Rehabilitation technology trends

Page **1** of **25**

1 TITLE

- 2 Uncovering clinical rehabilitation technology trends: field observations, mixed methods analysis,
- 3 and data visualization

4 AUTHORS

- 5 Courtney Celian, M/OT^a, Hannah Redd PT, DPT^a, Kevin Smaller, BS^a, Partha Ryali, PhD^{a,b}, James
- 6 L. Patton, PhD^{a,b}, David J. Reinkensmeyer, PhD^{c,d}, Miriam R. Rafferty, PT, DPT, PhD^{a,e,f}
- 7 ^a Shirley Ryan AbilityLab, Chicago, IL
- 8 ^b Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
- 9 ^c Henry Samueli School of Engineering Department of Mechanical and Aerospace Engineering,
- 10 University of California, Irvine, Irvine, CA
- ^d UC Irvine School of Medicine Department of Anatomy and Neurobiology University of
- 12 California, Irvine, Irvine, CA
- ¹³ ^e Northwestern University Feinberg School of Medicine Department of Physical Medicine and
- 14 Rehabilitation, Chicago, IL
- ¹⁵ ^f Northwestern University Feinberg School of Medicine Department of Psychiatry and
- 16 Behavioral Science University of Illinois Chicago, Chicago, IL

17 ACKNOWLEDGEMENTS

- 18 We thank the clinical staff at the Shirley Ryan AbilityLab (SRALab) for allowing us to perform the
- 19 field observations. We also thank the Robotics Lab and KTEAM at SRALab and the members of
- 20 the STARS RERC and COMET-RERC.org for their ongoing comments and advice.

Rehabilitation technology trends

Page **2** of **25**

- 21 This study was presented as a poster at Progress in Clinical Motor Control II Movement and
- 22 Rehabilitation Sciences conference at Northwestern University in Chicago, IL, on July 13th,
- 23 **2023**.
- 24 FINANCIAL SUPPORT
- 25 This work was supported by the National Institute on Disability, Independent Living, and
- 26 Rehabilitation Research [90REGE005, 90REGE0010], the National Institute on Aging
- 27 [P30AG059988], U.S. Department of Defense [W81XWH-20-1-0231], and the National Center
- for Advancing Translational Sciences [UL1TROO1414]. These contents, however, do not
- 29 necessarily represent the policy or endorsement of any of the funding sources.

30 AUTHOR DISCLOSURES

- 31 David J. Reinkensmeyer has a financial interest in Hocoma A.G. and Flint Rehabilitation Devices
- 32 LLC, companies that develop and sell rehabilitation devices. The terms of these arrangements
- have been reviewed and approved by the University of California, Irvine, in accordance with its
- 34 conflict-of-interest policies.
- 35 All other authors declare no competing interests.
- 36 CORRESPONDING AUTHOR
- 37 Miriam R. Rafferty, DPT, PhD
- 38 355 E Erie St. (19th floor) Chicago, IL 60611
- 39 <u>Mrafferty@sralab.org</u>
- 40 312-238-7233
- 41 CLINICAL TRIAL REGISTRATION NUMBER

Rehabilitation technology trends

Page **3** of **25**

- 42 This study was conducted in accordance with ethical principles and guidelines and was
- 43 approved by the Northwestern Institutional Review Board (STU00212079).

44

Rehabilitation technology trends

Page **4** of **25**

- 45 TITLE
- 46 Uncovering clinical rehabilitation technology trends: field observations, mixed methods
- 47 analysis, and data visualization.
- 48 ABSTRACT
- 49 **Objective:** To analyze real-world rehabilitation technology (RT) use, with a view toward
- 50 enhancing RT development and adoption.
- 51 **Design:** A convergent, mixed-methods study using direct field observations, semi-structured
- 52 templates, and summative content analysis.
- 53 **Setting:** Ten neurorehabilitation units in a single health system.
- 54 **Participants:** 3 research clinicians (1OT, 2PTs) observed ~60 OTs and 70 PTs in inpatient; ~18
- 55 OTs and 30 PTs in outpatient.
- 56 Interventions: Not applicable
- 57 Main Outcome Measures: Characteristics of RT, time spent setting up and using RT, and
- 58 clinician behaviors.
- 59 **Results:** 90 distinct devices across 15 different focus areas were inventoried. 329 RT-uses were
- 60 documented over 44 hours with 42% of inventoried devices used. RT was used more during
- 61 interventions (72%) than measurement (28%). Intervention devices used frequently were
- 62 balance/gait (39%), strength/endurance (30%), and transfer/mobility training (16%).
- 63 Measurement devices were frequently used to measure vitals (83%), followed by grip strength

Rehabilitation technology trends

82

Page **5** of **25**

64	(7%), and upper extremity function (5%). Device characteristics were predominately AC-
65	powered (56%), actuated (57%), monitor-less (53%), multi-use (68%), and required little
66	familiarization (57%). Set-up times were brief (mean \pm SD = 3.8 \pm 4.21 and 0.8 \pm 1.3 for
67	intervention and measurement, respectively); more time was spent with intervention RT
68	(25.6±15) than measurement RT (7.3±11.2). RT nearly always involved verbal instructions (72%)
69	with clinicians providing more feedback on performance (59.7%) than on results (30%).
70	Therapists' attention was split evenly between direct attention towards the patient during
71	clinician treatment (49.7%) and completing other tasks such as documentation (50%).
72	Conclusions: Even in a tech-friendly hospital, majority of available RT were observed un-used,
73	but identifying these usage patterns is crucial to predict eventual adoption of new designs from
74	earlier stages of RT development. An interactive data visualization page supplement is provided
75	to facilitate this study.
76	KEY WORDS
77	Physical and Rehabilitation Medicine; Rehabilitation; Occupational Therapy; Physical Therapy;
78	Technology; Diffusion of Innovation; Technology Transfer; Implementation Science;
79	Observational Study; Empirical Research; Qualitative Research; Quantitative Research
80	ABBREVIATIONS
81	Occupational Therapy (OT), Physical Therapy (PT), Rehabilitation Technology (RT)

