similar pattern was seen for gray matter (GM) 398 

and white matter (WM) (Table S6). Regional analyses of 17 MDD-related phenotypes 399 

revealed robust effects on the lateral ventricle volume (F = 5.398, FDR adjusted p = 0.029, 400 

with the lowest volume in LIRDS, see Figure 3F), and nominal significant effects for the right 401 

rostral anterior cingulate and the bilateral hippocampus (Table S7). Voxel-based 402 

morphometry revealed no cluster main effects. 403 

3.1.3 Immune markers and genes revealed differences in immune 404 

system and brain related pathways between clusters 405 

We wanted to understand how the immune markers and RNA-seq data each contributed to 406 

defining the clusters, and if these different data types contained distinct information. 407 

Interestingly, except for CCL13, all the top important immune markers were elevated in the 408 

HIRDS clusters (Figure 4A). These clusters not only showed increased BMI but also the 409 

highest BDI. This distinctive pattern was reflected in CCL13’s low correlation with key 410 

markers such as IL-1RA and CRP (Figure 4D). While still discriminating the HIRDS clusters 411 

from the others, PlGF also had a similar low correlation with the top markers IL-1RA and 412 

CRP (Figure 4D). All top immune markers showed a positive correlation with BMI (Figure 413 

S7). 414 

 415 

In contrast, the most discriminating genes mainly differentiated the MIDS cluster, defined by 416 

a low depression severity, from the other clusters (Figure 4B). Accordingly, the correlations 417 

between the genes were stronger than those among immune markers, with the exception of 418 

the correlation between EDA and NAP1L2. On average, the absolute correlation between 419 

the top genes was 0.36, while it was 0.27 between the top immune markers (Figure 4E). To 420 

link the findings to clinical data, we investigated if the top discriminating genes could predict 421 

the responder status in patients with depression to treatment with an antibody against TNF 422 
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in an external data set (Mehta et al. 2013). Based on the area under the curve (AUC), the 423 

top 10 and top 20 genes did not perform better than random genes (permutation test, p = 424 

0.139 and p = 0.159). The most important gene for the 20-gene-model was vesicle 425 

associated membrane protein 1 (VAMP1), which was also included in the 10-gene prediction 426 

model, although it was not statistically significant. 427 

 428 

Figure 4: Immune marker and RNA-seq data contains complementary information in the initial clustering with 429 

age, BMI, immune markers and RNA-seq data. (A) Violin plots showing the distribution of the seven most 430 

differentiating immune markers across the clusters. (B) Violin plots showing the distribution of the seven most 431 

differentiating genes across the clusters. (C) Heatmap of the 20 most differentiating GO gene sets ordered by 432 

their variable importance that are enriched in the clusters. These gene sets were identified through Gene Set 433 
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Variation Analysis (GSVA). (D) Heatmap showing the Pearson correlation between the top immune markers. (E) 434 

Heatmap showing the Pearson correlation between the top genes. MIDS = mild depression symptoms cluster, 435 

HIRDS = high immune-related depression symptoms cluster, LIRDS = low immune-related depression symptoms 436 

cluster. 437 

To understand the underlying molecular mechanisms, we analyzed not only individual genes 438 

but also their coordinated expression patterns, examining these genes in the context of 439 

pathways. We applied gene set enrichment analysis using GSVA (Hänzelmann, Castelo, 440 

and Guinney 2013) to calculate gene set scores for every participant and compared the 441 

distribution across clusters (Table S8). As depicted in Figure 4C, the gene sets that stood 442 

out prominently were enriched in the LIRDS and HIRDS clusters. Interestingly, these gene 443 

sets included those related to the brain (e.g., anterograde axonal transport, VI = 17.3, 38 444 

genes), immune system (regulation of macrophage activation, VI = 12.5, 32 genes), stress 445 

response (response to mineralocorticoid, VI = 12.4, 15 genes) and (ion) transport (e.g., 446 

regulation of calcium ion transmembrane transporter activity, VI = 13.1, 44 genes). 447 

