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ABSTRACT  

Endometrial cancer presents a major public health issue, particularly in post-

menopausal women. Whilst there are known risk factors for the disease, including 

oestrogen and obesity, these factors do not fully explain risk variability in cancer 

outcomes. The identification of novel risk factors may aid in better understanding of 

endometrial cancer development and, given the link with oestrogen metabolism, 

obesity and the risk of various cancers, the gut microbiome could be one such risk 

factor. Mendelian randomization (MR), a method that reduces biases of conventional 

epidemiological studies (namely, confounding and reverse causation) by using genetic 

variants to proxy exposures, was used to investigate the effect of gut microbial traits 

on endometrial cancer risk. Whilst our initial analyses showed that the presence of an 

unclassified group of bacteria in the Erysipelotrichaceae family increased the risk of 

oestrogen-dependent endometrial cancer (odds ratio (OR) per approximate doubling 

of the genetic liability to presence vs absence: 1.13; 95% CI: 1.01, 1.26; P=0.03), 

subsequent sensitivity analyses, including colocalisation, suggested these findings 

were unlikely reflective of causality. This work highlights the importance of using a 

robust MR analysis pipeline, including sensitivity analyses to assess the validity of 

causal effect estimates obtained using MR. 
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INTRODUCTION 

Endometrial cancer is a major public health issue, being the fourth most common 

cancer in women in the UK and US and the sixth most common cancer worldwide (1, 

2). In 2023, there were an estimated 66,200 new cases in the US, which was 3.4% of 

all new cancer cases, and an estimated 13,030 deaths (3). There are two main 

subtypes of endometrial cancer, endometrioid (or oestrogen-dependent endometrial 

cancer) and non-endometrioid. More than 70% of endometrial cancer cases are 

endometrioid and occur in women over 50 (1, 4). Targeting this risk group with novel 

interventions could be a key strategy to preventing disease occurence and reducing 

overall disease burden. 

 

There are a number of known risk factors for endometrioid cancer, including obesity, 

insulin resistance and excess exposure to oestrogen (1). However, the mechanisms 

by which these risk factors interact and affect cancer development is not fully 

understood and current research is unable to explain the varying cancer outcomes 

observed in high-risk groups (5). One explanation may be that there are novel risk 

factors that have not been discovered and, therefore, the relationship between these 

risk factors and endometrial cancer is yet to be quantified. The gut microbiome may 

be one such risk factor, as previous observational studies have linked the gut 

microbiome with many other cancers, including colorectal and breast cancers (6). The 

gut microbiome is also thought to modulate obesity and oestrogen metabolism, which 

could explain how it may play a causal role in the development of endometrial cancer 

(5, 7).  

 

Previous studies have investigated the role of the gut microbiome in endometrial 

cancer development using in vivo and in vitro experiments as well as observational 

studies in humans using small numbers of cancer cases and controls. Results from 

these studies have found altered gut microbial profiles in cancer cases compared to 

controls. However, many of these studies are likely to suffer limitations such as reverse 

causation (i.e., where the gut microbiome may be a consequence of endometrial 

cancer diagnosis rather than a cause) or confounding (i.e., whereby variation in the 

gut microbiome is altered independently by the causal risk factor for endometrial 

cancer, but no true relationship exists between the gut microbiome and cancer 

outcomes).  
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Mendelian randomization (MR) is a method that uses germline genetic variants that 

are robustly associated with a trait of interest (e.g., the gut microbiome) as a proxy for 

that trait to improve causal inference in the relationship between that trait and an 

outcome (e.g., endometrial cancer) (8, 9). As germline variants are fixed and randomly 

allocated at conception, using these variants as proxies for exposures has a number 

of advantages, including removing the possibility of reverse causation and reducing 

phenotypic confounding that may distort observed relationships. MR is therefore a 

useful alternative to randomised control trials (RCTs), which are often not feasible, 

due to financial, practical and ethical considerations.  

 

Therefore, we aimed to use two-sample MR, which utilises summary-level data, to 

estimate the causal relationship between the gut microbiome and endometrial cancer 

using some of the largest genome-wide association studies (GWASs) to date and, 

importantly, a series of sensitivity analyses that tested the robustness of findings to 

violations of MR assumptions. 

 

RESULTS 

 

Two-sample MR analyses 

To determine whether the gut microbiome plays a causal role in endometrial cancer, 

we performed two-sample MR. Summary-level data was obtained from a recent 

microbiome GWAS (mGWAS) meta-analysis (n=3,890) (10) and a GWAS meta-

analysis of endometrial cancer (cases=12,906, controls=108,979), including 8,758 

endometrioid cancer cases and 1,230 non-endometrioid cancer cases (11), both 

conducted in non-overlapping populations of European ancestry. There were 13 single 

nucleotide polymorphisms (SNPs) in the mGWAS that exceeded a genome-wide p-

value threshold (p<5x10-08), each associated with an independent microbial trait, as 

well as an additional SNP that has been reliably associated with bacteria in the 

Bifidobacterium genus across multiple mGWASs (Supplementary Table 1) (12-14). 