Rehabilitation technology trends

Page 6 of 25

83 INTRODUCTION

84	Rehabilitation technology (RT) ⁴ is surprisingly under-used. ⁵ Despite the significant funding and
85	years of multi-disciplinary efforts from researchers, developers, and clinicians; cutting-edge
86	tools for individual with disabilities such as virtual reality, ⁶ robotics, ⁷ and wearable sensors ⁸
87	rarely see widespread clinical use. The persistent challenge in rehabilitation sciences lies in the
88	disconnect between RT development and clinical use. ^{5,8-13} Traditionally, research has focused
89	on efficacy and feasibility studies instead of the factors that influence real-world use of
90	technologies in clinical practice. ¹³⁻¹⁶ Perhaps developers do not know enough about the end-
91	stage of this adoption process, leaving a gap to explore the success or failure of effective RT in
92	clinical practice.
93	To address this gap, we sought to understand the qualities of widely used technologies in

clinical treatment, and the factors that facilitate or hinder RT-use. In previous studies, barriers
and facilitators of RT into clinical practice have been explored primarily through self-reporting,
including surveys,^{11,17,18} interviews,^{11,17} focus groups,⁵ case studies,¹⁴ and vignettes.¹⁹ For
example, clinicians provided vignettes describing RT-use decisions during treatment sessions,
revealing that new RT is not seen as advantageous due to time and complexity.¹⁹ While these
self-reporting methods provide clarity into the implementation challenges and opportunities,
they do not fully capture the clinical experience.

Field observations, a form of ethnographic research that uses participant observation to explore practices, provide valuable insights into the practical application of RT in real-world settings.²⁰ In the case of RT, it serves as a valuable tool for investigating trends, adoption, and

Rehabilitation technology trends

Page **7** of **25**

- 104 challenges of RT-use in clinical treatment, allowing us to identify commonly used equipment,
- 105 quantify its use, and elucidate how it is used.
- 106 The goal of this manuscript is to enhance RT design and development by understanding
- 107 observed usage patterns in clinical settings. We did this by observing clinical RT-use and
- inventorying RT available in inpatient and outpatient settings. We sought to describe (1) the
- 109 characteristics of RT associated with therapist use; (2) how much time therapists spend using
- 110 RT; and (3) therapists' behaviors surrounding RT-use. We intended to build on our previous
- 111 vignette study, aiming to understand clinicians' on-the-spot decision-making regarding the use
- 112 or non-use of RT.¹⁹
- 113 METHODS
- 114 Study Design

115 This study was conducted in accordance with ethical principles and guidelines, approved by the Northwestern Institutional Review Board (STU00212079) with a waiver of informed consent 116 117 from observed patients or clinicians. Given the observational design of the study, no masking or randomization was used. Clinicians followed routine clinical practice with no added treatments 118 119 or assessments. No patient information, protected health information, or identifiers were 120 documented. The director of the allied health facility authorized all observations. A flyer containing information about the study was sent to the sites' managers via email to inform 121 their team of the researchers' presence during observation days. 122

Rehabilitation technology trends

Page **8** of **25**

123 Context and sample

124	The field observations and inventory were conducted in our rehabilitation health system, a
125	flagship translational research hospital designated as a national rehabilitation innovation
126	center. ²¹ Thus, there is ample RT in all clinical spaces increasing therapist access and
127	opportunity for use. The health system includes adult inpatient treatment on 7 floors within the
128	flagship hospital, 5 outpatient interdisciplinary DayRehab $^{\mathbb{G}}$ sites, and 3 outpatient neurologic
129	rehabilitation clinics. Data collection occurred in 10 patient units across 3 different settings:
130	adult inpatient treatment floors (7 inpatient units), one DayRehab $^{\mathbb{G}}$ site (2 units) located
131	adjacent to the flagship hospital, and one outpatient site (1 unit) located within the flagship
132	hospital building. The study observed approximately 70 Physical Therapists (PTs), 60
133	Occupational Therapists (OTs), and 35 Speech Language Pathologists (SLPs) employed at the
134	inpatient rehabilitation facility; 13 PTs, 12 OTs, and 10 SLPs at the DayRehab $^{\mathbb{G}}$ outpatient
135	location; 17 PTs, 6 OTs, and 4 SLPs employed in outpatient neurologic rehabilitation clinic. Even
136	though clinical treatment occurs in a variety of different areas around each setting (e.g.,
137	inpatient rooms, hospital hallways, private treatment rooms, and shared gym spaces) we
138	contained the observations and inventory to only shared gym spaces.
139	Data Collection
140	Two trained clinician research team members (CC, HR) made direct field observations ² using a
141	semi-structured template in Excel ^a , and inventoried each clinical treatment gym in all 10
142	patient units. This included a range of RT for gait (e.g., overhead gait tracks and treadmills),

assessment tools (e.g., upper extremity assessment kits, dynamometers), and general rehab

Rehabilitation technology trends

Page **9** of **25**

144	equipment (e.g., adjustable mat table and parallel bars). We excluded simple items such as
145	towels, canes, and walkers as they are used as tools in rehabilitation but not specifically
146	designed as RT for therapists. Data collected in the field observations included descriptive (e.g.,
147	RT observed used, instructions given to patient), categorical (e.g., clinician type), and
148	quantitative (e.g., time spent setting up RT) variables. Only descriptive variables (e.g., RT) were
149	recorded in the inventory. Table 1 contains operational definitions and examples of all
150	qualitative and quantitative data.