3.2 Re-evaluating the initial clustering adjusted for age, BMI 448 

and sex showed no phenotypic differences 449 

Considering the strong impact of BMI and age on the clustering outcomes, we re-evaluated 450 

the clustering by first adjusting the biological data for age, BMI and sex using a linear model, 451 

and then applying the clustering algorithm. After adjusting the data, we obtained a three 452 

cluster solution (Figure S2C-D), which differed from the four clusters identified in the initial 453 

analysis (Figure S8A). Notably, in the re-evaluated clustering, the variable importance of the 454 

immune markers was diminished relative to the RNA-seq data (Table S9). Among the 455 

immune makers, IL-27 stood out with the highest immune marker variable importance of 7.4. 456 

Contrastingly, the gene CKLF like MARVEL transmembrane domain containing 6 (CMTM6) 457 

showed a much higher variable importance of 77.4. Moreover, the primary discriminative 458 

immune markers or genes in this analysis were different from those in our initial clustering 459 
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(Figure S8B). Compared to the genes, the distribution of the immune markers across the 460 

clusters was more uniform (Figure S8C-D). There were no significant differences of age, 461 

BMI, BDI or MADRS sum scores between the clusters (Figure S8E-G). 462 

3.3 Re-evaluating the initial clustering including cell types 463 

identified three clusters predominantly driven by RNA-seq data 464 

Given the previous findings that highlight the significance of blood cell type composition in 465 

discerning depression subgroups (Lynall et al. 2020), we integrated cell types into a new 466 

clustering model aligning them in one layer with age and BMI. We did not have cell counts 467 

available but deconvoluted cell type proportions from the RNA-seq data. The predominant 468 

cell types in our sample were “T cells CD4 memory resting” (median fraction of 0.41) and 469 

“Macrophages M1” (median fraction of 0.15, see Figure 5A). The new clustering led to a 470 

three cluster solution (Figure S2E-F). Cluster 1 contained mostly (85.7%) individuals that 471 

were assigned to the MIDS cluster in the initial clustering without the inclusion of cell types. 472 

Cluster 3 contained predominantly individuals from the clusters with high BMI and high BDI 473 

(HIRDS clusters, 69.2%) as determined from the initial clustering. Cluster 2 presented a mix, 474 

drawing from different groups of the initial clustering: 54.2% from MIDS, 17.7% from 475 

HIRDS1, 24% from LIRDS and 4.2% from HIRDS2 (Figure 5B). Accordingly, we termed the 476 

clusters reMIDS, intermediate depression symptoms cluster (reIDS) and reHIRDS. 477 
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 478 

Figure 5: Re-clustering with age, BMI, cell types, immune markers and RNA-seq data. (A) Stacked barplot 479 

illustrating the proportion of various cell types predicted from the RNA-seq data for all participants. (B) Mapping of 480 

the participants from the initial clustering to the re-evaluated clustering that additionally contains cell type 481 

proportions. (C) Barplot showing the variable importance of the top 30 variables that most differentiate the 482 

clusters, along with the 10 most differentiating biological variables and immune markers. (D) Violin plots 483 

illustrating the predicted cell type proportions across the clusters. (E) Heatmap of the 20 most differentiating GO 484 

gene sets, ordered by their variable importance, that are enriched in the clusters. These gene sets were identified 485 

through Gene Set Variation Analysis (GSVA). reMIDS = re mild depression symptoms cluster, reIDS = re 486 

intermediate depression symptoms cluster, reHIRDS = re high immune-related depression symptoms cluster, NK 487 

= natural killer cells. 488 
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3.3.1 T cell proportions and RNA-seq data were important for the 489 

clustering 490 

The distribution of age and BMI demonstrated an increasing trend across the clusters, 491 

especially BMI was markedly increased in the reHIRDS cluster, with 29.1 compared to 22 for 492 

the reMIDS cluster and 23.7 for the reIDS cluster (Figure S9A-B). In line with the pattern 493 

seen in the initial clustering, the reHIRDS cluster showed significantly elevated BDI 494 

compared to the other clusters (Tukey HSD test with adjusted p values, p = 0.000126 for 495 

cluster 1 and p = 0.008659 for cluster 2, Figure S9C), and the MADRS in the reHIRDS 496 

