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Abstract 

Research into magnetic resonance imaging (MRI)- visible perivascular spaces (PVS) has recently 

increased, as results from studies in different diseases and populations are cementing their association 

with sleep, disease phenotypes, and overall health indicators. With the establishment of worldwide 

consortia and the availability of large databases, computational methods that allow to automatically 

process all this wealth of information are becoming increasingly relevant. Several computational 

approaches have been proposed to assess PVS from MRI, and efforts have been made to summarise 

and appraise the most widely applied ones. We systematically reviewed and meta-analysed all 

publications available up to September 2023 describing the development, improvement, or application 

of computational PVS quantification methods from MRI. We analysed 67 approaches and 60 

applications of their implementation, from 112 publications. The two most widely applied were the 

use of a morphological filter to enhance PVS-like structures, with Frangi being the choice preferred 

by most, and the use of a U-Net configuration with or without residual connections. Older adults or 

population studies comprising adults from 18 years old onwards were, overall, more frequent than 

studies using clinical samples. PVS were mainly assessed from T2-weighted MRI acquired in 1.5T 

and/or 3T scanners, although combinations using it with T1-weighted and FLAIR images were also 

abundant. Common associations researched included age, sex, hypertension, diabetes, white matter 

hyperintensities, sleep and cognition, with occupation-related, ethnicity, and genetic/hereditable traits 

being also explored. Despite promising improvements to overcome barriers such as noise and 

differentiation from other confounds, a need for joined efforts for a wider testing and increasing 

availability of the most promising methods is now paramount. 
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1. Introduction 

Perivascular spaces (PVS), also referred to as ‘Virchow-Robin spaces’ (VRS), are fluid-filled cavities 

surrounding the blood vessels of the brain. PVS are thought to facilitate the uptake of cerebrospinal 

fluid (CSF) and the removal of metabolic waste products from the brain, but the precise involvement 

in these processes in humans remains elusive (Wardlaw et al., 2020). PVS are not always visible in 

brain imaging or at autopsy, but are increasingly visible as they become enlarged. Enlarged PVS are 

associated with increased age (Francis et al., 2019), other markers of small vessel disease (SVD; 

Wardlaw et al., 2013, Duering et al., 2023), and may be more prevalent in individuals with vascular 

risk factors (e.g., hypertension; Zhu et al., 2010). A high burden of enlarged PVS may be associated 

with worse brain health outcomes, including increased risk of vascular dementia (more so than 

Alzheimer’s disease (AD); Smeijer et al., 2019) and stroke (Debette et al., 2019). 

PVS appear as ovoid or tubular structures, with bright (hyperintense) signal in T2-weighted (T2w) 

magnetic resonance imaging (MRI) and dark (hypointense) signal in T1-weighted (T1w) MRI, and 

are occasionally visible on fluid-attenuated inversion recovery (FLAIR) imaging (Wardlaw et al., 

2013; Duering et al., 2023). Larger ovoid PVS may appear similar to lacunes—also round CSF-filled 

cavities and thus with similar signal characteristics to PVS (Valdés Hernández et al., 2013; Duering et 

al., 2023). PVS may also overlap with one another, exhibit tortuosity, have irregular diameters, and 

may traverse adjacent imaging slices, complicating their quantification when using multiple 2D slices 

from images with anisotropic voxels, commonly acquired in clinical practice.  

Several automated and semi-automated computational pipelines and methods have been developed to 

quantify PVS. These methods are heterogeneous in terms of their implementation, validation, and 

application (Barisano et al., 2022; Moses et al., 2023; Pham et al., 2022). The principles and 

drawbacks of some of these methods have been summarised previously (Barisano et al., 2022; Moses 

et al., 2023; Pham et al., 2022), and suggestions about further requirements to increase the 

understanding of PVS by means of their computational assessment using MRI have been drawn 

(Pham et al., 2022).  But there has been also a wealth of computational developments to either 

enhance performance of previously developed methods, establish their limits of validity, or reduce 

noise effects, or increase the accuracy of their output, which have not been summarised or reviewed. 