151

INSERT TABLE 1 HERE

152 Analysis

A convergent, mixed methods design¹ used conventional reporting guidelines.²² Two coders 153 (CC,HR) refined descriptive variables through inductive coding, communicated regularly to 154 resolve discrepancies, and a third coder (MR) assisted in consensus building on the coding 155 strategy. We used qualitative content analysis, using a summative approach,³ to analyze the 156 descriptive variables; this resulted in the creation of multiple subcategories under the different 157 types of RT. We used descriptive statistics to analyze categorical data (e.g., clinician type, 158 159 feedback type, etc.), representing the results through counts and percents. Data integration occurred through transforming qualitative data into quantitative, using content analysis.²³ We 160 161 analyzed time quantitatively as a continuous variable measured in minutes. We analyzed and visualized data using Excel^a and R software^b, and used Python^c for exploratory data analysis to 162

Rehabilitation technology trends

Page **10** of **25**

investigate the most prevalent combination of RT characteristics used during clinical treatment,and understand the plurality of RT.

165 RESULTS

166 Three trained research clinicians (1 OT, and 2 PTs) completed field observations intermittently

167 between January 2021 through September 2022. They observed for over 44 hours in 60 to 190-

- 168 minute increments throughout the day until reaching data saturation (defined as the lack of
- 169 new RT, or RT used in novel ways). The clinicians completed over 24 hours of observations in
- the inpatient setting, over 10 hours in DayRehab[©], and over 9 hours completed in outpatient. In
- total, they observed 329 RT-uses. They did not observe SLPs using RT in the shared gym space;
- 172 therefore, the analysis focuses on OTs and PTs.
- 173 Two trained research clinicians (1 OT, 1 PT) inventoried 286 RT across all settings; after
- 174 resolving duplicates, the total inventory revealed 90 distinct devices across 15 different focus
- areas, with 42% (n=38) observed used (supplemental Table 1). Of all inventoried devices, 21%
- 176 (n=19) were categorized as gait and/or balance focused, with 36% (n=7) observed used; 13%
- 177 were for strengthening and/or endurance (n=12), with 75% (n=9) observed used. There are 6
- device focus categories in which there are only 1 or 2 device models in the inventory (e.g.,
- 179 vitals, cognition). See supplementary information for a link to an interactive Sankey Diagram
- 180 that explores the relationships between the inventoried devices.

Rehabilitation technology trends

Page **11** of **25**

181 Field Observations

- 182 Inductive coding of the field observations revealed two RT-use activities: intervention and
- 183 measurement. Intervention involves actions by clinicians to create, promote, restore, maintain,
- 184 or modify function, while measurement assesses initial performance or outcomes.²⁴ Table 2
- 185 details categories and subcategories of observed RT, with counts and percentages.
- 186 Supplementary materials include an interactive pie chart and Sankey diagram illustrating the
- 187 proportion of RT characteristics in intervention and measurement RT from the field
- 188 observations (supplemental Sankey diagram 1).

189	**INSERT TABLE 2 HERE**

- Seventy-two percent of observed RT-use (n=237) were for interventions. Most of these observed intervention RT had alternating current (AC) power (183, 78%), actuation (185,78%), no monitor (162, 68%), multi-use (222, 94%), and required a short training period (1-2 hours) for clinicians to establish competence (111, 47%). We observed PTs (173, 73%) using RT for interventions more than OTs (n=56, 24%). These devices saw the most use during one-on-one treatments (169, 71%). The most common type of intervention RT was balance and/or gait (n=93, 39%) followed by strength and/or endurance training (n=70, 30%; fig. 1).
- 197 **INSERT FIGURE 1 HERE** 198 Measurement RT accounted for 28% (n=92) of observed RT-use. Most of these observed

measurement RT were battery-powered (81, 88%), unactuated (91,99%), had a monitor (81,

Rehabilitation technology trends

Page 12 of 25

88%), had a single-use (90, 98%), and required only entry-level training (knowledge acquired in

OT and PT school) (78,85%) -- this was because vitals (76, 83%) was the most common

202 measurement type. We observed PTs (73,79%) using RT for measurement more than OTs

203 (14,15%). The second most common measurement type was grip strength (6, 7%) followed by

upper extremity function (5, 5%; fig. 2), both performed exclusively by OTs.

205 **INSERT FIGURE 2 HERE**

206 Exploratory Data Analysis

207 We conducted exploratory data analysis to identify prevalent combinations of RT

characteristics. We excluded non-novel RT, like the adjustable mat table (49, 15%) and

adjustable parallel bars (24, 7%), to prevent bias.

For intervention RT, the dominant combination of characteristics included AC power, actuation,

211 no display monitor, multi-use, requiring short training for competency, used during

interventions targeting balance and/or gait, and used by PTs (40, 24%). These include body

weight supported treadmills (n=38), overhead gait tracks with electric harness (n=2), and ceiling

lifts (n=1). Excluding these, the second most common combination included unpowered,

215 unactuated, no display monitor, multi-use, requiring short training for competency, used during

interventions targeting balance and/or gait, and used by PTs (18,11%). The only devices in this

217 category were manual over-head gait tracks (n=18).