cluster was elevated compared to the reMIDS cluster (Tukey HSD test with adjusted p 497 

values, p = 0.013896) as well. 498 

 499 

In reassessing the variables contributing to the clustering, we observed a shift from our initial 500 

findings. While age and BMI were the most important variables in the initial clustering, their 501 

impact reduced in the re-evaluation. BMI still remained the second most important biological 502 

variable (VI = 53.5, Figure 5C and Table S10), ranking 77th overall, but age (VI = 19.5) 503 

dropped to the 2037th position. The top 7 immune markers were the same as in the initial 504 

clustering except CXCL10 (IP-10, VI = 29.3) replacing CRP (VI = 21.3). However, in the 505 

reclustering the immune markers ranked 240th to 1484th in the variable importance, 506 

whereas in the initial clustering 3rd to 24th. The cell type “T cells CD4 memory resting” 507 

emerged as the most important biological variable (VI = 79.1), also being the most prevalent 508 

cell type in our sample (Figure 5A). Other notable cell types included “Dendritic cells 509 

activated” (VI = 31.7) and “Monocytes” (VI = 26.6). In the reMIDS cluster, “T cells CD4 510 

memory resting” showed an increased mean proportion of 0.48 compared to 0.36 and 0.40 511 

in the other clusters, while the “Dendritic cells activated” and “Monocytes” were decreased in 512 

the reMIDS cluster (Figure 5D). Furthermore, Figure 5C shows that genes were the essential 513 

variables to discriminate between the clusters (see Supplementary Results for more details). 514 

 515 
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3.3.2 Pathway analysis identified immune system involvement 516 

Next, we performed gene set enrichment analysis to analyze the biological pathways that 517 

differed between the cluster. As highlighted in Figure 5E, the most discriminative gene sets 518 

were downregulated in the reMIDS cluster, upregulated in the reIDS cluster and moderately 519 

upregulated in the reHIRDS cluster. Closer examination revealed that these gene sets were 520 

enriched for terms related to the immune system (response to molecule of bacterial origin, VI 521 

= 119, 186 genes), secretion (regulation of secretion, VI = 118.1, 297 genes), 522 

transmembrane transport (regulation of transmembrane transport, VI = 108, 237 genes) and 523 

neurons (positive regulation of neuron death, VI = 103.7, 58 genes) among others (Table 524 

S11). 525 

3.4 Integration of protein and RNA-seq data with single cell 526 

expression showed cell type specific regulation of inflammation 527 

To further elucidate the characteristics of the high depression severity clusters from our 528 

initial clustering model delineated in Figure 2, we analyzed the genes and immune markers 529 

that differentiated the LIRDS and HIRDS clusters. Two prominent variables emerged: the 530 

gene serpin family F member 1 (SERPINF1, VI = 9.1) and the protein vascular endothelial 531 

growth factor A (VEGF-A, VI = 10.1). As represented in Figure 6A and 6B, SERPINF1 532 

expression was elevated in the MIDS and LIRDS clusters, coinciding with low VEGF-A 533 

protein concentrations. In contrast, the HIRDS clusters displayed an opposite pattern. 534 

Interestingly, we did not find differences in the gene expression of VEGFA between the 535 

clusters (Figure 6C) and in general low correlation between RNA-seq and corresponding 536 

protein level (see Supplementary Results and Figure S10 for more details). 537 

 538 

The importance of different cell types was underlined by single cell gene expression 539 

analysis. PBMC RNA-seq data from 14 individuals with depression and other mental 540 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.07.24303916doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.07.24303916
http://creativecommons.org/licenses/by-nc-nd/4.0/


disorders indicated a predominant SERPINF1 expression in dendritic cells (Figure 6D and 541 

6F), while VEGFA was mainly expressed in monocytes (Figure 6E-F), showing the 542 

importance of cell types even when not included directly in the clustering. 543 

 544 

Figure 6: Cell-type specific dysregulation in the initial clustering with age, BMI, immune markers and RNA-seq 545 

data. Violin plots displaying: (A) the gene expression of SERPINF1 across the clusters, (B) normalized protein 546 

concentration of VEGF-A across the clusters, and (C) gene expression of VEGFA across the clusters. (D) - (F) 547 