Neither has this wealth of information been systematically identified or meta-analysed.  

The relevance of PVS has become increasingly evident in areas not studied before such as in relation 

to the occlusion of sinonasal cavities (Sáenz de Villaverde Cortabarría et al., 2023; Valdés Hernández 

et al., 2023),  in patients with the metabolic syndrome (Hayden, 2023), or in patients with 

amyotrophic lateral sclerosis (Schreiber et al., 2023), and, with it, the efforts in improving the 

accuracy of the currently accepted as state-of-the-art computational methods to assess them in the 

presence of confounding pathology such as white matter hyperintensities (WMH) or lacunes. 
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Consequently, we systematically reviewed and meta-analysed the literature in an attempt to fill this 

void. In this systematic literature review of (semi-/fully-) automated quantification of PVS, we not 

only identify and meta-analyse the data from the PVS quantification methods that have been 

developed, and summarise how they have been applied in studies of PVS associations with health and 

lifestyle indicators, but also analyse the improvements to these methods, and the computational efforts 

around this topic. 

 

 

2. Methods 

2.1. Protocol registration 

We registered this systematic review protocol with the International Prospective Register of 

Systematic Reviews (PROSPERO), registration number: CRD42022359951 (September 2022). We 

planned to meta-analyse estimates where methodological and clinical characteristics of contributing 

studies were similar. 

2.2. Search strategy 

We searched PubMed, Web of Science, and Google Scholar for literature published between January 

1990 and September 2023. We also included any hand-selected papers identified from references in 

relevant literature reviews. Three reviewers (JMJW, MCVH, and JB) conducted the literature search. 

Each paper was assessed by two reviewers and discrepancies were resolved by discussion. After 

running pilot searches, we decided on the following search terms (Table 1). 

Table 1. Search strategy 

Grouping Terms 

#1 
“Perivascular spaces” OR “PVS” OR “EPVS” OR “Virchow-Robin 
spaces” OR “VRS” 

#2 
“Enlarged” OR “Dilated” OR “Visible” OR “Dysfunction” OR 
“Enlargement” OR “Visibility” OR “Dilation” 

#3 #1 AND #2 

#4 
Comput* OR “Segmentation” OR Quantif* OR Algorithm* OR 
“Estimation” OR Automat* OR Semi-automat* OR Semiauto* 

Search: #3 AND #4 

 

2.3. Inclusion and exclusion criteria 
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We included studies that described the development, improvement, or application of computational 

(i.e., semi-/automated) PVS quantification methods in human brain magnetic resonance imaging 

(MRI). 

Exclusion criteria included records without accompanying full-text; studies not reported in English; 

animal model/pre-clinical studies; studies of PVS using only visual or manual (i.e., non-

computational) PVS quantification; studies reporting computational lesion quantification that has not 

been applied to PVS; studies reporting results from the application of a computational PVS 

quantification methods but which did not cite or describe the PVS quantification method in-text or in 

a prior publication or provide any detail. Studies on non-parenchymal fluid dynamics and glymphatic 

clearance function metrics were also excluded.  

2.4. Data extraction and risk of bias assessment 

Six reviewers (JMJW, JB, RDC, RB, LB, and MCVH) extracted the data. To cross-check data entry, a 

reviewer (MCVH) performed double extraction independently and blind to extraction results. We 

grouped studies into ‘method development’ (i.e., the paper focuses primarily on the development and 

validation of a new proposal for identifying, quantifying, or segmenting PVS), 

‘improvement/validation’ (i.e., the paper either provides evidence of a certain PVS quantification 

issue or proposes an approach to deal with it), and ‘application’ (i.e., the paper uses a previously 

presented approach to assess PVS to analyse results in relation to clinical data) categories, and 

extracted relevant data accordingly. For all studies, we extracted data relating to year of publication, 

authors, MR sequences/field strengths, population type and sample size. For ‘method development’ 

and ‘improvement/validation’ studies, we extracted data relating to pre-processing steps, reference 

standards, computational PVS method used, and accuracy and/or validation results. For ‘application’ 

studies, we additionally extracted more detailed information on population type, variables assessed in 

relation to PVS burden, and results. 