These 14 SNPs were extracted from the endometrial cancer GWAS summary 

statistics from the Epidemiology of Endometrial Cancer Consortium (E2C2) 

consortium, which were available for different histological subtypes in the IEU 

OpenGWAS (GWAS IDs: ebi-a-GCST006464-6) (15). Several of the SNPs were not 

present in the endometrial cancer data, or only present for some subtypes, and it was 
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not possible to identify a proxy SNP, the corresponding exposures were therefore 

excluded from subsequent analyses.  

 

Two-sample MR analyses found evidence that the presence (vs absence) of an 

unclassified group of bacteria in the Erysipelotrichaceae family (G. unclassified, F. 

Erysipelotrichaceae) increased the risk of endometrioid cancer by 13% (odds ratio 

(OR) per approximate doubling of the genetic liability to presence vs absence: 1.13; 

95% CI: 1.01, 1.26; P=0.03). When including all histologies in the analysis, the effect 

estimate for this microbial trait was in the same direction and of a similar magnitude, 

however the confidence intervals (CIs) crossed the null (OR: 1.08; 95% CI: 0.99, 1.19; 

P=0.09). In non-endometrioid cancer, the effect estimate for this microbial trait was in 

the opposite direction; however, CIs crossed the null (OR: 0.94; 95% CI: 0.72, 1.22; 

P=0.64). MR effect estimates for the remaining microbial traits on all histologies and 

subtypes of endometrial cancer were smaller and CIs crossed the null (Table 1, Figure 

1). Thus, all sensitivity analyses were based on the effects observed between G. 

unclassified, F. Erysipelotrichaceae and endometrioid cancer only. 

 

Sensitivity analyses 

 

Manual exploration of pleiotropy  

We performed several sensitivity analyses to test for violations of MR assumptions 

and explore other explanations for the observed causal effect of G. unclassified, F. 

Erysipelotrichaceae on endometrioid cancer. We were unable to perform formal 

methods to test for horizontal pleiotropy, owing to the fact that only one SNP was 

available to proxy for each microbial trait. We therefore searched the IEU OpenGWAS 

(15) and PhenoScanner (16) platforms for the SNP associated with G. unclassified, F. 

Erysipelotrichaceae (rs6733298) to test whether it had previously been associated 

with endometrial cancer or any other traits that may influence endometrial cancer 

independently from this gut microbial trait. A lenient multiple testing p-value threshold 

(P<1×10−04) was used to filter associations. In the IEU OpenGWAS, there were a total 

of seven SNP-trait associations that met this threshold; these traits were leg fat 

percentage (left and right), leg fat mass (left and right), body fat percentage, 

educational qualifications and years of schooling (Supplementary Table 2). In 

PhenoScanner, two SNP-trait associations met this threshold, including long-standing 
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illness or disability and coagulation defects (Supplementary Table 3). Some of the 

associations just below the multiple testing threshold were associated with increased 

leg fat percentage. This SNP had also previously been associated with 48 expression 

quantitative traits (eQTs) and 12 methylation quantitative traits (mQTs) 

(Supplementary Table 4 and 5), but we found no evidence for associations with 

proteins or metabolites (Supplementary Table 6 and 7). Given the association of this 

SNP with complex traits with biological relevance to endometrioid cancer (17), there 

may be a likely alternative causal pathway between this SNP and endometrioid cancer 

that is independent of G. unclassified, F. Erysipelotrichaceae, providing some 

evidence for horizontal pleiotropy. However, given the relationship between the gut 

microbiome and adiposity-related traits and the uncertainty of the direction of this 

association, it is difficult to unpick whether this reflects horizontal pleiotropy (i.e., bias 

inducing) or vertical pleiotropy (i.e., non-bias inducing and that which is part of the 

causal pathway between the gut microbiome and endometrial cancer). 

 

Two-sample MR using a lenient p-value threshold for selection of genetic 

instruments 

In the original MR analyses, only one SNP was associated with G. unclassified, F. 

Erysipelotrichaceae. In order to increase power and test for the possibility that this 

effect was driven by horizontal pleiotropy, a more lenient p-value threshold (p<1x10-

05) was used to select instruments for this microbial trait and estimate its causal 

effecton endometrioid cancer. After restricting this greater set of SNPs to those that 

had a consistent effect estimate across the cohorts included in the original mGWAS, 

four SNPs were available to use as instruments to proxy G. unclassified, F. 

Erysipelotrichaceae (Supplementary Table 8). In the subsequent MR analyses, the 

inverse-variance weighted(IVW)-derived effect estimate of this microbial trait on 

endometrioid cancer was found to be consistent in direction to the estimate obtained 

using the Wald ratio in the main analyses; however, the magnitude was attenuated 

and the CIs spanned the null (OR: 1.02; 95% CI: 0.93, 1.11; P=0.67) (Supplementary 

Figure 1).  

 

Estimates of the causal effect of the presence of G. unclassified, F. 

Erysipelotrichaceae on endometrioid cancer using pleiotropy-robust methods 

(Supplementary Table 9 and Supplementary Figure 1) were inconsistent in magnitude 
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to the IVW-derived and original Wald ratio estimate. Specifically, the MR-Egger effect 

estimate was in the same direction and both the weighted median and weighted mode 

effect estimates were in the opposite direction to the IVW, with all CIs spanning the 

null (MR-Egger OR: 1.01; 95% CI: 0.70, 1.46; P=0.97, weighted median OR: 0.998; 

95% CI: 0.92, 1.08; P=0.96 and weighted mode OR: 0.99; 95% CI: 0.86, 1.13; P=0.85). 

