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Abstract 

Background: Better metrics to compare the impact of different antimicrobials on the gut 

microbiome would aid efforts to control antimicrobial resistance (AMR). 

 

Methods: The Antibiotic Resistance in the Microbiome – Oxford (ARMORD) study recruited 

inpatients, outpatients and healthy volunteers in Oxfordshire, UK, who provided stool 

samples for metagenomic sequencing. Data on previous antimicrobial use and potential 

confounders were recorded. Exposures to each antimicrobial were considered as factors in a 

multivariable linear regression, also adjusted for demographics, with separate analyses for 

those contributing samples cross-sectionally or longitudinally. Outcomes were Shannon 

diversity and relative abundance of specific bacterial taxa (Enterobacteriaceae, 

Enterococcus, and major anaerobic groups) and antimicrobial resistance genes (targeting 

beta-lactams, tetracyclines, aminoglycosides, macrolides, and glycopeptides). 

 

Results: 225 adults were included in the cross-sectional analysis, and a subset of 79 patients 

undergoing haematopoietic stem cell transplant provided serial samples for longitudinal 

analysis. Results were largely consistent between the two sampling frames. Recent use of 

piperacillin-tazobactam, meropenem, intravenous co-amoxiclav and clindamycin were 

associated with large reductions in microbiome diversity and reduced abundance of 

anaerobes. Exposure to piperacillin-tazobactam and meropenem were associated with a 

decreased abundance of Enterobacteriaceae, and an increased abundance of Enterococcus 

and major AMR genes, but there was no evidence that these antibiotics had a greater 

impact on microbiome diversity than iv co-amoxiclav or oral clindamycin. In contrast, co-

trimoxazole, doxycycline, antifungals and antivirals had less impact on microbiome diversity 

and selection of AMR genes. 

 

Conclusion: Simultaneous estimation of the impact of over 20 antimicrobials on the gut 

microbiome and AMR gene abundance highlighted important differences between 

individual drugs. Some drugs in the WHO Access group (co-amoxiclav, clindamycin) had 

similar magnitude impact on microbiome diversity to those in the Watch group 

(meropenem, piperacillin-tazobactam) with potential implications for acquisition of 

resistant organisms. Metagenomic sequencing can be used to compare the impact of 

different antimicrobial agents and treatment strategies on the commensal flora. 
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Introduction 

Effective antimicrobial stewardship is necessary to limit the emergence and spread of 

antimicrobial resistance (AMR),1 and this includes the preferential use of agents least likely 

to select for drug resistant pathogens among the commensal flora. This typically consists of 

avoiding “broad” spectrum antimicrobials, as well as those to which resistance is currently 

rare, and these principles underlie the World Health Organisation AWaRe classification 

(Access, Watch and Reserve).2 AWaRe is reflected in the current UK National Health Service 

standard contract, which requires hospitals to increase the proportion of “Access” 

antibiotics used, replacing previous requirements to reduce overall antibiotic use.3 

However, these classifications are largely based on activity against pathogens rather than 

direct measures of AMR gene selection or microbiome disruption, and stewardship could be 

improved if such measures were available. For example, two antibiotics being considered 

for use may have similar spectra against a target pathogen, but very different impacts on 

AMR selection, either because the amounts reaching the commensal flora differ, or because 

they have differing spectra against non-pathogenic commensals that protect against 

colonisation with drug-resistant pathogens. Metagenomic sequencing provides a direct 

measure of AMR genes and microbiome composition in a sample, and its increasing 

availability in recent years is starting to allow the fuller impacts of antimicrobials to be 

measured. 