We conducted a risk of bias assessment on included studies, based on the QUADAS-2 quality 

assessment tool (Whiting et al., 2011). Risk of bias plots were produced using the Risk of Bias 

Visualization tool (McGuinness & Higgins, 2020). 

 

 

 

3. Results 

3.1. Search results 
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We identified 2978 potentially relevant records. Before screening, we removed 354 results because 

they were duplicates or were not in English. During title and abstract screening, we screened titles and 

abstracts of 2624 records, and excluded 2427 of them. We sought retrieval of the remaining 197. 

Among these, five were not accessible either publicly or via our institutional library, five were 

conference abstracts, and two considered PVS quantification for histology samples. Therefore, 185 

studies were ultimately assessed for eligibility. From them, 73 studies were ineligible and 112 studies 

that met our criteria were included in this review. A flow chart of the identification and screening 

process is provided in Figure 1. 
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Figure 1. Flow chart of identification, screening, and selection process. 

 

3.2. Overview of included studies 

Of the 112 included studies, 45 fitted under ‘method development’, eight under ‘improvement’, and 

59 under ‘application’. Four separate PVS quantification methods participated in the Vascular Lesions 

Detection Challenge 2021, as documented in (Sudre et al., 2022). We treat them as four distinct 
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records, thus increasing the count of 'method development' studies to 48, and the total number of 

studies to 115.  Overviews of all included studies within these three categories are presented in their 

respective subsections (method development: 3.3, Table 6; improvement: 3.4, Table 8; application: 

3.5, Table 9). 

3.3.1. Publication timeline 

The earliest record identified was published in 2002 (Kruggel et al., 2002). Method development 

publications became more prevalent from around 2016 onwards reaching a peak in 2019 (16.67% 

from all publications in this category), and publications applying computational PVS quantification 

increased from around 2020 (Figure 2). Supplementary Table 1 provides a breakdown of publications 

by type and year.  

 

Figure 2. Line graph showing number of computational PVS quantification papers published between 
2002 and September 2023. 

 

3.2.2. Populations and sample sizes 

Clinical (i.e., patient) and non-clinical (e.g., healthy volunteers, community cohorts) samples have 

been used in the development, improvement, and application of computational PVS quantification 

methods, with non-clinical samples (e.g., community-dwelling cohorts) forming the largest proportion 

by a small margin in ’method developments’ and ‘improvement’ groups. Four sources describing 

methods (Uchiyama et al., 2008,2009; Zhang et al., 2016, 2017) did not specify the type of 

population. Table 1 shows population type overall and by method/improvement/application 

categories. From the 51 studies that included a clinical sample, 23 included a control population. 
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From the clinical samples, patients with cerebrovascular or neurodegenerative diseases were more 

represented than patients with psychiatric conditions, communicable diseases, or genetic diseases. 

Table 1. Population types and clinically-relevant demographic groups 

       All    Method Improvement Application 

 N % N % N % N % 

Clinical 51 44.35 17 35.42 4 50.00 30 50.85 

Non-clinical only 58 50.43 27 56.25 2 25.00 29 49.15 

Unspecified 4 3.48 4 8.33 0 0 0 0 

Cerebrovascular disease 18 15.65 6 12.50 3 37.50 9 15.25 

Independently living older adults 31 26.96 12 25.00 1 12.50 18 30.51 

Neurological / Neurodegenerative 
conditions 

15 13.04 9 18.75 1 12.50 5 8.47 

Twins / Familial 3 2.61 2 4.17 0 0 1 1.69 

Occupation-related 2 1.74 0 0 0 0 2 3.39 

Psychiatric condition 4 3.48 1 2.08 0 0 3 5.08 

Communicable diseases 1 0.87 0 0 0 0 1 1.69 

Genetic diseases 5 4.35 1 2.08 0 0 4 6.78 

Legend: N: number of sources, %: Percentage with respect to the sources in each group (Note: in the 