Given the inconsistencies between the originally observed causal effect estimates 

(derived by both Wald ratio and IVW methods) and pleiotropic-robust methods, and 

the magnitude of the effect estimates, coupled with the phenotypic associations with 

the original single SNP associated with G. unclassified, F. Erysipelotrichaceae used 

in the main analysis, it is possible that the apparent causal effect reflects violations of 

key MR assumptions.  

 

Colocalisation 

To determine whether the single genetic variant used as an instrument for G. 

unclassified, F. Erysipelotrichaceae was associated with variation in both this microbial 

trait and endometrioid cancer, which is necessary but not sufficient for establishing 

causality, we performed genetic colocalisation. Genome-wide data for microbial traits 

was only available for one of the cohorts included in the mGWAS meta-analysis, the 

Flemish Gut Flora Project (FGFP), which limited analyses to 2,223 participants. The 

SNP used to instrument G. unclassified, F. Erysipelotrichaceae (rs6733298) did not 

reach the genome-wide p-value threshold (i.e., 5x10-8) in this dataset alone, so the 

focus of these analyses was the difference between tested hypotheses. The 

colocalisation results (Table 2) firstly showed that the genetic variant was more 

strongly related to G. unclassified, F. Erysipelotrichaceae than to endometrioid cancer 

(posterior probabilities for H1 and H2 were 0.51 and 0.06, respectively) and that it was 

unlikely that neither trait had a related causal variant in the region (posterior probability 

for H0=0.29). There was little evidence that G. unclassified, F. Erysipelotrichaceae 

and endometrioid cancer risk shared a causal variant (i.e., the posterior probability for 

H4=0.04). There was also overall weak evidence that the observed causal relationship 

was driven by linkage disequilibrium (LD) (posterior probability of H3=0.11), though 

this probability was larger than there being a shared causal variant. Regional 

association plots confirmed these findings (Figure 2), showing that, whilst the variant 

was associated with the microbial trait, there was little evidence for an association of 

this variant (or variants in the surrounding genomic region) with endometrioid cancer 
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risk. Whilst there was an additional peak showing another SNP associated with 

endometrioid cancer, approximately 500kb downstream of the microbiome-related 

SNP, there was no evidence that this was in LD with the SNP related to the microbial 

trait (Figure 2). 

 

Reverse MR 

To finally examine whether the causal effect observed in the main analyses was driven 

by reverse causation (i.e., where the SNP used as an instrument for the microbial trait 

was affecting endometrioid cancer and this, in turn, had an effect on the microbial 

trait), two-sample MR analyses in the reverse direction were performed. This analysis 

aimed to assess whether endometrioid cancer had a causal effect on the presence of 

G. unclassified, F. Erysipelotrichaceae. Instruments for endometrioid cancer were 

obtained from a recent large GWAS on endometrial cancer, where a total of 10 SNPs 

were used as instruments for endometrioid cancer. The results showed little evidence 

that endometrioid cancer had a strong effect on the presence of G. unclassified, F. 

Erysipelotrichaceae (OR: 0.97; 95% CI: 0.66, 1.43; P=0.89) (Supplementary Table 

10). 

 

DISCUSSION 

We used two-sample MR to assess the causal effect of 14 microbial traits on 

endometrial cancer, using a comprehensive analysis pipeline previously applied in a 

similar context (18). We initially found that an unclassified group of bacteria in the 

Erysipelotrichaceae family was likely to increase the risk of endometrioid cancer; 

however, sensitivity analyses suggested that there were likely violations of core MR 

assumptions, specifically the existence of horizontal pleiotropy, meaning that our initial 

finding is unlikely to reflect causality. 

 

Firstly, in the manual exploration of pleiotropy we found that the SNP used as an 

instrument for the microbial trait of interest (rs6733298) was associated with a number 

of other traits with biological relevance to endometrioid cancer, including leg and body 

fat mass and percentage. From these analyses alone, it was not possible to tell if this 

indicated the presence of horizontal or vertical pleiotropy. Indeed, it could be that the 

relationships between rs6733298, G. unclassified, F. Erysipelotrichaceae and these 

adiposity-related traits simply reflects the causal pathway by which the gut microbiome 
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influences endometrial cancer. However, it is equally plausible that rs6733298 

independently influences both this gut microbial trait and adiposity, where the latter 

only influences endometrial cancer. By increasing our p-value threshold to allow more 

instruments to be used to proxy the microbial trait, we were able to conduct pleiotropy-

robust methods. The results of these methods were inconsistent, whereby the 

estimates derived from the weighted median and mode methods were inconsistent to 

estimates derived using the Wald ratio, IVW and MR-Egger methods. The weighted 

median estimator assumes that no more than 50% of the instruments are invalid and 

the weighted mode estimator assumes that the greatest number of similar estimates 

are derived from valid instruments. Thus, the inconsistency between these two 

methods and all other methods undertaken may indicate that the more lenient p-value 

threshold in this scenario enabled the inclusion of mostly invalid SNPs, even when 

restricting to those that had directionally consistent effect estimates across the studies 

included in the mGWAS. This further highlights the requirement to use SNPs that are 