Single-cell RNA-seq data of peripheral blood mononuclear cells (PBMCs) from 14 patients with depression and 548 

other mental disorders visualized using UMAP plots. (D) Demonstrates the gene expression of SERPINF1. (E) 549 

Shows the gene expression of VEGFA. (F) Illustrates the cell types identified within the PBMCs. NK = natural 550 

killer cells, MIDS = mild depression symptoms cluster, HIRDS = high immune-related depression symptoms 551 

cluster, LIRDS = low immune-related depression symptoms cluster. 552 
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4. Discussion 553 

In this study, we analyzed a transdiagnostic sample of individuals with stress-related mental 554 

disorders from two cohorts to identify patterns of depression symptoms in relation to immune 555 

alterations, thereby broadening the understanding of immune-related subgroups in 556 

depression. Traditionally, such subgroups have been defined by specific immune markers 557 

such as CRP or TNF, known to be increased in some depressed patients (Haapakoski et al. 558 

2015; Osimo et al. 2020), especially those resistant to antidepressant treatment 559 

(Chamberlain et al. 2019; Yang et al. 2019; Strawbridge et al. 2015). Our large-scale multi-560 

omics analysis, integrating gene expression data of 12210 genes with immune marker 561 

profiling of 43 makers including CRP, suggests a more complex immune involvement in 562 

depression symptoms than indicated by CRP alone. Our approach uncovered four distinct 563 

clusters dissecting depression symptoms across the diagnostic spectrum: two high immune-564 

related-depression symptoms (HIRDS) clusters with increased immune markers, BMI, and 565 

depression severity; a mild depression symptoms (MIDS) cluster, predominantly younger 566 

participants with lower depression severity and minimal immune marker elevation; and a low 567 

immune-related-depression symptoms (LIRDS) cluster with elevated depression severity but 568 

without increased immune markers. This nuanced classification offers deeper insights into 569 

the interplay between immune function and depression symptoms. 570 

 571 

Incorporating a multi-omics integration clustering approach has clearly demonstrated its 572 

value, providing unique insights through the combination of phenotypic data, immune 573 

markers and RNA-seq data. This was especially evident in identifying HIRDS clusters with 574 

elevated immune markers such as CRP, TNF, IL-1RA, PlGF, CCL2, CCL4, and CCL13. 575 

Measuring IL-1 beta posed a challenge due to its low concentration, even with high-576 

sensitivity assays, highlighting the difficulties in detecting certain cytokines. Interestingly, IL-577 

1RA, typically anti-inflammatory, is produced under the same inflammatory conditions as the 578 

proinflammatory IL-1 beta, linking it to an increased risk of developing depressive symptoms 579 
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in elderly (Osimo et al. 2020; Milaneschi et al. 2009). Consistent with this, we found 580 

heightened IL-1RA levels in our HIRDS clusters, which also exhibit altered appetite patterns, 581 

aligning with findings from Simmons et al. 2020. While specific BDI items like increased 582 

appetite and hypersomnia showed only a trend, a clear elevation in overall depression 583 

severity and BMI was observed. These patterns support the concept of immuno-metabolic 584 

depression, where heightened inflammation correlates with disrupted energy balance, 585 

manifesting as obesity and fatigue (Lamers et al. 2020; Milaneschi et al. 2020; Simmons et 586 

al. 2020).  587 

Our research sheds light on the role of less-studied chemokines in depression. Elevated 588 

CCL2 in blood, CSF, and in post-mortem brain tissues of depressed patients (Young, Bruno, 589 

and Pomara 2014; Eyre et al. 2016; Sørensen et al. 2023; Torres-Platas et al. 2014), 590 

alongside mixed data for CCL4 (Camacho-Arroyo et al. 2021; Sørensen et al. 2023; 591 