Improvement category two studies did not use any human sample but phantoms and/or mathematical models) 

 

Age groups of populations ranged from children and adolescents through to older adults. Studies 

comprising only older adults (60+ years) and population studies including adults from 18 years old 

onwards prevailed. Ten studies (predominantly method development studies) did not provide 

information about participants’ age. Table 2 shows population age groupings used in all and each of 

the study categories.  

 

Table 2. Population age groups 
 

All Method Improvement Application  
N % N % N % N % 

Older adult (>60) 34 29.56 10 20.83 1 12.50 22 37.29 

Middle adult (40-59) 3 2.61 0 0 0 0 3 5.08 

Young adult (18-39) 10 8.70 7 14.58 0 0 3 5.08 

Adult (18+) 23 20.00 10 20.83 3 37.50 10 16.95 

Mid/Older adult (>40) 18 15.65 11 22.92 0 0 7 11.86 

Young/Mid adult (18-59) 4 3.48 1 2.08 1 12.50 2 3.39 
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Child and adolescent (<18) 4 3.48 0 0 0 0 5 8.47 

Child, adolescent, and young adult 
(<40) 

1 0.87 0 0 0 0 1 1.69 

Adult unspecified 3 2.61 0 0 1 12.50 2 3.39 

Older adult unspecified 3 2.61 2 4.17 0 0 1 1.69 

Young adult unspecified 1 0.87 1 2.08 0 0 0 0 

Unspecified 10 8.70 6 12.50 2* 25.00 3 5.08 

Total 115 100 48 100 8 100 59 100 

Legend: N: number of sources, %: Percentage with respect to the number of sources in each group, *: 

Not applicable, as no human data is used (studies on mathematical/phantom approaches only) 

Samples sizes ranged from one to 39,976 participants. Two studies that used in-silico and/or physical 

phantoms (Duarte Coello et al., 2023, 2024) did not involve the use of human data. The median 

sample size across all study types was 106 participants (IQR = 456.5). Application studies had the 

largest median sample size (161 participants) but also the greatest variance (IQR = 482.5). Sample 

sizes distribution by groups are shown in Table 3. 

 

Table 3. Range and average sample sizes (N) 

Study categories Min Max Median IQR [Q1  Q3] 

All 0 39,976 106 [38     494.5] 

Method development 1 2202 86 [19     272] 

Improvement 0 747 50 [7.5    102] 

Application 12 39,976 161 [57.5  540] 

 

 

 

3.2.3. MRI sequences and field strengths 

The included studies used a variety of MRI sequences, including T1w, T2w, proton density (PD), 

fluid-attenuated inversion recovery (FLAIR), and T2*w. Across all study types, the combined use of 

T1w and T2w MRI was the most frequently used (27.83% of studies), followed by the use of T2w 

imaging only (20.87% of all studies). One study used synthesised T2-type images for the development 

of a Digital Reference Object to evaluate PVS enhancement methods (Bernal et al., 2022). Although 

many studies of all types reported a combination of two or more sequence types, the majority used a 

single sequence, either T1w or T2w, to identify the PVS. Frequencies of individual and combined 

sequences are presented in Table 4. 
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Table 4. MR sequence combinations 