For measurement RT, the dominant combination of characteristics included battery power, no

actuation, with display monitor, tailored for single-use purpose, necessitating entry-level

Rehabilitation technology trends

Page 13 of 25

220	competency, and used by PTs (70, 97%). But vital signs monitoring machines accounted for all
221	instances of the indicated measurement characteristics. Excluding vital signs, the dominant
222	combination shifted to unpowered, unactuated, no monitor, tailored for single-use purpose,
223	required short training for competency, and used by OTs (6,40%). These instances
224	encompassed kits assessing upper extremity function, manual dexterity, and pinch/grip
225	strength.
226	Time
227	Figure 3 displays setup and total time spent with RT. Setup time was skewed, with a median of
228	1.2 minutes and a mean of 2.9±4.3 minutes. 84% of observations were of RT that took less than
229	5 minutes to setup, and 47% of RT took less than 1 minute to setup. In 5.4% of the
230	observations, OTs and PTs used RT that took 10-36 minutes to set up. The RT that took the
231	longest setup time were a mobile arm support that a patient purchased, and a clinician installed
232	on the patient's wheelchair (36 minutes), and an exoskeleton device (32 minutes). The average
233	total time spent with RT (including setup and breakdown) was 20.5 ± 16.3 minutes. Clinicians
234	spent more time setting up and using intervention RT (setup mean 3.8±4.21 minutes; total time
235	mean 25.6±15 minutes) compared to measurement RT (setup mean 0.8±1.3 minutes; total time
236	mean 7.3±11.2 minutes).

237

INSERT FIGURE 3 HERE

Rehabilitation technology trends

Page **14** of **25**

238 Therapists' Behaviors

239	We investigated clinicians' instructions and patients' experience levels with RT. Predominately,
240	therapists used verbal instructions (313, 72%) when using RT, followed by a combination of
241	verbal and demonstrated instruction (46, 14%). Most patients were repeated RT users (294,
242	89%) rather than first-time users (35, 10.6%). First-time users received verbal instructions or a
243	mix of verbal and physical instruction (e.g., demonstration, physical cues, physical assistance).
244	Among the patients with no instructions (16, 4.9%) all were repeat users, using vitals machines
245	or exercise equipment.
246	We documented clinicians' feedback types as either knowledge of performance (task quality or
247	movement patterns), or knowledge of results (outcomes), based on a commonly-used
248	distinction in motor learning research. ²⁵⁻²⁷ Instances of no feedback were rare (4, 1.2%).
249	Clinicians primarily provided knowledge of performance (197, 59.7%) compared to knowledge
250	of results (99, 30%) or a combination of both (30, 9%).
251	Our findings revealed that clinicians were evenly divided between providing one-on-one direct
252	attention (164, 49.7%) and multi-tasking (166, 50.3%) when treating patients with RT.
253	DISCUSSION
254	We aimed to understand RT usage patterns such as the characteristics of RT, time spent on

255 setup and total use, and therapists' behaviors.

Rehabilitation technology trends

Page 15 of 25

256 Rehabilitation Technology Characteristics

257 Clinicians embraced smart, actuated (185, 78%), and AC-powered (183, 77%) intervention RT,

often observed during balance and/or gait training (93, 39%), including body weight supported

treadmills (n=38), used by physical therapists (173, 73%). The preference may stem from the

²⁶⁰ safety and efficacy benefits of body weight support technology in gait training.¹⁵

261 The inventory revealed a diverse range of RT for balance and/or gait training, but fewer than

half were observed in used. Despite evidence to support split-belt treadmill training,^{28,29} and

263 emerging research advocating for exoskeletons,³⁰ both devices were rarely observed in use. The

²⁶⁴ "relative advantage" barrier, identified in our previous work, persists as there is no clear

advantage of novel RT over existing alternatives,^{19,31} and clinicians favor familiar devices such as

266 body-weight supported treadmills and over-head gait tracks due to their proven effectiveness.

267 This preference is mirrored in the hospital system, with each inpatient floor and setting

268 equipped with at least one body weight supported treadmill and gait track; split-belt treadmills

and exoskeletons are limited to 1-2 in the entire system. This highlights the need for developers

of RT to align their devices with clinician practices, workflow, and practice guidelines. Novel RT

271 needs to demonstrate a clear benefit over the existing equipment.

272 While intervention RT outnumbered measurement RT, more measurement devices in the 273 inventory were observed in use with the most used measurement RT being vital machines and 274 grip strength dynamometers. Vitals measurement is essential for PTs to monitor patient safety 275 in all conditions, and aerobic intervention efficacy; plus, they are faster and more accurate than 276 taking manual measurements.³² Grip strength dynamometers are easy to use, provide more

Rehabilitation technology trends

Page **16** of **25**

278	psychometric properties in nearly all conditions. ^{33,34} Two important features of these successful measurement RT are their adaptability to different populations and their relative advantage
	measurement DT are their adaptability to different nonulations and their relative advantage
279	measurement RT are their adaptability to different populations and their relative advantage
280	over prior gold standard measures of the vitals and strength domains. ³¹ Developers are likely to
281	succeed by enhancing precision in current clinical metrics, instead of expending resources on
282	the creation of novel measurement criteria.
283	Time Constraints
284	Observed RT typically requires less than a day's worth of additional training, and clinicians did
285	not invest a lot of time in setting up RT. This aligns with our earlier work: the time it takes to
286	learn and set up RT is an important factor in its uptake. ¹⁹ Clinicians exhibit a stronger
287	preference for RT that is integrated into their entry-level academic training, ¹⁹ and constraints
288	on learning during work hours, coupled with the desire to optimize patient treatment time,
289	discourage extensive setup. ¹³ We advise developers to consider training and setup time in RT
290	development, even for devices with high efficacy and effectiveness. While greater efficacy
291	might encourage more time investment, our field observations offer a benchmark for designing
292	user-friendly RT.