robustly and consistently associated with gut microbial traits in future MR analyses 

assessing the role of the gut microbiome in all health outcomes. Whilst the consistency 

between the estimates derived from the IVW and MR-Egger methods indicate that, 

when accounting for directionally pleiotropic SNPs (i.e., which may have in part been 

biasing the weighted median- and mode-based estimates), the causal effect was in 

the positive direction, the lack of statistical evidence for such a causal effect coupled 

with the findings from the manual exploration of pleiotropy, suggested that horizontal 

pleiotropy may very likely be at play. Furthermore, the reliability of these methods and 

their ability to derive informative estimates suffer with increasingly limited numbers of 

independent SNPs, which is the case in this context, where only four SNPs were 

available for MR analyses. Additionally, the colocalisation results showed that there 

was no shared causal variant affecting both the microbial trait and endometrial cancers 

and that the observed relationship was likely not driven by LD. Given that 

colocalisation is a requirement for causality, these analyses coupled with other 

sensitivity analyses undertaken, suggest our initial finding was not reflective of a 

causal relationship. Lastly, given that the SNP used as an instrument for the microbial 

trait in the main analyses was more strongly associated with the microbial trait 

compared to the endometrioid cancer outcome and the reverse MR analyses found 

little evidence for a reverse effect of endometrioid cancer on G. unclassified, F. 

Erysipelotrichaceae, the main analyses were likely not biased by reverse causation 
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(i.e., where the SNP primarily influences the outcome, which, in turn, influences the 

exposure). This work therefore demonstrates the importance of conducting sensitivity 

analyses to assess the robustness of MR findings. 

 

A particular strength of this study is the methods used for selecting SNPs associated 

with the gut microbiome and the comprehensive sensitivity analyses applied to test 

the robustness of main analyses. Previous MR studies assessing the causal role of 

gut microbial traits on other diseases or traits have used a lenient p-value threshold 

and these signals have not been replicated in subsequent studies (19). Our analysis 

highlights that this is not an appropriate strategy, as it likely leads to the inclusion of 

invalid SNPs, biased results and inaccurate conclusions. The mGWAS used in this 

analysis improved on this as it was a meta-analysis of multiple studies and only 

selected instruments that reached a genome-wide significance (p<5x10-08). 

Additionally, we used one of the largest endometrial cancer GWASs to date, so were 

88% powered to detect an OR of 1.3 in this MR analysis. This means, however, that 

we may have missed other smaller effect estimates between different microbial traits 

and endometrial cancer. 

 

There are a number of limitations of this work, which relate to the assumptions of MR. 

Firstly, there cannot be any pathway between the genetic instruments used to proxy 

the exposure (here, the microbial traits) and the outcome of interest (here, endometrial 

cancer) that is independent of the exposure. Given that the biological mechanisms by 

which host genetic variation relates to the gut microbiome are poorly understood, we 

cannot rule out that the microbiome GWAS signals are due to unaccounted upstream 

factors in the host (and we are therefore observing reverse causation in MR analyses) 

or there may be horizontal pleiotropy at play (i.e., independent associations between 

genetic variants used as instrumental variables and endometrial cancer). Therefore, 

further work in the field, with harmonised and large-scale datasets, is required to better 

understand the mechanisms behind how host genetic variation could drive variation in 

the microbiome. Secondly, our colocalisation analyses were limited by power, as we 

were only able to use the full genome-wide summary statistics from the FGFP data 

alone. However, these results are still a helpful illustration that there appears to be no 

variant associated with both the gut microbiome and endometrioid cancer in this 
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region. Relating to the availability of full genome-wide summary statistics, the reverse 

MR analyses may also have been underpowered. 

 

Another issue with any potential findings of this work is the taxonomical classification 

of each microbial trait. For the relationship we observed in the original MR analyses, 

we found that an unclassified group of bacteria in the Erysipelotrichaceae family had 

a causal effect on endometrioid cancer. This is not particularly useful information if we 

cannot pinpoint the group of bacteria that is responsible for this effect and could be a 

possible target for potential interventions (if, indeed, the estimate did reflect a causal 

effect). Going forward, we would need more specific classification of bacterial groups 

in order to fully understand any causal relationships and be able to inform preventative 

strategies to reduce the risk of endometrial cancer. 

 

This study initially found evidence for a causal effect of an unclassified group of 

bacteria in the Erysipelotrichaceae family and increased endometrioid cancer risk. 

However, subsequent sensitivity analyses suggested this finding may be due to 

alternative factors independent of the causal pathway. Whilst there were some 

limitations with this work, this study, along with previous similar work (18), has been 

useful in highlighting the need for stringent analysis pipelines when conducting MR 

studies.  