 All Method Improvement Application 

 N % N % N % N % 

T1w only 13 11.30 3 6.25 0 0 10 16.95 

T2w only 24 20.87 17 35.42 5 62.50 2 3.39 

PD only 3 2.61 2 4.17 1 12.50 0 0 

T1w, T2w 32 27.83 13 27.08 0 0 19 32.20 

T1w, T2*w 1 0.87 0 0 0 0 1 1.69 

T1w, FLAIR 4 3.48 1 2.08 0 0 3 5.08 

T1w, T2w, FLAIR 11 9.56 3 6.25 0 0 8 13.56 

T1w, T2w, PD 1 0.87 1 2.08 0 0 0 0 

T1w, T2w, Other 2 1.74 1 2.08 0 0 1 1.69 

T2w, T2*w, FLAIR 1 0.87 1 2.08 0 0 0 0 

T1w, T2w, T2*w, FLAIR 15 13.04 5 10.42 0 0 10 16.95 

T1w, T2w, FLAIR, PD 7 6.09 1 2.08 1 12.50 5 8.47 

T1w, T2w, FLAIR, Other 0** 0 0 0 0 0 0** 0 

Total 115* 100 48 100 8* 100 59 100 
Legend: N: number of sources, %: Percentage with respect to the number of sources in each group (*: 

MRI sequences are not relevant for one of the Improvement papers. **: An application study has T1w, T2w, 

FLAIR, and 3DFlow MRI, but only uses T1w and T2w for PVS segmentation.) 

 

The most commonly used MR field strengths were, in order, 3T, 1.5T, and 7T. Method development 

studies used 1.5T imaging more often than 3T or 7T (50.00%, 33.33%, 22.92%, respectively), with 

seven studies using MRI acquired at two different magnetic fields and one study (Dubost, Dünnwald, 

et al., 2019c) using MRI acquired at three different magnetic fields: 1T, 1.5T and 3T. In general, 17 

studies used imaging from more than one field strength, typically a combination of 1.5T and 3T 

images or of 3T and 7T. Five ‘method development’ studies and one ‘improvement’ study (Paz et al., 

2009) did not report the magnetic field of the MRI used. Application studies more commonly used 3T 

imaging (71.19%). One application study (Jokinen et al., 2020) used a small number of images from a 

0.5T scanner. Frequencies of field strengths used in the included studies are presented in Table 5. 

 

Table 5. MRI field strengths used 
 All Method Improvement Application 
 N % N % N % N % 

1.5T 45 39.13 24 50.00 1 14.28 20 33.90 

3T 61 53.04 16 33.33 3 42.86 42 71.19 

7T 18 15.65 11 22.92 2 28.57 5 8.47 

1T 1 0.87 1 2.08 0 0 0 0 

0.5T 1 0.87 0 0 0 0 1 1.69 

Unclear/Unreported 6 5.22 5 10.42 1 14.28 0 0 
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More than one magnetic field 17 14.78 8 29.17 0 0 9 15.25 
Legend: N: number of sources, %: Percentage with respect to the number of sources in each group 

 

3.2.4. Voxel sizes and slice thickness 

Voxel sizes varied amongst the samples. Fourteen out of the 48 methods proposed were 2D, owed to 

the anisotropy of the voxels in the images of the samples used. Consequently, application studies 

using those methods comprised images with largely anisotropic voxels (e.g., 0.4 x 0.4 x 5 or 6 mm3) 

(Tables 6 and 9). But not all 3D methods studies used images with isotropic voxels, as in many cases 

pipelines involved resampling and interpolation to convert the images to 1 mm isotropic (Table 6).  

 

3.3 Method development studies 

Summaries of all method development studies (N = 48) are presented in Table 6, ordered by year of 

publication. Twenty-seven were journal articles, 16 published in conference proceedings, and five in 

preprint repositories. It is worth noting that the four methods showcased by Sudre et al. (2022) 

submitted as part of the challenge organised by the publication authors were, at the time this review 

was conducted, in a preprint repository. Despite the semi-automatic method proposed by Smith et al. 