 

The large intestine contains the vast majority of human commensal bacteria and is the 

primary reservoir for several clinically important commensal pathogens, particularly the 

Enterobacteriaceae (including Escherichia coli and Klebsiella pneumonia) and Enterococcus 

faecium. Increasing multi-drug resistance in these organisms represents a major global 

public health challenge.4,5 Existing evidence linking antibiotic exposure to individual-level 

selection for AMR in the gut flora comes predominantly from small, healthy volunteer 

studies, which have shown that antibiotics can cause rapid microbiome disruption, but 

provide limited comparative data between antibiotics. They also may also have limited 

applicability to real patients, who often have recent exposure to several different agents 

and are at high risk of colonisation with drug resistant organisms. Randomised trials are a 

robust method to assess the impacts of different treatment approaches, but few have 

reported microbiome outcomes.6–9 Another approach is to exploit variation in routine use of 

antibiotics in groups of patients at high risk of AMR to understand the nature and extent of 

differences between agents which cannot easily be achieved in other designs. Here we 

report results from a prospective observational study assessing the impact of antimicrobial 

use on the gut microbiome and selection of AMR genes. This study included two different 

sampling frames to produce independent and complimentary estimates, one cross-

sectional, analysing a single stool sample from each participant, and one longitudinal, 

analysing changes in serial samples taken from the same participant admitted for 

haematopoietic stem cell transplant to enrich for broad spectrum antimicrobial exposure. 
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Methods 

Study design and participants 

The Antibiotic Resistance in the Microbiome – Oxford (ARMORD) study was an 

observational study that recruited healthy individuals living in Oxfordshire, and patients at 

the Oxford University Hospitals NHS Foundation Trust (OUH). The study was coordinated by 

the Nuffield Department of Medicine, University of Oxford, and was approved by the East 

Midlands-Leicester Central Research Ethics Committee (15/EM/0270).  

 

The study involved two sampling strategies: 

i) Cross-sectional sampling. Participants provided a single stool sample, and measures of the 

microbiome and AMR gene abundance were related to exposures recorded at the time of 

sampling.  

ii) Longitudinal sampling. Participants provided serial stool samples, and changes in the 

microbiome and AMR gene abundance between serial samples from the same individual 

were related to exposures between samples. Longitudinal sampling was only performed in 

patients admitted to the OUH haematology ward for haematopoietic cell transplant (HCT). 

The initial sample collected from these patients was also used in the cross-sectional analysis. 

 

Participants were eligible if they were ≥18 years old, had no stoma or active inflammatory 

bowel disease, and were able to give informed consent and provide a history of recent 

antibiotic use. Inpatients and outpatients at OUH were approached by a member of the 

study team during routine care, and healthy individuals responded to articles in local media. 

After providing written informed consent, participants were interviewed and their medical 

notes were reviewed to collect information about antimicrobial exposures in the past year, 

recent travel, diet, alcohol and tobacco use, animal exposures, healthcare exposure and use 

of specific drugs (case report form in Appendix p8). Electronic patient records available at 

OUH included i) inpatient, emergency department and outpatient attendances, ii) inpatient 

and discharge antimicrobial prescriptions iii) microbiology, haematology and biochemistry 

results, iv) inpatient clinical observations (used to calculate the National Early Warning 

Score 2 [NEWS2] summary score of physiological abnormality),10 and v) discharge coding 

(including Charlson co-morbidity index). 

 

Sample collection 

In the cross-sectional stratum, participants were asked to provide the first stool sample 

passed after recruitment. This was stored at ambient temperature for a maximum of 24 

hours before being frozen at -80˚C. In the longitudinal stratum, participants were asked to 

provide a stool sample every other day until discharge. These were stored at 4-8˚C for up to 

72 hours before being frozen at -80˚C. 
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DNA extraction, sequencing and bioinformatic analysis 

DNA extraction was performed by bead beating in Lysing Matrix E tubes (MP Biomedicals) 

followed by QIAGEN Fast DNA Stool MiniKit (QIAGEN) (details in Appendix p1). Samples 

were sequenced in batches of 56-114 at the Oxford Centre for Genomics, and had 

automated normalisation and library preparation using either NEBNext Ultra or NEBNext 

Ultra II FS kits. All samples from the same batch were pooled and sequenced across 2-8 

Illumina HiSeq4000 lanes using 150bp paired-end sequencing. Following human read 

removal all samples were subsampled to a depth of 3.5 million paired reads, and samples 

with fewer reads were excluded. Taxonomic classification was performed with MetaPhlAn2 

(for diversity indices) and Kraken2 (for abundance of specific taxa). AMR gene detection in 

metagenomic sequence data was performed with the ARIBA software package, using the 

CARD database and ontology (v3.0.2) (details in Appendix p2). 