 

METHODS 

 

Study design 

Two-sample MR was used to investigate the causal relationship between different 

traits of the gut microbiome and endometrial cancer. SNPs associated with the 

exposure and outcome of interest were obtained from summary data of two 

independent GWASs. Specifically, these data were used to estimate the causal 

relationship between 14 microbial traits and endometrial, endometrioid and non-

endometrioid cancer risk. The Strengthening the Reporting of Observational Studies 

in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines (20) were 

used to structure the reporting of this study. 
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Gut microbiome GWAS data and instrument selection 

SNPs associated with microbial traits were obtained from a large microbiome GWAS 

(mGWAS) conducted in three independent European cohorts, the Flemish Gut Flora 

Project (FGFP; n=2,223) and two German cohorts (FoCus (n=950) and PopGen 

(n=717) (10) (data available here: 

https://data.bris.ac.uk/data/dataset/22bqn399f9i432q56gt3wfhzlc). SNPs were 

identified for a total of 14 microbial traits including those that reflected a change in 

microbial relative abundance (AB) and the likelihood of presence vs absence (P/A) in 

faecal samples (Supplementary Table 1). DNA was extracted from faecal samples 

provided by participants and 16S rRNA gene sequencing was conducted to 

taxonomically classify bacteria. Following quality control (QC) steps, a total of 159 

microbial traits were analysed in the mGWAS. Further information on recruitment, 

sampling, preparation and analysis has been previously reported (10, 21). After 

genotyping and QC of the FGFP cohort, 2,223 participants were used in the analyses, 

all from European ancestry. The FGFP cohort was used as the discovery cohort in the 

analysis, and all SNPs that reached an association test p-value threshold (P<1×10−05) 

in this cohort were taken forward into a meta-analysis with the FoCus and PopGen 

studies. Six microbial traits were not present in these studies, so the number of 

microbial traits in the meta-analysis was 153. The meta-analysis was performed using 

the inverse variance fixed effects method and SNPs were considered “meta-

supported” if they reached a smaller p-value of association in the meta-analysis than 

in the FGFP cohort alone. The genome-wide meta-analysis p-value threshold was 

defined as 2.5×10−08 and the study-wide p-value threshold was defined as 1.57×10−10, 

using Bonferroni correction for the number of microbial traits analysed. A total of 13 

SNPs reached this genome-wide meta-analysis p-value, each associated with an 

independent microbial trait, were selected as genetic instruments, where two SNPs 

reached the study-wide p-value threshold and 11 SNPs reached the genome-wide 

threshold. One additional SNP was also selected, as it was the most consistently 

previously reported SNP associated with bacteria of the Bifidobacterium genus in the 

literature (22, 23). Effect estimates from the mGWAS represent an increase in the log-

transformed OR for P/A microbial traits and the standard deviation (SD) change for 

rank normalised AB microbial traits with each effect allele carried. 
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Endometrial cancer GWAS data 

Data for endometrial cancer was obtained from a GWAS meta-analysis conducted 

using 17 studies of participants of European ancestry, totalling 12,906 endometrial 

cancer cases and 108,979 country-matched controls (11). Studies used in this GWAS 

meta-analysis included the Epidemiology of Endometrial Cancer Consortium (E2C2), 

the Endometrial Cancer Association Consortium (ECAC) and UK Biobank (details of 

studies included available in Supplementary Table 11). These analyses also 

distinguished between the different histological subtypes of endometrial cancer, 

endometrioid (cases=8,758; controls=46,126) and non-endometrioid (cases=1,230; 

controls=35,447). This data was downloaded from the IEU OpenGWAS (GWAS IDs: 

ebi-a-GCST006464-6). The OncoArray genotyping chip, containing 533,631 variants, 

was used to genotype 5,061 endometrial cancer cases from 10 studies. After SNP-

wise QC, 469,364 SNPs remained for imputation. The 5,061 OncoArray-genotyped 

endometrial cancer cases were country-matched to controls. Following QC, 

OncoArray genotypes from 4,710 cases and 19,438 controls remained and were 

included in the analyses. Following SNP-wise QC, the analysis included a total of 

12,906 endometrial cancer cases and 108,979 controls, which included 8,758 

endometrioid cases and 1,230 non-endometrioid cases. The remaining cases were 

either of mixed histology or the study did not include information about histology. Per-

allele ORs were computed using logistic regression and estimated ORs from different 

studies were combined in a fixed effects inverse variance weighted meta-analysis. A 

conventional genome-wide p-value threshold (p<5x10-08) was used to select SNPs. 

Further details on the studies used, genotyping, QC and analyses has previously been 

published (11). This meta-analysis confirmed seven of the eight previously published 

loci associated with endometrial cancer and nine further independent risk loci were 

identified including eight newly reported regions and a locus that had previously been 

identified by a joint endometrial-colorectal cancer analysis. The seven previously 

published variants and three of the newly identified variants also reached the genome-

wide p-value threshold in an analysis restricted to endometrioid cancer. No SNPs 

reached the genome-wide p-value threshold when analyses were restricted to non-

endometrioid cases. 
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Statistical analyses 

 

Two-sample Mendelian randomization 

In these analyses, two-sample MR was used using the TwoSampleMR package 

(version 0.5.6) (24) in R (version 4.1.3) to examine the causal relationship between 14 

different microbial traits and endometrial cancer (both overall and subtype-specific). 