293 Therapists' Behaviors

Feedback plays a crucial role in motor learning, and clinicians' choice of feedback can influence
how much patients learn.²⁵ Our observations revealed a preference among clinicians for
providing knowledge of performance rather than knowledge of results when using RT. These
findings align with current stroke research suggesting that knowledge of performance results in

Rehabilitation technology trends

Page **17** of **25**

298	superior motor learning compared to knowledge of results ^{26,27} and highlight therapists'
299	attention to movement quality. Future research should investigate if clinician feedback type
300	differs in the presence or absence of RT, or examine the correlation of specific types of
301	feedback (directed vs guided cuing) on patient outcomes. Ultimately, personalized feedback
302	types and frequencies may be necessary based on the patient's condition. ²⁷
303	Adhering to documentation standards dictated by insurance and legal requirements ^{35,36} often
304	imposes an administrative burden contributing to clinician burnout. ³⁷ Allowing patients to
305	independently work with a device under clinical oversight provides therapists with valuable
306	hands-free moments for efficient documentation. Our observations indicate no clear
307	preference towards multi-tasking during RT use, suggesting potential RT solutions that facilitate
308	engaging with patients or multi-tasking between other administrative demands and patient
309	care.

310 Study Limitations

Interpretations of the results can serve different purposes: they can reveal characteristics of RT 311 312 associated with common use, which might guide RT designers, or highlight potential biases 313 associated with lack of use, which might inform implementation innovators. Restricting our 314 data collection to only the treatment gyms is a limitation, since there are devices located in managers' offices, patient rooms, and on research floors. This leads to underreporting of RT-use 315 316 during clinical treatment and limits the scope of the RT inventory. The 90 available technologies in the inventory are likely larger than many smaller rehabilitation settings but were still 317 318 insufficient in size for advanced statistical modeling. We based the categorization of RT on

Rehabilitation technology trends

Page **18** of **25**

319	observed use rather than the inventory, which has the potential of introducing bias. It is
320	important to note that we completed our RT categorization at one organization, and it is not
321	exhaustive; thus, it may not encompass the full spectrum of clinical treatment. Finally, our
322	reliance on observation with little interactions with the clinicians makes it difficult to
323	extrapolate the underlying reasons for specific clinical behaviors. These limitations highlight the
324	need for further research on motivations behind RT choices within the health system.

325 CONCLUSIONS

This mixed methods field observation study in a technology-focused hospital revealed that 326 327 majority of available RT was not observed used. We observed intervention RT used twice as 328 frequently as measurement RT, with a focus on gait/balance training and strengthening. The 329 measurement RT that is used is primarily for vitals followed by grip strength. These results 330 highlight the ongoing struggle to integrate new RT in clinical practice: successful cases are rare and involve well-established technologies like treadmills, exercise bicycles, and grip strength 331 sensors. The limited use of technology for measurement is notable. Also, used RT tend to have 332 333 brief set-up times (less than 4 minutes), and, when using them, clinicians typically provide a lot 334 of feedback, focusing on performance (e.g., movement quality) rather than results. In about half of use cases, clinicians leverage the time the patient is interacting with technology to work 335 on documentation. 336

337

Rehabilitation technology trends

Page 19 of 25

338 REFERENCES

- 1. Creswell JW, Plano Clark VL. *Designing and conducting mixed methods research*. Third
- 340 Edition. ed. SAGE; 2018:xxvii, 492 pages.
- 341 2. Fix GM, Kim B, Ruben MA, McCullough MB. Direct observation methods: a practical
- 342 guide for health researchers. *PEC Innovation*. December
- 343 2022;1(100036)doi:10.1016/j.pecinn.2022.100036
- 344 3. Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. *Qual Health*
- 345 *Res.* Nov 2005;15(9):1277-1288. doi:10.1177/1049732305276687
- 346 4. Rehabilitation Act. Amended 2015, 29 U.S.Code 32 §705 (1973).
- 347 5. Mitchell J, Shirota C, Clanchy K. Factors that influence the adoption of rehabilitation
- technologies: a multi-disciplinary qualitative exploration. Journal of Neuroengineering and
- 349 Rehabilitation. Jun 20 2023;20(1)doi:ARTN 80
- 350 **10.1186/s12984-023-01194-9**
- 351 6. Cano Porras D, Sharon H, Inzelberg R, Ziv-Ner Y, Zeilig G, Plotnik M. Advanced virtual
- reality-based rehabilitation of balance and gait in clinical practice. *Ther Adv Chronic Dis*.
- 353 2019;10:2040622319868379. doi:10.1177/2040622319868379
- 7. Reinkensmeyer DJ. JNER at 15 years: analysis of the state of neuroengineering and
- 355 rehabilitation. J Neuroeng Rehabil. Oct 30 2019;16(1):144. doi:10.1186/s12984-019-0610-0
- 8. Lang CE, Barth J, Holleran CL, Konrad JD, Bland MD. Implementation of Wearable
- 357 Sensing Technology for Movement: Pushing Forward into the Routine Physical Rehabilitation
- 358 Care Field. Sensors-Basel. Oct 2020;20(20)doi:ARTN 5744