 

Outcomes 

Sequence data was used to derive three types of outcome:  

i) Shannon diversity index - a single metric of diversity for each sample (calculated as the 

sum of p*ln(p) for all species, where p is proportional abundance). This index incorporates 

abundance and the number of species detected (richness). 

ii) Log relative abundance of specific bacterial taxa. The taxa of interest were two major 

groups of opportunistic pathogens (family Enterobacteriaceae and genus Enterococcus), and 

three major groups of anaerobes (phyla Bacteroidetes and Actinobacteria, and class 

Clostridia). Together these non-overlapping taxa accounted for 89% of the total abundance 

of organisms across all samples. If a particular taxon was not detected, its relative 

abundance was imputed as 10-6 (the approximate lower limit of detection). 

iii) Log relative abundance of specific classes of AMR genes. Five classes of clinically 

important resistance mechanisms were of interest: Clinically significant beta-lactamases 

(CTX-M, OXA, TEM, SHV), tetracycline ribosomal protection proteins, aminoglycoside 

transferases (AAC, ANT, APH), macrolide/clindamycin resistance genes (erm and mef), and 

the vanA vancomycin resistance gene. If a particular gene was not detected its relative 

abundance was imputed as 10-5 (the approximate lower limit of detection). Further details 

are in Appendix p3. 

 

Statistical analysis 

Cross-sectional sampling frame 

Multivariable linear regression was used to estimate the effects of specific antimicrobial 

exposures on the outcomes above. Covariates were: age, sex, participant category (healthy, 

general medical, autologous stem cell transplant, allogeneic stem cell transplant), days of 

chemotherapy received (0 for non-HCT participants, truncated at 14), maximum Charlson 

comorbidity score in the year before sampling (identified from electronic health records), 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.24303874doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303874
http://creativecommons.org/licenses/by/4.0/


6 

 

and the following physiological abnormalities in the fortnight prior to sample collection; 

maximum NEWS2 score, C-reactive protein (CRP) >50 mg/dL, white cell count (WCC) >11 

x109/L, and WCC <0.5 x109/L. Healthy volunteers lived in the OUH catchment area but most 

had no previous activity at OUH, and in this case normal values were imputed (i.e. Charlson 

Index 0, NEWS2 score 0, CRP <50 mg/dL, WCC <11 and >0.5 x109/L). Other covariates such 

as diet and travel were not included in the final model, as they were not significantly 

associated with Shannon diversity in multivariable analysis and their inclusion did not 

materially affect other estimates. We did not make formal adjustment for multiple testing, 

as many of the antibiotic exposures were correlated, but interpreted level of evidence 

supporting findings in the context of the number of comparisons performed. 

 

All antimicrobial exposures observed in >5 participants were included in the model. 

Individual agents were categorised separately if given by different administration routes 

(e.g. oral vancomycin and intravenous vancomycin), but route of administration was ignored 

in analyses of antimicrobial class (e.g. glycopeptides). In categorising antimicrobial class, 

beta-lactams were divided into ‘narrow spectrum’ (defined as penicillin, amoxicillin, 

flucloxacillin and first generation cephalosporins) and ‘broad spectrum’ (all others). 

Exposure to each antimicrobial was included as a separate variable on a scale of 0 (no 

exposure) to 1 (full exposure). In order to reflect both recency and total duration of 

antimicrobial use, this exposure was modelled as the area under an exponential decay curve 

of the form y = 2-x/λ, in which λ is the microbiome disruption half-life, and x is time before 

sample collection. A single value of λ was used for all analyses, chosen as the common value 

across all antimicrobial exposures with the lowest Akaike Information Criterion across 1 to 

14 days in the cross-sectional model for microbial diversity (6 days; Supplementary Table 1). 

The disruption half-life of 6 days means that after 6 days of an antibiotic course a patient 

would have an exposure of 0.5 to that agent, and after 12 days they would have an 

exposure of 0.75. Details of the exposure calculation, including graphical depictions are in 

the Appendix (p3 and Supplementary Figures 1-2). 