 

The methods used here have previously been described (18). In brief, summary-level 

data for each of the 14 microbial trait-associated SNPs were extracted from both the 

mGWAS and the endometrial cancer GWAS meta-analysis. If a particular SNP wasn’t 

present in the endometrial cancer data, a proxy SNP was used that was correlated 

with the original SNP (i.e., r2 >0.8). The proportion of variance in each microbial trait 

explained by each SNP (R2) and the strength of the instrument (F-statistic) has 

previously been calculated (18) (Supplementary Table 1). For binary microbial traits 

(i.e., presence vs absence), the R2 was calculated using the “get_r_from_lor” function 

of the TwoSampleMR package (24) and this estimate was then squared. For 

continuous traits (i.e., abundances) the R2 was calculated using the following formulas 

(25):  

 

𝑅2  =  
2 × 𝛽2 × 𝑀𝐴𝐹 × (1 − 𝑀𝐴𝐹)

2 × 𝛽2 × 𝑀𝐴𝐹 × (1 − 𝑀𝐴𝐹) + (𝑠𝑒(𝛽))2 × (2 × 𝑁) × 𝑀𝐴𝐹 × (1 − 𝑀𝐴𝐹) 
 

 

 

Where β is the effect size for the association between a given SNP and the exposure, 

MAF is the minor allele frequency, se(β) is the corresponding standard error of the 

effect size, and N is the sample size used to estimate the SNP-exposure association.  

 

𝐹 =  𝑅2 × (𝑁 − 1 − 𝑘)/((1 − 𝑅2) ∗ 𝑘)  

 

Where R2 is the proportion of variance in the exposure explained by the instrument, N 

is the sample size used to estimate the SNP-exposure association, k is the number of 

SNPs included in the instrument. 
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The exposure and outcome datasets were harmonised so that the effect of each SNP 

on the exposure and the effect of that same SNP on the outcome corresponded to the 

same allele. Palindromic SNPs (i.e., where the effect/alternative allele are either A/T 

or G/C combinations) were harmonised, where possible, using the allele frequencies 

and excluded if it was not possible to harmonise them (i.e., when the MAF of the SNP 

was above 0.42). 

 

As there was only one SNP associated with each microbial trait, the Wald ratio method 

was used to estimate the effect of each microbial trait on endometrial cancer. This was 

calculated by dividing the SNP-outcome association by the SNP-exposure association 

(8).  

 

The effect estimates obtained from two-sample MR analyses represent the OR for 

endometrial cancer risk with either each SD higher relative abundance (AB) of each 

continuous microbial trait or an approximate doubling of the genetic liability to the 

presence vs absence (P/A) of each binary microbial trait. P-values were used as a 

continuous indication of the strength of an association, where the P-value and beta-

coefficient were the basis of conclusions drawn from analyses. Given the relative 

nature of microbial traits, there was no correction for multiple testing. 

 

Sensitivity analyses 

 

Assumptions of MR analyses 

There are three core assumptions that must be met when using MR to estimate a 

causal relationship between exposure and outcome (Figure 3). The first is that the 

genetic instruments used to proxy the exposure are robustly associated with this 

exposure. The second is that there are no confounders of the genetic instruments used 

to proxy the exposure and the outcome (i.e., confounders driven by population 

substructure, assortative mating or intergenerational effects). Finally, the third 

assumption is that the genetic instruments used to proxy the exposure are only 

associated with the outcome through the exposure (9, 26, 27). As SNPs used were 

associated with the exposure in all cases and both data sources were of European 

descent, a series of sensitivity analyses were conducted to test for violations of, 

predominantly, the third MR assumption.  
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Manual exploration of pleiotropy 

Since there were only singular instruments for each microbial trait, pleiotropy-robust 

methods that usually require multiple genetic variants were not possible to apply within 

this context. Therefore, to assess whether any causal relationships found between 

microbial traits and endometrial cancer were affected by horizontal pleiotropy, the 

SNPs being used as instruments were looked up in the IEU OpenGWAS (15, 24) and 

PhenoScanner (16) platforms to determine if these SNPs had previously been 

reported to be associated with either endometrial cancer or traits associated with 

endometrial cancer risk, which could be independent from the gut microbiome. Based 

on the number of results returned by PhenoScanner and the number of phenotypes in 

the IEU OpenGWAS platform, a lenient p-value threshold (P<1x10-4) was set as the 

multiple testing threshold to define the presence of associations between the SNPs 

and traits. 

 

Two-sample MR using a lenient p-value threshold 

When using the traditional p-value threshold for instrument selection (p<5x10-8), there 

was only one SNP associated with each microbial trait; therefore, it was not possible 

to conduct formal pleiotropy-robust methods that require multiple genetic instruments. 

To increase the number of SNPs associated with each microbial trait (and thus enable 

the application of these pleiotropy-robust methods), a more lenient p-value threshold 

(p<1x10-5) was used for instrument selection and SNPs that met this threshold were 

then restricted to those with directionally consistent effect estimates between the three 

studies in the mGWAS (10). These SNPs were obtained from previously published 

work (18). The inverse-variance weighted (IVW) method was used as the main 

analysis, which meta-analyses effect estimates obtained by the Wald ratio across 

SNPs, weighted by the inverse variance of the SNP-outcome association using fixed 

effects. As using a more lenient p-value threshold increases the risk of weak 

instrument bias and horizontal pleiotropy, further methods were applied to test for this. 

The weighted median (28), weighted mode (29) and MR-Egger (30) regression 

methods were used and effect estimates were compared across all methods. 