(2020) being also at a preprint repository, this method per-se has already been applied by a clinical 

study (Langan et al., 2022).  
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 Table 6. Method development study summaries 

Study Overview 
Computational 
method 

Reference 
standard 

MRI info Sample 
Outcome 
features 

Results 

(Kruggel et 
al., 2002) 

PVS segmented using Markov 
models. 1. Run Reversible 
Markov Chain Monte Carlo 
algorithm on data. 2. Non-linear 
registration to template space 

Stochastic 
geometry. Fully 
automated, 3D 

None 
described 

T1w 0.86×1.5×0.86 
mm3 vox size 
(resampled to 
1mm3), T2w. 3T 

Older adults. 
N = 37 

Total count, 
volume and 
location (figure 
showing spatial 
occurrence) 

None described 

(Descombes 
et al., 2004) 

Automatic method to detect and 
segment PVS by modelling the 
PVS geometry and spatial 
distribution with a Marked Point 
Process in T1W images, 
optimised with a Reversible Jump 
Markov Chain Monte Carlo 
algorithm and simulated 
annealing. 

Stochastic 
geometry. Fully 
automated, 3D 

Visual count 

T1w 0.9×0.9×1.5  
mm3 vox size 
(resampled to 
1mm3).  
1.5T 

Older adults. 
N =37 

 
Total count and 
location (figure 
showing spatial 
occurrence) 

Correlation between visual scores 
and computational counts 0.77, ICC 
of counts between two experts 0.97, 
and between one expert and the 
automatic count 0.87. Type I error 
(false positives) 13% and type II 
error (false negatives) 2.7% 

(Uchiyama et 
al., 2008) 

Lesion segmentation by top-hat 
transform and thresholding. 
Neural network to distinguish 
lacunar infarcts from PVS using 6 
features. 

Thresholding 
and neural 
network. Fully 
automated, 2D 

Visual 
inspection 

T1w used during 
post-processing to 
separate lacunar 
infarcts from PVS, 
T2w 
0.47×0.47×5.00 
mm3 vox size. 
Slice gap: 2mm 
1.5T  

Unspecified. 
N = 109 

Location 
PVS size 
PVS irregularity 
(1-C/L, C=length 
of circle of  the 
same area as the 
segmented region, 
L=boundary 
length of 
segmented region) 
T1w and T2w 
signal intensity 
difference 
between lesion 
and surroundings. 

AUC=0.945 to classify lacunar 
infarcts from PVS. 

(Wuerfel et 
al., 2008) 

Semi-automated PVS 
quantification used to explore 
PVS as an MRI marker of 
inflammatory activity in the brain. 

Thresholding. 
Semi-
automated, 3D 

Visual 
inspection 

T1w (1mm3), T2w 
(3mm thick), 
FLAIR (3mm 
thick). 
1.5T 

MS. 
N = 75 

 
Total volume (raw 
and fractional) 
Count 

Semi-auto PVS quantification vs. 
manual PVS quantification ICC = 1 
(N = 4) 



14 
 

(Uchiyama et 
al., 2009) 

Lesion segmentation by top-hat 
transform and thresholding. 
Neural network to distinguish 
lacunar infarcts from PVS using 6 
feature. (As in Uchiyama, 2008). 

Thresholding 
and neural 
network. Fully 
automated, 2D 

Visual 
inspection 

T1w used during 
post-processing to 
separate lacunar 
infarcts from PVS, 
T2w 
0.47×0.47×5.00 
mm3 vox size. 
Slice gap: 2mm, 
MRA. 
3T, 1.5T 

Unspecified. 
N =109 

Location 
PVS size 
PVS irregularity 
(1-C/L, C=length 
of circle of  the 
same area as the 
segmented region, 
L=boundary 
length of 
segmented region) 
T1w and T2w 
signal intensity 
difference 
between lesion 
and surroundings. 

AUC=0.945 to classify lacunar 
infarcts from PVS, 
sensitivity=93.3% and 
specificity=75% for detection of 
lacunar infarcts. 

(Ramirez et 
al., 2011) 

Segmentation tools for subcortical 
hyperintensities and intracranial 
tissue. 

Thresholding. 
Semi-
automated, 3D 

Manual 
segmentation 

T1w 
0.859×0.859×(1.2-
1.4) mm3 
T2w 0.781×0.781×3 
mm3 
PD 0.781×0.781×3 
mm3 vox size 
(all co-registered to 
T1w). 1.5T 

Dementia.  
N = 20 

Total volume Global ICC 0.99 and local ICC 0.97. 