 

Longitudinal sampling frame 

Serial samples collected from participants undergoing HCT were used for the longitudinal 

analysis. The unit of analysis was a pair of consecutive samples collected from the same 

individual. For patients with >2 samples, each consecutive pair was used (i.e. sample 2 in 

pair 1 was sample 1 in pair 2, and so on, so the total number of pairs per participant is one 

less than the number of samples). Only pairs collected within 2-30 days were used. A 

multivariable linear regression model was used that was analogous to the cross-sectional 

model described above, except that the outcome was the change between the first and 

second samples in a pair, rather than absolute values (i.e. change in Shannon diversity, or 

change in log relative abundance of bacterial taxa or AMR genes). Because pairs of samples 
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from the same participant may not be independent of one another, robust standard errors 

were used to allow for possible clustering. 

 

Covariates were: age, sex, type of transplant (allogeneic or autologous), days of 

chemotherapy received at collection of sample 1 (0 in non-HCT patients, and truncated at 

14), number of days between sample 1 and sample 2, change in NEWS2 score between 

sample 1 and sample 2, and the presence of the following new physiological abnormalities 

recorded after collection of sample 1 and before collection of sample 2; CRP >50 mg/dL, 

WCC >11 x109/L, WCC<0.5 x109/L. For each outcome, the value for the first sample in the 

pair was also included as a covariate (i.e. baseline diversity or log relative abundance of 

taxa/AMR genes). 

 

Antimicrobial exposures were calculated for samples as in the cross-sectional analysis 

above, and the exposure for each pair was the difference between the first and second 

samples. This has the following implications: i) if a patient starts an antimicrobial after the 

first sample is collected then the exposure for that pair is the same as for sample 2, ii) if a 

patient is on long-term antimicrobial treatment then the exposure for a pair is zero (as one 

would not expect this to lead to a difference between samples), iii) if a patient stops 

antimicrobial treatment shortly after sample 1 then the exposure to that agent will be 

negative (as one expects gut microbiome diversity to increase after stopping an 

antimicrobial). Truncating the small number of negative values at zero had little impact on 

results (data not shown). 

 

 Analysis was performed in R v4.2.3 with the ontologyIndex package (v2.4). 

Results 

Between July 2015 and November 2018, 225 participants were recruited and had at least 

one sequenced stool sample, all of whom were included in the cross-sectional analysis 

(Table 1 and Supplementary Figure 3 [CONSORT diagram]). Thirty-three (15%) were healthy 

volunteers, 91 (40%) were general medical patients, and 101 (45%) were HCT patients. The 

healthy volunteers were on average younger, more likely to be female, and rarely had 

recent antibiotic exposure. In contrast, 184/192 (96%) of medical and haematology patients 

had received antibiotics in the past year, and 97 (51%) of these were receiving antibiotics at 

the time of sampling. Of those with antibiotic exposure in the past month, 99/148 (67%) had 

received >1 type of antimicrobial. Of 101 HCT participants in the cross-sectional analysis, 79 

had >1 sequenced sample and so also contributed to the longitudinal analysis, and 173 

sample pairs were included in this analysis. 
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Impact of antimicrobial exposures on gut microbiome diversity 

A half-life of 6 days was identified as the best fit for the antimicrobial exposure in the cross-

sectional model of microbiome diversity, and this value was used for all subsequent 

analyses (Supplementary table 1). The independent effects of antimicrobial exposure on gut 

microbiome diversity in the cross-sectional and longitudinal models are shown in Figure 1. 

The cross-sectional model (Figure 1A) provided more precise estimates of microbiome 

disruption than the longitudinal model, and four antimicrobial exposures were associated 

with a significant reduction in gut Shannon diversity: iv co-amoxiclav (-3.0 [95% Confidence 

Interval -4.7 to -1.4 ; p = 0.0005), iv piperacillin-tazobactam (-2.6, [-3.4 to -1.8 ]; p <10-9 ), 

oral clindamycin (-2.2 [-3.5 to -0.8]; p = 0.002), and iv meropenem (-1.6 [-2.6 to -0.5]; p = 

0.003). There was no evidence that the impact of iv co-amoxiclav was greater than iv 

meropenem (p=0.13). In contrast, co-trimoxazole and doxycycline were associated with 

minimal reductions in gut microbiome diversity, as were azole antifungals and acyclovir 