 

The weighted median (28) method can produce a consistent causal estimate even 

when up to 50% of SNPs are invalid instruments. Weighting the individual SNP effect 

estimates by the inverse variance of the SNP-outcome association, the method then 
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orders the weighted effect estimates by magnitude and selects the median value as 

the causal effect estimate. Similarly, assuming that the most common causal effect 

estimate is the true causal effect (even if the majority of instruments are invalid), the 

weighted mode method clusters the weighted effect estimates of each SNP by 

similarity and then estimates the causal effect based on the largest group of SNPs 

(29). The MR-Egger (30) method estimates the causal effect adjusted for any 

directional pleiotropy, by allowing a non-zero intercept in the relationship between 

SNP-outcome and SNP-exposure associations, where the intercept provides an 

indication of the presence and magnitude of directional pleiotropy. 

 

Colocalisation 

Colocalisation analyses were performed using the ‘coloc’ package in R (as previously 

described (18)) using the default parameters (i.e., with the prior probabilities of the 

SNP being associated with the exposure, the outcome or both traits being specified 

as 1x10-04, 1x10-04 and 1x10-05, respectively (31)), additionally specifying that the 

exposures (i.e., microbial traits) were binary or continuous, where appropriate (i.e., 

depending on whether the trait was AB or P/A) and that the outcome (i.e., endometrioid 

cancer risk) was binary with the ‘quant’ or ‘cc’ option, respectively). Bayes factor 

computation was used to generate 5 posterior probabilities (H0-H4) characterised by 

the following outcomes: (H0) neither trait has a genetic association in the region; (H1) 

only the microbial trait of interest has a genetic association in the region; (H2) only 

endometrial cancer has a genetic association in the region; (H3) both traits are 

associated but have different causal variants and (H4) both traits are associated and 

have the same causal variant. We used a posterior probability threshold ≥0.80 to 

indicate evidence of a shared common causal variant between microbial traits and 

endometrioid cancer. Full summary statistics were only available for the FGFP cohort 

for gut microbiome variation; therefore, genetic variants ±1Mb of the lead SNP 

associated with microbial traits for which there was evidence for a causal impact on 

endometrial cancer in our main analyses were extracted from the FGFP and E2C2 

genome-wide datasets. Regional association plots were generated to visualise genetic 

colocalisation using the LocusCompareR package (32). 
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Reverse two-sample MR 

To determine if any association found in the main analyses was explained by reverse 

causation (i.e., where the SNP associated with the microbial trait was actually 

predominantly related to endometrial cancer, which was then causing a change in the 

microbial trait), two-sample MR in the reverse direction was conducted (i.e., where 

endometrial cancer was treated as the exposure and the microbial traits for which 

there was evidence for an effect on endometrial cancer in the main analysis was 

considered the outcome). SNPs associated with endometrial cancer were obtained 

from a large GWAS meta-analysis of 12,906 cases and 108,979 controls (11). SNPs 

were selected by using a conventional genome-wide p-value threshold (p<5x10-8). For 

endometrial cancer (i.e., all histologies), 16 SNPs were available as instruments. For 

endometrioid cancer, 10 SNPs were available instruments. No SNPs reached the 

genome-wide p-value threshold for non-endometrioid cancer; therefore, reverse two-

sample MR analyses were not possible to conduct. We extracted SNPs associated 

with the endometrial cancer outcomes from the FGFP cohort (10) (as full summary 

statistics were only available for the this cohort) for any microbial traits that had been 

found to have a causal effect on endometrial cancer in the main analyses. MR 

analyses were conducted as above and, as multiple SNPs were available for each 

exposure, the IVW method was used with comparison to pleiotropy-robust methods 

(i.e., weighted median, weighted mode and MR-egger methods) described above.  
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MAIN TABLES AND FIGURES 

 

Table 1. Two-sample MR estimates of the effect of each microbial trait on endometrial cancer 

and both endometrioid and non-endometrioid subtypes 

 

Abbreviations: AB = abundance; CI = confidence interval; MR = Mendelian randomization; P/A = 

presence vs absence; SD = standard deviation. Letters in the microbial trait name indicate the 

taxonomic rank of each of each microbial trait, with “C”, “F”, “G”, “O” and “P” representing “class”, 

“family”, “genus”, “order” and “phylum”, respectively. Where a microbial trait has been specified as 

“unclassified”, this indicates the microbial traits that could not be classified at the genus level and has 

been organised into an unclassified groups within a higher classification rank. The effect estimates 

represent the OR for endometrial cancer risk with either each SD higher relative abundance (AB) of 

each continuous microbial trait or approximate doubling of the genetic liability to the presence (vs 

absence) (P/A) of each binary microbial trait. A column entry of “n/a” indicates that the genetic variant 

associated with that particular gut microbial trait was not available within the GWAS summary statistics 

(and it was not possible to identify a suitable proxy SNP); thus, MR analyses for that microbial trait were 

not possible. 