(Cai et al., 
2015) 

PVS segmentation using image 
gradients. Step 1. Compute image 
gradients using MATLAB. Step 2. 
Segment white matter region. Step 
3. Interpolate 0.42x0.42x1 mm 
scans to 0.40x0.40x0.40 mm. Step 
4. Compute maximum intensity 
projection and colour-code it 
using cyan-hot colour map. Step 
5. Edge-detection and component 
connectivity analysis. 

Thresholding. 
Fully 
automated, 2D 

None 
described. 

T2w 
0.42×0.42×1.00 
mm3 vox size. 
7T 

Alzheimer’s 
disease (AD) 
N = 5 and 
controls N = 
3 (Total 
N=8) 

Location (figure 
showing spatial 
occurrence) 
Total volume 
(fractional) 

Segmentation performance described 
qualitatively, with illustration. No 
performance metrics provided. 

(Pereira et al., 
2015) 

Tool that integrates pre-
processing, tissue and ROI 
segmentation, detection, and 
visualisation of PVS, using a 
modification of the method 
described in Descombes et al. 
(2004), allowing the user to check 
and edit the response. 

Stochastic 
geometry. 
Semi-
automated, 3D 

Visual 
inspection 

T1w 1 mm3 vox 
size. 
1.5T 

Mild stroke.  
N = 9 

 PVS 
segmentation and 
visualisation 

Study describes an automated tool 
with graphic interface that allows 
user interaction to confirm automatic 
responses. Performance metrics not 
provided. 



15 
 

(Ramirez et 
al., 2015) 

PVS segmentation using a 
modified version of Lesion 
explorer. Step 1. Skull stripping 
using Brain Sizer. Step 2. Brain 
parcellation using SABRE. Step 3. 
Fuzzy c-means on T1w to 
segment brain tissues. Step 4. 
Subcortical hyperintense regions 
are found using an intensity based 
rejection strategy. Step 5. Fuzzy 
c-means to segment brain tissues. 
Step 6. Reclassification of small 
subcortical hyperintense regions 
(here PVS) based on T1w and 
T2w intensity, as well as 
WMH/lacunes based on T1w, 
T2w, and PD signal. Step 7. 
Manual edit of VRS masks. 

Thresholding. 
Semi-
automated, 3D 

Visual rating 
scores 
(Patankar and 
MacLullich-
Potter-
Wardlaw 
scales) 

T1w 
0.859×0.859×(1.2-
1.4) mm3 
T2w 0.781×0.781×3 
mm3 
PD 0.781×0.781×3 
mm3 
(all co-registered to 
T1w). 1.5T 

Dementia. N 
= 297 

Total volume 

Correlation: Patankar - CSO: 0.84; 
Patankar - BG: 0.75; MacLullich- 
Potter-Wardlaw - CSO: 0.82; 
MacLullich-Potter-Wardlaw - BG: 
0.26 

(Ballerini et 
al., 2016) 

Proposes using the ordered logit 
model to estimate the parameters 
of the Frangi filter to obtain the 
maximum likelihood of a vessel-
like structure to be a PVS in the 
CSO by estimating the count of 
PVS that most probably fall in the 
visual score given by the 
neuroradiologist in this brain 
region. 

Frangi filtering 
and 
thresholding. 
Fully 
automated, 3D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw 
scale) 

T2w 1×1×2 mm3 
(resampled to 
1mm3), 1.5T 

Older adults 
(age ~72.6 
years). N = 
60 

 Total volume, 
total counts (in 
the CSO) 

Spearman rho correlation between 
PVS volume and visual scores 0.75 
and between computational counts 
and visual scores 0.69. 