(lower 95% CI above -1.0). In the longitudinal analysis (Figure 1B), only five exposures had 

data from more than 20 sample pairs, and these were consistent with the cross-sectional 

results, including large reductions in diversity associated with exposure to piperacillin-

tazobactam (-3.9 [-5.0 to -2.9]; p <10-10) and meropenem (-3.0 [-4.1 to -1.9]; p <10-6) (data 

on iv co-amoxiclav and oral clindamycin insufficient for comparison). In the longitudinal 

model, gentamicin was associated with marginally significant increased gut microbiome 

diversity (+6.6 [+1.3 to +11.8]; p = 0.02). 

 

Analyses by antimicrobial class were also largely consistent between cross-sectional and 

longitudinal analyses (Supplementary Figure 4). In both analyses ‘narrow’ spectrum beta-

lactams were associated with substantially lower microbiome disruption than ‘broad’ 

spectrum beta-lactams. In the cross-sectional analysis, several other classes of antibiotics 

also had little to no impact on the microbiome diversity; antifolates, macrolides, 

aminoglycosides and tetracyclines (lower 95% CI above -1.0). 

 

Effects of antimicrobials on the abundance of specific taxa and AMR genes 

Piperacillin-tazobactam, meropenem, and ciprofloxacin were associated with significant 

decreases in the relative abundance of Enterobacteriaceae in both models, as were 

ceftriaxone and ceftazidime in the cross-sectional model (>1,000 fold decreased relative 

abundance, p<0.01, Figure 2 & Supplementary Figure 5). There was no evidence of effects of 

iv co-amoxiclav (p=0.90) or oral clindamycin (p=0.31) on relative abundance of 

Enterobacteriaceae. Piperacillin-tazobactam and meropenem were also associated with 

large increases in the relative abundance of Enterococcus in both models (>100 fold 

increased relative abundance, p<0.01), as were iv co-amoxiclav (p=0.04), iv ceftriaxone 

(p=0.02) and iv vancomycin (p=0.03) in the cross-sectional model. Many antibiotics were 

associated with large reductions in the relative abundance of major anaerobe groups, 

particularly Actinobacteria (reductions in which were associated with exposure to 
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ceftazidime, oral ciprofloxacin, oral clindamycin, iv co-amoxiclav, meropenem, piperacillin-

tazobactam, and iv vancomycin). When analysed by antimicrobial class, broad spectrum 

beta-lactams were associated with reductions all anaerobe groups (Supplementary Figure 

5).  

 

Several antimicrobial exposures were also associated with increases in the relative 

abuindance of AMR genes (Figure 3, Supplementary Figure 6). In the cross-sectional 

analysis, iv piperacillin-tazobactam and meropenem were both associated with increases in 

several AMR mechanisms, including aminoglycoside transferases and macrolide resistance 

genes (all p<0.02) but there was no evidence that these antibiotics had any effect on overall 

relative abundance of beta-lactamases (p≥0.14), potentially reflecting lower abundance of 

relative species (see above) but greater AMR gene carriage in those surviving. In the cross-

sectional model, exposure to several classes of antimicrobials were associated with an 

increase in the abundance of corresponding resistance genes, including glycopeptides, 

tetracyclines, macrolides and clindamycin (all p≤0.02). Broad-spectrum beta-lactam use was 

not associated with an increase in the abundance of beta-lactamases, but it was associated 

with an increase in the abundance of glyopeptide and aminoglycoside AMR genes (both 

p≤0.0001). Increased aminoglycoside AMR gene abundance was also associated with 

clindamycin and glycopeptide use (both p≤0.02), but not aminoglycoside use. 

 

Discussion 
Our findings demonstrate that simultaneous modelling of multiple antimicrobial exposures 

in a heterogeneous and heavily antibiotic exposed population can produce direct, 

quantitative comparisons of the impact of different agents on multiple aspects of the gut 

microbiome. Several broad-spectrum antibiotics were associated with large and rapid 

reductions in gut microbiome diversity, including decreased abundance of several major 

anaerobe groups, and increased abundance of Enterococcus species, along with 

glycopeptide and aminoglycoside resistance mechanisms often found in Enterococcus 

faecium.5 The plausibility of these results is reinforced by the consistency between the two 

independent analysis frameworks that were used; cross-sectional and longitudinal. 