Leighton et al. 2018) and limited research on CCL13, with only one study that found lower 592 

levels in suicide attempters (Janelidze et al. 2013), indicate their intricate roles in this 593 

symptom spectrum. Additionally, it highlighted PlGF, part of the vascular endothelial growth 594 

factor family (De Falco 2012), implicated in angiogenesis, the immune response, and 595 

obesity-related processes (Oura et al. 2003; Lijnen et al. 2006), which was previously found 596 

to have lower levels in depressed patients (Yue et al. 2016). By employing a multi-panel 597 

approach to simultaneously measure a wide array of immune markers, we elucidated the 598 

complex roles of chemokines and established markers in depression symptom spectrum. 599 

This strategy not only identifies specific immune markers associated with depression 600 

symptoms but also advances our understanding of the disorder's immunological aspects, 601 

suggesting a promising direction for future research. 602 

 603 

The immune markers were crucial for differentiating between the HIRDS clusters and others, 604 

while key genes and the gene set analysis were instrumental in separating between clusters 605 

of varying depression severity. The panel of important genes includes genes that are 606 

associated with neurodevelopmental disorders (NRCAM, Kurolap et al. 2022), neuronal 607 
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development (NAP1L2, Attia et al. 2007) or that were downregulated in post mortem choroid 608 

plexus from patients with MDD (FBLN2, Turner et al. 2014). This underlines that depression 609 

not only affects the brain but other tissues as well and demonstrates our approach’s 610 

effectiveness at identifying genes differentiating depression severity. Our gene set analysis 611 

further supports this, revealing a prevalence of pathways related to neurons and axonal 612 

transport in the high depression severity clusters. While immune system pathways were 613 

enriched in the genes differentiating the clusters, the immune marker data primarily defined 614 

the immune-related depression symptom clusters, underscoring the value of this integrative 615 

approach. 616 

 617 

The significance of BMI and age in relation to depression symptoms in our analysis added to 618 

the ongoing debate about whether BMI adjustments in immune marker analyses clarify or 619 

confound the relationship with depression (Horn et al. 2018; Moriarity, Mengelkoch, and 620 

Slavich 2023). Several studies suggest that CRP's association with depression is more 621 

pronounced without BMI-adjustments (Horn et al. 2018; Chae et al. 2022; Figueroa-Hall et 622 

al. 2022). Recently, a simulation study demonstrated that including BMI as a covariate can 623 

lead to reduced precision in estimating the relationship of inflammation on depression 624 

(Moriarity, Mengelkoch, and Slavich 2023). Consistently, our findings revealed no significant 625 

differences in depression severity or inflammation status when adjusting for BMI, sex and 626 

age, underscoring the complex interplay among these factors and emphasizing BMI’s role as 627 

an integral component of the depression phenotype. 628 

 629 

Our analysis extended beyond clinical depression severity to heart rate variability and 630 

neuroimaging, differentiating the clusters. While not corrected for covariates, heart rate 631 

variability (SDNN) was lower in the LIRDS and HIRDS clusters and could discriminate them 632 

from the MIDS cluster, aligning with previous findings that link reduced heart rate variability 633 

to current and former depression, as well as dysphoria (Hartmann et al. 2019; Koch et al. 634 

2019; Dell’Acqua et al. 2020), which suggests broader physiological implications of 635 
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depression. Structural neuroimaging revealed a trend of relatively higher total brain volume 636 

in the LIRDS cluster compared with the HIRDS and MIDS clusters, with similar effects for 637 

GM and WM analyzed separately. Regional analyses confirmed inverse changes of 638 

cerebrospinal fluid (CSF), specifically of the lateral ventricle volume. In the presence of acute 639 

depressive symptoms, it seems that the LIRDS constellation might protect from CSF 640 

including ventricular enlargement. Larger ventricles have been observed in MDD with early 641 

disease onset before 21 years of age (Schmaal et al. 2016) and in bipolar disease (Hibar et 642 

al. 2016) which could suggest that stronger immune activation might take influence on 643 

subclinical or masked bipolar traits. Regional effects as detected for the bilateral hippocampi 644 

and the right rostral anterior cingulate cortex, were heterogeneous between the two HIRDS 645 

clusters. While these structures were reported before in immune based stratifications (Savitz 646 

et al. 2013) and are plausibly involved in stress response regulation (Herman et al. 2016), 647 

larger samples are needed to fully map the anatomical characteristics of immune-related 648 

depression. 649 

 650 

Our analysis supports the hypothesis that depression is associated with alterations in cell 651 

type composition and immune marker levels (Lynall et al. 2020; Foley et al. 2022). 652 