  

Microbial trait MR estimate of endometrial cancer risk using the Wald ratio (95% CI); 

p-value 

All histologies of 

endometrial cancer 

Endometrioid Non-endometrioid 

G.unclassified.F.Porphyromonadaceae (AB) 0.94 (0.79, 1.11); 0.46 1.00 (0.82, 1.23); 0.99 0.60 (0.36, 1.01); 0.06 

G.Bifidobacterium (AB) 0.84 (0.64, 1.11); 0.22 0.94 (0.68, 1.31); 0.72 0.76 (0.34, 1.70); 0.51 

G.Butyricicoccus (AB) 1.15 (0.91, 1.46); 0.25 1.09 (0.83, 1.44); 0.53 1.24 (0.63, 2.44); 0.54 

G.unclassified.O.Bacteroidales (P/A) 1.00 (0.89, 1.11); 0.95 1.02 (0.89, 1.16); 0.82 0.90 (0.64, 1.26); 0.53 

G.Veillonella (P/A) 0.99 (0.87, 1.13); 0.84 0.99 (0.84, 1.16); 0.89 1.19 (0.82, 1.73); 0.37 

G.Parabacteroides (AB) 0.84 (0.68, 1.03); 0.10 0.81 (0.63, 1.04); 0.10 0.80 (0.45, 1.43); 0.45 

G.Ruminococcus (P/A) 0.98 (0.91, 1.06); 0.66 0.99 (0.91, 1.09); 0.90 n/a  

G.unclassified.P.Firmicutes (P/A) 0.93 (0.87, 1.01); 0.09 0.97 (0.88, 1.06); 0.50 n/a 

F.Sutterellaceae (P/A) 1.00 (0.93, 1.07); 0.93 0.97 (0.89, 1.06); 0.47 n/a 

C.Gammaproteobacteria (AB) 1.05 (0.83, 1.33); 0.66 0.93 (0.70, 1.25); 0.64 n/a 

G.unclassified.P.Firmicutes (AB) 0.96 (0.76, 1.20); 0.70 1.00 (0.77, 1.31); 0.98 1.37 (0.70, 2.68); 0.36 

G.Dialister (P/A) 0.97 (0.87, 1.08); 0.53 1.00 (0.88, 1.14); 0.99 0.89 (0.65, 1.24); 0.50 

G.unclassified.F.Erysipelotrichaceae (P/A) 1.08 (0.99, 1.19); 0.09 1.13 (1.01, 1.26); 0.03 0.94 (0.72, 1.22); 0.64 

G.Coprococcus (P/A) n/a n/a n/a 
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Table 2. Posterior probabilities for colocalisation analyses relating to the association between 

G. unclassified, F, Erysipelotrichaceae P/A and endometrioid cancer. 

 

Posterior probabilities H0 H1 H2 H3 H4 

G. unclassified, F. Erysipelotrichaceae (P/A) 0.29 0.51 0.06 0.11 0.04 

 

Abbreviations: AB = abundance; P/A =  presence vs absence. Letters in the microbial trait name 

represent the taxon classification level from which that microbial trait was observed, with “G” and “F” 

representing “genus” and “family”, respectively. All microbial traits that were not confidently classified 

at the genus level were organised into unclassified groups within higher classification levels 

(represented by “unclassified”). H0: Neither trait has a genetic association in the region, H1: Only the 

first trait (i.e., the microbial trait) has a genetic association in the region, H2; Only the second trait (i.e., 

endometrioid cancer risk) has a genetic association in the region, H3: Both traits are associated but 

have different causal variants and H4: Both traits are associated and have the same causal variant. 
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Figure 1. MR estimates of the effect of each microbial trait on endometrial cancer and subtypes. 

 

 

 

Abbreviations: AB = abundance; CI = confidence interval; MR = Mendelian randomization; OR = odds 

ratio; P/A = presence vs absence; SD = standard deviation. MR estimates represent the OR for 

endometrial risk and 95% CI per SD unit change for continuous microbial traits (AB) or per approximate 

doubling of the genetic liability to presence (vs absence) of each binary microbial trait (P/A). 
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Figure 2. Colocalisation results for lead SNP (rs6733298) associated with the G. unclassified, F, 

Erysipelotrichaceae P/A microbial trait with endometrioid cancer. 

 

 

 

Abbreviations: AB = abundance; ec = endometrial cancer; FGFP = Flemish Gut Flora Project; GM = 

gut microbiome; GWAS = genome-wide association study. Regional association plots, generated from 

LocusCompareR, showing the -log10(P-value) where the lead SNP (rs6733298) associated with the 

G. unclassified, F. Erysipelotrichaceae P/A microbial trait is represented by a purple diamond. These 

plots were created using the FGFP and O’Mara et al. (2018) full summary-level data for microbial 

traits and endometrioid cancer, respectively. 
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Figure 3. MR framework applied to assess the causal effect of the gut microbiome on 

endometrial cancer risk 

 

 

Abbreviations: MR = Mendelian randomization; SNP = single nucleotide polymorphism. MR aims to 

improve causal inference by reducing the limitations of traditional observational epidemiology studies 

and relies on three key assumptions: (A) the SNPs are strongly associated with the exposure (the gut 

microbiome); (B) there is no confounding between the SNPs, used to proxy the exposure, and the 

outcome (endometrial cancer); and (C) the SNPs are not independently associated with the outcome 

other than through the exposure. When these assumptions are met, microbiome-associated genetic 

variants can be used as instruments to assess the causal effect of gut microbial traits on endometrial 

cancer. In two-sample MR, the SNP-outcome (ZY) and the SNP-exposure (ZX) effect estimates are 

derived from two independent samples and the causal effect of the exposure on the outcome (XY) 

calculated as a ratio of ZY and ZX. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.06.24303765doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303765
http://creativecommons.org/licenses/by/4.0/