Microbiome disruption was clearest withclindamycin and broad spectrum beta-lactams 

including iv co-amoxiclav, piperacillin-tazobactam, and meropenem, consistent with some 

previous microbiome studies of these drugs.11–14 This is also in keeping with estimates of 

risk of Clostridioides difficile infection (CDI) which is highest with clindamycin, 

fluoroquinolones, carbapenems and third-generation cephalosporins.15,16 The limited 

impact of doxycycline on diversity is also consistent with the lower risk of CDI observed with 

tetracyclines. The decreased relative abundance of Enterobacteriaceae seen in this study 

with piperacillin-tazobactam, ceftriaxone, meropenem, and ciprofloxacin correspond with 

reductions seen in culture based studies.17 The absence of any clear effect of beta-lactams 
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on the abundance of beta-lactamase gene abundance may be because there were too few 

patients in this study to create robust categories of beta-lactamse by resistance spectrum, 

so opposite impacts on different beta-lactamase genes would have been combined. 

 

Observational studies of the gut microbiome allow large numbers of patients to be recruited 

much more easily than interventional studies such as clinical trials. However, using data 

from these to inform antibiotic usage is complicated by potential biases from confounding, 

and because of difficulties in accurately modelling multiple exposures in patients receiving 

many different antibiotics. In ARMORD, the apparent impact of vancomycin and 

clarithromycin on diversity was substantially reduced when adjusting for other antibiotic 

exposures (Figure 1A), in keeping with the fact that these drugs are typically given alongside 

broad-spectrum beta-lactams in the UK. Nevertheless, the complexity of antibiotic exposure 

captured in observational data also more closely reflects real life, whereas clinical trials 

generally manipulate one single antibiotic, and restrict background antibiotic exposure to 

produce a cleaner, but potentially less generalisable, comparison. 

 

The large degree of inter-individual variation in the gut microbiome introduces an additional 

source of variation to cross-sectional studies compared to longitudinal sampling. Despite 

this, cross-sectional sampling in ARMORD generally gave more precise estimates than 

longitudinal sampling, despite using a similar number of samples. Recruiting any 

hospitalised patients for longitudinal sampling before they have received antibiotics is 

challenging, and this was true in ARMORD, even among patients admitted electively for 

HCT. In ARMORD the quasi-experimental approach of longitudinal sampling starting before 

antimicrobial exposure had no advantage over cross-sectional sampling, and complicated 

recruitment. 

 

The ARMORD study has important limitations. Along with age and sex, several markers of 

acute illness and comorbidity were included in the model to adjust for potential 

confounding, but there may be residual and unmeasured confounding related to factors not 

adequately represented in the model. The microbiome disruption half-life used was 6 days, 

as this value best fitted the overall data, which implies that the majority of the disruption 

and recovery of the bowel flora diversity occurs rapidly after starting and stopping 

antimicrobials (Supplementary Figure 2). This is in keeping with interventional studies in 

volunteers,13,18 but is a simplification that does not account for some longer term impacts of 

antibiotic use that can be detected months after treatment.19,20 A larger study may have 

allowed derivation of exposure models that take this into account, or could test multiple 

different ways to represent the impact of antibiotic exposure on the gut microbiome, or 

that allow for different disruption dynamics for different antimicrobials. Also, because the 

study was observational, no data were available on drugs that are not commonly used at 

OUH, including imipenem, cefepime and aztreonam. Finally, although we estimate the 
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independent effects of multiple exposures, the uncertainty is still large making it challenging 

to use these results to adequately inform clinical use, as this would require clear distinction 

between antibiotics that might be given for the same indication. For example, the cross-

sectional data are consistent with an identical average reduction in diversity with 

piperacillin-tazobactam, meropenem, ceftazidime, ceftriaxone, intravenous co-amoxiclav, 

ciprofloxacin and clindamycin, but they are also consistent with important differences 

between these drugs. A larger study is required to identify or rule out such differences. 