Rehabilitation technology trends

Page 20 of 25

359 10.3390/s20205744

- 360 9. Louie DR, Bird ML, Menon C, Eng JJ. Perspectives on the prospective development of
- 361 stroke-specific lower extremity wearable monitoring technology: a qualitative focus group
- 362 study with physical therapists and individuals with stroke. *Journal of Neuroengineering and*
- 363 *Rehabilitation*. Feb 25 2020;17(1)doi:ARTN 31
- 364 10.1186/s12984-020-00666-6
- 10. Lin DJ, Finklestein SP, Cramer SC. New Directions in Treatments Targeting Stroke
- 366 Recovery. Stroke. Dec 2018;49(12):3107-3114. doi:10.1161/Strokeaha.118.021359
- 11. Postol N, Barton J, Wakely L, Bivard A, Spratt NJ, Marquez J. "Are we there yet?"
- 368 expectations and experiences with lower limb robotic exoskeletons: a qualitative evaluation of
- the therapist perspective. *Disabil Rehabil*. Mar 1 2023;doi:10.1080/09638288.2023.2183992
- 12. Lenfant C. Shattuck lecture--clinical research to clinical practice--lost in translation? *N*
- 371 Engl J Med. Aug 28 2003;349(9):868-74. doi:10.1056/NEJMsa035507
- 13. Bauer MS, Damschroder L, Hagedorn H, Smith J, Kilbourne AM. An introduction to
- implementation science for the non-specialist. *BMC Psychol*. Sep 16 2015;3(1):32.
- doi:10.1186/s40359-015-0089-9
- 14. Lane JP, Leahy JA, Bauer SM. Accomplishing technology transfer: case-based lessons of
- what works and what does not. *Assist Technol*. Summer 2003;15(1):69-88.
- doi:10.1080/10400435.2003.10131891
- 15. Lane JP. Understanding Technology Transfer. *Assist Technol*. 1999;11(1):5-19.
- doi:10.1080/10400435.1999.10131981

Rehabilitation technology trends

Page **21** of **25**

380	16.	Lane JP, Flagg JL.	Translating three states o	of knowledgediscovery,	invention, and
-----	-----	--------------------	----------------------------	------------------------	----------------

- 381 innovation. Implement Sci. Feb 1 2010;5:9. doi:10.1186/1748-5908-5-9
- 17. Liu LL, Cruz AM, Rincon AR, Buttar V, Ranson Q, Goertzen D. What factors determine
- 383 therapists' acceptance of new technologies for rehabilitation a study using the Unified Theory
- of Acceptance and Use of Technology (UTAUT). *Disabil Rehabil*. 2015;37(5):447-455.
- 385 doi:10.3109/09638288.2014.923529
- 18. Hughes AM, Burridge JH, Demain SH, et al. Translation of evidence-based Assistive
- 387 Technologies into stroke rehabilitation: users' perceptions of the barriers and opportunities.
- 388 Bmc Health Serv Res. Mar 12 2014;14doi:Artn 124
- 389 10.1186/1472-6963-14-124
- 19. Celian C, Swanson V, Shah M, et al. A day in the life: a qualitative study of clinical
- decision-making and uptake of neurorehabilitation technology. *J Neuroeng Rehabil*. Jul 28
- 392 2021;18(1):121. doi:10.1186/s12984-021-00911-6
- 393 20. Savage J. Ethnography and health care. *BMJ*. Dec 2 2000;321(7273):1400-2.
- 394 doi:10.1136/bmj.321.7273.1400
- 21. A bill to amend title XVIII of the Social Security Act to preserve access to rehabilitation
- innovation centers under the Medicare program., 2834, Senate, 117th Congress sess (2023).
- 397 01/05/2023. https://www.congress.gov/bill/117th-congress/senate-bill/2834
- 22. Lee SD, lott B, Banaszak-Holl J, et al. Application of Mixed Methods in Health Services
- Management Research: A Systematic Review. *Med Care Res Rev.* Jun 2022;79(3):331-344.
- 400 doi:10.1177/10775587211030393

Rehabilitation technology trends

Page 22 of 25

- 401 23. Fetters MD, Rubinstein EB. The 3 Cs of Content, Context, and Concepts: A Practical
- 402 Approach to Recording Unstructured Field Observations. Ann Fam Med. Nov 2019;17(6):554-
- 403 560. doi:10.1370/afm.2453
- 404 24. Occupational Therapy Practice Framework: Domain and Process-Fourth Edition. Am J
- 405 *Occup Ther*. Aug 1 2020;74(Supplement_2):7412410010p1-7412410010p87.
- 406 doi:10.5014/ajot.2020.74S2001
- 407 25. Maier M, Ballester BR, Verschure P. Principles of Neurorehabilitation After Stroke Based
- 408 on Motor Learning and Brain Plasticity Mechanisms. *Front Syst Neurosci*. 2019;13:74.
- 409 doi:10.3389/fnsys.2019.00074
- 410 26. Subramanian SK, Massie CL, Malcolm MP, Levin MF. Does Provision of Extrinsic
- 411 Feedback Result in Improved Motor Learning in the Upper Limb Poststroke? A Systematic
- 412 Review of the Evidence. *Neurorehab Neural Re*. Feb 2010;24(2):113-124.
- 413 doi:10.1177/1545968309349941
- 414 27. Levin MF, Demers M. Motor learning in neurological rehabilitation. *Disabil Rehabil*. Dec
- 415 2021;43(24):3445-3453. doi:10.1080/09638288.2020.1752317
- 416 28. Reisman DS, McLean H, Keller J, Danks KA, Bastian AJ. Repeated split-belt treadmill
- 417 training improves poststroke step length asymmetry. *Neurorehabil Neural Repair*. Jun
- 418 2013;27(5):460-8. doi:10.1177/1545968312474118
- 419 29. Seuthe J, D'Cruz N, Ginis P, et al. Split-belt treadmill walking in patients with Parkinson's
- disease: A systematic review. *Gait Posture*. Mar 2019;69:187-194.
- 421 doi:10.1016/j.gaitpost.2019.01.032