Integrating cell type proportions refined our initial clusters, revealing three re-clusters with 653 

varying depression severity and aligning well with the initial findings. This highlights the 654 

robustness of our subgroups. The reHIRDS cluster, marked by elevated BMI and immune 655 

markers, showed an intermediate alteration in T cells CD4 memory resting proportion 656 

deviating from Foley et al. 2022 who reported no significant CD4+ T cells proportion 657 

changes in depression. Conversely, our reHIRDS and intermediate depression symptoms 658 

(reIDS) clusters reflected their findings of decreased lymphocyte percentage in depression. 659 

In contrast to the results from Lynall et al. 2020 who observed elevated immune markers and 660 

absolute immune cell counts in their immune-related depression cluster, our reHIRDS cluster 661 

did not exhibit the strongest cell type phenotype. This discrepancy could stem from 662 

methodological differences, such as direct cell counts versus deconvolution. This suggests a 663 
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complex interplay between immune markers and PBMC composition in depression. Possible 664 

sources of immune markers like neutrophils (Tecchio, Micheletti, and Cassatella 2014) and 665 

adipose tissue (Fain 2006; Shelton et al. 2015; Shelton and Miller 2011) highlight the 666 

importance of obesity in immune-related depression. Our findings emphasize the need for 667 

further research into the associations of immune cell composition and immune markers in 668 

this context. 669 

 670 

The advantages of a multi-omics integration were further demonstrated by revealing cell type 671 

specific inflammation of immune-related depression symptom clusters. VEGF-A was 672 

elevated in the HIRDS clusters, contrasting the SERPINF1 expression, which showed the 673 

opposite pattern. This aligns with its gene product, pigment epithelium-derived factor 674 

(PEDF), known to inhibit VEGF-A (Dawson et al. 1999). Of note, PEDF is neurotrophic 675 

(Tombran-Tink and Barnstable 2003) and was shown to ameliorate depression-like 676 

symptoms in mice (Tian et al. 2020) and was increased in depression patients after 677 

electroconvulsive treatment (Ryan et al. 2017). This suggests a link of the dysregulated 678 

immune pathway in the HIRDS clusters and the observed elevated depression severity. 679 

Furthermore, our single cell data revealed that SERPINF1 is mainly expressed in dendritic 680 

cells, suggesting a potential reduction of these cells within immune-related depression 681 

symptom clusters. This finding merits additional exploration, as it could open new pathways 682 

for understanding and potentially targeting the immune-related aspects of depression 683 

symptoms. 684 

 685 

Our study has some limitations worth noting. Firstly, the heterogeneity of our sample, which 686 

includes a transdiagnostic sample of both in- and out-patients with varying medication usage 687 

and comorbid conditions, may affect the generalizability of our findings. Secondly, the 688 

imaging and psychophysiology data represents a proportion of the total samples (63%), 689 

which requires caution in interpretation of these findings. Additionally, the cell type 690 

composition in our study was inferred from the RNA-seq data rather than being directly 691 
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measured, which could impact the accuracy of these estimates. As there was no validation 692 

sample, these limitations underscore the importance of further research to validate and 693 

expand our findings.  694 

 695 

Taken together, our multi-omics integration analysis successfully discovered two clusters 696 

with immune-related depression symptoms, supporting the immuno-metabolic depression 697 

hypothesis and highlighting the importance of biological variables such as age and BMI. 698 

Incorporating single cell data, we uncovered cell type specific inflammation dysregulation 699 

involving SERPINF1 and VEGF-A, both previously implicated in depression. This integrated 700 

approach, recognizing depression's heterogeneity, enhances our understanding of its 701 

complexity by exploring symptoms across diagnoses. It highlights novel immune markers 702 

and genes as potential targets for clinical stratification and new therapeutic intervention. 703 
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