 

Overall, however, simultaneous estimation of the impact of over 20 antimicrobials on the 

gut microbiome and AMR gene abundance highlighted important differences between 

individual drugs, and that some drugs in the WHO Access group (co-amoxiclav, clindamycin) 

had similar magnitude impact on microbiome diversity to those in the Watch group 

(meropenem, piperacillin-tazobactam) with potential implications for acquisition of other 

resistant organisms. The consistency of the ARMORD results between sampling frames and 

with previous studies supports the wider use of observational metagenomic studies to 

compare the impact of antimicrobials on the gut microbiome. Although some challenges 

remain, such as identifying an optimal measure of antimicrobial exposure, this is a practical 

approach to inform future research and stewardship. 
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Table 1 

 Healthy 

volunteers 

(n=33) 

General medical 

patients 

(n=91) 

HCT patients 

(n=101) 

All participants 

(n=225) 

Age, years (median, IQR) 37 (31-49) 76 (67-83)  58 (50-66) 64 (50-73) 

Sex (n, %)     

Male 7 (21%) 53 (58%) 60 (59%) 120 (53%) 

Female 26 (79%) 38 (42%) 41 (41%) 105 (47%) 

Recent antibiotic use (n, %)     

Receiving antibiotics at time of sampling 0 (0%) 55 (60%) 42 (42%) 97 (43%) 

Use in past month (but not at  

time of sampling) 
3 (9%) 26 (29%) 22 (22%) 51 (24%) 

Use in past year (but not in past month) 4 (12%) 6 (7%) 33 (33%) 43 (19%) 

No antibiotics in past year 26 (79%) 4 (4%) 4 (4%) 34 (15%) 

Max Charlson index in past year (median, IQR)* 0 (0-0) 4 (0-13) 0 (0-8) 0 (0-8) 

Maximum values in past 14 days (median, IQR)     

NEWS2* 0 (0-0) 5 (2-8) 3 (2-4) 3 (1-5) 

C-reactive protein† 0.2 (0.2-0.2) 63 (22-163) 10 (3-69) 21 (2-81) 

White cell count‡ 7.5 (7.5-7.5) 11.5 (8.4-14.4) 7.6 (5.8-10.9) 8.4 (7.4-12.4) 

Days of chemotherapy at time of sampling 

(median, IQR) 
0 (0-0) 0 (0-0) 3.0 (1.4-7.2) 0 (0-2.8) 

* National Early Warning Score 2. Imputed as 0 if no observations recorded, see Methods. 

† Imputed as 0.2 if no result recorded 

‡ Imputed as 7.5 if no result recorded 

Characteristics of participants in cross-sectional analysis 
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Figure 1 - Independent effect of 
specific antimicrobial exposures on 
Shannon diversity in A) cross-
sectional, and B) longitudinal 
analyses. Multivariable estimates are 
in black, univariable (unadjusted) 
estimates in grey. Error bars 
represent 95% confidence intervals. 
Non-antimicrobial covariates are not 
shown but were included in the 
model and can be found in 
supplementary data. Results are not 
plotted for 4 antimicrobials (n = 6-12) 
that had standard errors >3 and did 
not differ significantly from zero. 
Estimates represent the impact of 
prolonged use, when exposure ≈ 1 
(approximately 42 days, see 
Supplementary Figure 2).
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Figure 2 - Independent effects of 
specific antimicrobial exposures on 
relative abundance of selected taxa, 
in A) cross-sectional, and B) 
longitudinal multivariable analyses.
Error bars represent 95% confidence 
intervals. Non-antimicrobial 
covariates are not shown but were 
included in the model and can be 
found in supplementary data.
Estimates represent the impact of 
prolonged use, when exposure ≈ 1 
(approximately 42 days, see 
Supplementary Figure 2).
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Figure 3 - Independent effects of 
specific antimicrobial exposures on 
relative abundance of selected AMR 
genes in A) cross-sectional, and B) 
longitudinal multivariable analyses. 
Error bars represent 95% confidence 
intervals. Non-antimicrobial 
covariates are not shown but were 
included in the model and can be 
found in supplementary data. 
Estimates represent the impact of 
prolonged use, when exposure ≈ 1 
(approximately 42 days, see 
Supplementary Figure 2).
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