	(which was not certified by peer review) is the author/funder, who has granted medixity a license to display the preprint in perpetui All rights reserved. No reuse allowed without permission.			
	Rehat	pilitation technology trends Page 23 of 25		
422	30.	Hohl K, Giffhorn M, Jackson S, Jayaraman A. A framework for clinical utilization of		
423	robot	cic exoskeletons in rehabilitation. <i>J Neuroeng Rehabil</i> . Oct 29 2022;19(1):115.		
424	doi:1	0.1186/s12984-022-01083-7		
425	31.	Damschroder LJ, Reardon CM, Widerquist MAO, Lowery J. The updated Consolidated		
426	Fram	ework for Implementation Research based on user feedback. Implement Sci. Oct 29		
427	2022;17(1):75. doi:10.1186/s13012-022-01245-0			
428	32.	Myers MG, Godwin M, Dawes M, et al. Conventional versus automated measurement of		
429	blood	pressure in primary care patients with systolic hypertension: randomised parallel design		
430	contr	olled trial. <i>BMJ</i> . Feb 7 2011;342:d286. doi:10.1136/bmj.d286		
431	33.	Ekstrand E, Lexell J, Brogardh C. Grip strength is a representative measure of muscle		
432	weak	ness in the upper extremity after stroke. <i>Top Stroke Rehabil</i> . Dec 2016;23(6):400-405.		
433	doi:1	0.1080/10749357.2016.1168591		
434	34.	Peterson MD, Collins S, Meier HCS, Brahmsteadt A, Faul JD. Grip strength is inversely		
435	assoc	iated with DNA methylation age acceleration. <i>J Cachexia Sarcopeni</i> . Feb 2023;14:108-115.		
436	doi:1	0.1002/jcsm.13110		
437	35.	Guidelines for Documentation of Occupational Therapy. Am J Occup Ther. Nov/Dec		
438	2018;	;72(Supplement_2):7212410010p1-7212410010p7. doi:10.5014/ajot.2018.72S203		
439	36.	Revised by the Commission on P, Casto SC, Davis C, et al. Standards of Practice for		
440	Occu	pational Therapy. Am J Occup Ther. Nov 1		
441	2022;	;75(Supplement_3)doi:10.5014/ajot.2021.75S3004		
442	37.	Association APT. The Impact of Administrative Burden on Physical Therapist Services.		

Infographic. 2023. <u>https://www.apta.org/advocacy/issues/administrative-burden/infographic</u> 443

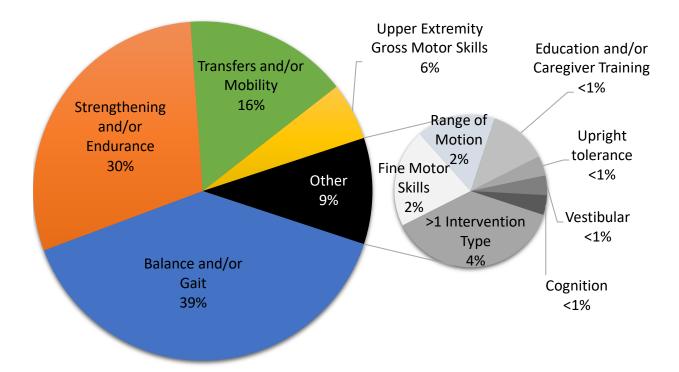
Rehabilitation technology trends

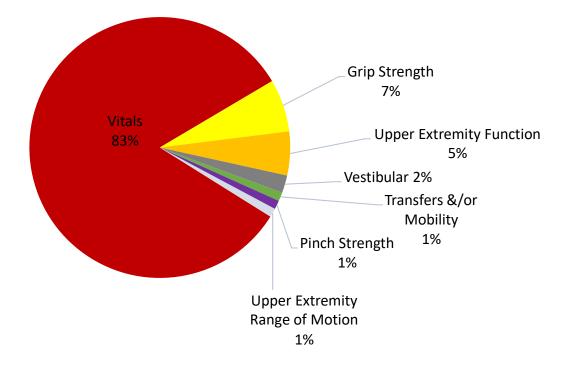
Page **24** of **25**

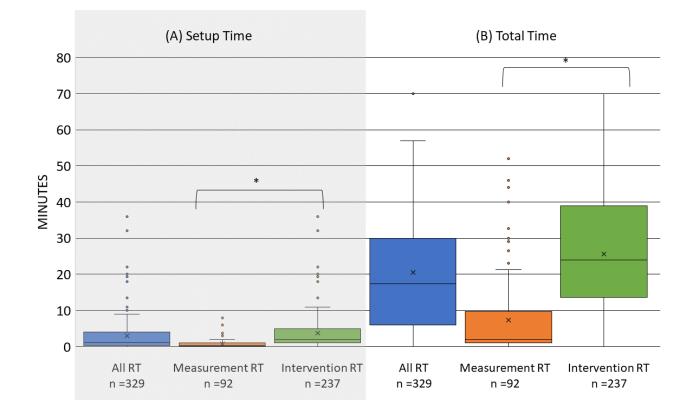
444 SUPPLIERS

- 445 a. Excel spreadsheet by Microsoft.
- 446 b. R Statistical Software; R Foundation for Statistical Computing.
- 447 c. Python Software Foundation (Libraries Used: Pandas).

448


Rehabilitation technology trends


Page 25 of 25


449 FIGURE LEGENDS

- 450 **Figure 1: Intervention RT (n=237) subcategories.** Devices for balance and gait (n=93, 39%) were the
- 451 most common interventions observed, followed by devices for strengthening and/or endurance (n=70,
- 452 30%), and transfers and/or mobility (n=37, 16%).
- 453 Figure 2: Measurement RT (n=92) subcategories. Vitals (n=76, 83%) dominated the observed
- 454 measurements, followed by grip strength (n=6, 7%) and upper extremity function (n=5, 5%).
- 455 Figure 3: Setup time (panel A) and total time (panel B) spent with RT devices among OTs and PTs
- 456 during observed sessions. More time is spent setting up and using RT for intervention than
- 457 measurement (*p<0.001).

458

Table 1: Qualitative and quantitative data collected in field observations and inventory. Table includes the type of data collected,

distinguishes each variable, and provides an example.

Data	Туре	Variable	Example
Qualitative	Descriptive leading to	Name of the device inventoried, or observed used	Treadmills, Mobile Arm Supports, Vital
	inductive coding	by clinician	Machines
		Assign a category behind purpose of device use	Measurement of UE/LE/Vitals, Intervention
			for-strength/endurance
		Description of task or therapeutic activity	Standing, walking, biking, blood pressure
			measurement
		General observational notes in free text	"Therapist retrieves equipment for next task
			during patient's rest breaks"
	Initially descriptive,	Therapist feedback provided to patient when	Knowledge of results, Knowledge of
	leading to coding	using device	performance
	became categorical as		
	the observations		

	continued		
	Categorical	Clinician being observed	OT, PT, SLP
		Group type	One-on-One, Double, Group (≥3)
		If the patient is a first-time user to the device	Yes, No, or unclear
		based on observation of interaction and	
		instructions	
		Type of cues and instruction provided by therapist	Verbal, demonstration
		Therapist's ongoing attention to patient using	Point of care documentation, direct care
		device, versus therapist multi-tasking during	
		treatment	
		Hospital floor/unit where therapy took place	25 th Floor Inpatient hospital, DayRehab [©] ,
			Outpatient
Quantitative	Continuous	Length of time to setup, train, and/or instruct	Time
		patient on device use	

Table 2: Characteristics of clinicians, treatments, and rehabilitation technologies (RT) observed used in field observations. Table

includes definitions, counts, and percentages by category and sub-category, separated by type and total.

Category	Sub-Category	Definition	Intervention	Measurement	Total
			RT	RT	(329)
			(237, 72%)	(92, 28%)	
Clinician	ОТ	Occupational Therapists	56 (24%)	14 (15%)	70 (21%)
Туре	PT	Physical Therapists	173 (73%)	73 (79%)	246 (75%)
	Not Documented		8 (3%)	5 (5%)	13 (4%)
Treatment	One On One	Clinician working with 1 patient	169 (71%)	78 (85%)	247 (76%)
Туре	Double	Clinician working with 2 patients simultaneously	20 (8%)	1 (1%)	21 (6%)
	Group	Clinician working with 3 or more patients	13 (5%)	1 (1%)	14 (4%)
		simultaneously			
	Not Documented		35 (15%)	12 (13%)	47 (14%)
Power	Electrical Power	Powered by alternating current (e.g., wall	183 (77%)	1 (1%)	184 (56%)
Source		plug/electricity)			

	Battery Powered	RT powered by a battery source, also includes	19 (8%)	81 (88%)	100 (30%)
		rechargeable batteries; or does not remain			
		plugged into a wall outlet to be powered			
	Unpowered	No source of power; or uses cables, pullies, or	35 (15%)	10 (11%)	45 (14%)
		pneumatics to operate			
Smart RT	Actuated	Powered RT, motor, moves	185 (78%)	1 (1%)	186 (57%)
	Unactuated	Typically unpowered, does not move	52 (22%)	91 (99%)	143 (43%)
Display	Monitor	Visual display screen	75 (32%)	81 (88%)	156 (47%)
	No Monitor	No visual display screen	162 (68%)	11 (12%)	173 (53%)
Versatility	Multi-Use Tool	RT that can be used for multiple types of	222 (94%)	2 (2%)	224 (68%)
		interventions, and/or measurements.			
	Single-Use Tool	RT that serves only one function	15 (6%)	90 (98%)	105 (32%)
Training	Entry-Level	Taught in clinical schools, no additional training	109 (46%)	78 (85%)	187 (57%)
Level		beyond OT/PT degree			
	Short	1-2 hours of additional training	111 (47%)	10 (11%)	121 (37%)

Com	Complex ≥ 1 day of additional training, or requires		17 (7%)	4 (4%)	21 (6%)
	certification	to achieve competency			