(González-
Castro, 
Valdés 
Hernández, et 
al., 2016b) 

BG PVS scores using bag of 
visual words (BoW): SIFT and 
textons; and Support Vector 
Machine (SVM) 

Machine 
learning 
classifier 
(SVM). Fully 
automated, 2D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw 
scale) 

T2w 0.94 × 0.94 × 
6.5 mm3, 5 mm 
thick, 1.5 mm inter-
slice gap 
1.5T 

Mild stroke. 
N = 264 

Dichotomised  
PVS score in BG 

Accuracy: SIFT: 82.34%, textons: 
79.61% 
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(González-
Castro, 
Valdés 
Hernández, et 
al., 2016a) 

BG PVS rating (0: scores of 0-1; 
1: scores of 2-4) using SVM and 
texture features. Step 1. ICV and 
CSF segmentation using optiBET 
and FAST. Step 2. Subcortical 
structure segmentation using FSL 
tools and the multispectral colour 
fusion technique. Step 3. Manual 
selection of slices with highest 
counts. Step 4.  Manual 
delineation of the basal ganglia. 
Step 5. Contrast enhancement 
using CLAHE. Step 6. 
Thresholding 0.43 times the 
maximum intensity level. Step 7. 
Blob counting. Step 8. Texture 
extraction (discrete wavelet 
transform, wavelet statistical 
features, Haralick features, local 
binary patterns). Step 9. SVM 
classifies based on extracted 
features 

Machine 
learning 
classifier 
(SVM). Fully 
automated, but 
manual 
intervention to 
select  and 
delineate the 
ROI, 2D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw 
scale) 

T2w 0.94 × 0.94 × 
6.5 mm3, 5 mm 
thick, 1.5 mm inter-
slice gap 
1.5T 

Mild stroke.  
N = 264 

Dichotomised  
PVS score in BG 

Accuracy = 80.03; True Negative 
Rate = 79.36; True Positive Rate = 
80.67 

(Park et al., 
2016) 

Random forest with Haar features. 
Step 1: correct intensity 
inhomogeneity, skull strip, 
segment tissues, modality co-
registration. Step 2: extract Haar 
features. Step 3: fit features into 
random forest. Step 4: repeat steps 
2 and 3 five times using auto-
context to refine segmentation 
results (Inputs -- first classifier: 
Haar features; second classifier: 
Haar features + prediction map 
first classifier; and so on). 

Machine 
learning 
classifier 
(random 
forest). Fully 
automated, 3D 

Manual 
segmentation 

T1W MPRAGE 
0.65×0.65×0.65 

mm3 voxel size. 
T2W 3D variable 
flip angle turbo SE 

0.4×0.4×0.4 mm3 

or 0.5×0.5×0.5 

mm3 voxel sizes, 
7T Reconstructed 
images had the 
same voxel sizes as 
acquired images. No 
interpolation 
applied during 
image 
reconstruction  

Healthy 
adults.  
N = 17 

PVS 
segmentation, 
PVS volume, 
length, and 
thickness (total 
and individual) 

Manual x Automated Average 
measurements for best configuration 
performance: DSC = 0.73 (SD 0.05), 
sensitivity = 0.69 (SD 0.09), PPV = 
0.80 (SD 0.07) 

(Wang, 
Valdés 
Hernández, et 
al., 2016) 

Semi-automatic PVS 
segmentation: Slice selection in 
BG, Ovoid region delineation in 

Thresholding. 
Semi-
automated, 2D 

Visual rating 
scores 
(MacLullich-
Potter-

T1w, T2w (Stroke 
sample: 
0.47×0.47×6 mm3, 
elderly sample: 

Mild stroke 
N = 110 
(testing 
sample), 

Total and 
individual PVS 
count and volume 
in BG 

BGPVS volume increased with 
BGPVS count (67.27, p <0.001). 
BGPVS computational count was 
positively associated with WMH 
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BG, linear intensity adjustment, 
thresholding. 

Wardlaw 
scale) 

1×1×2 mm3) T2*w, 
FLAIR. 
1.5T 

Community-
dwelling 
older N=16 
(method 
development) 

visual rating (PVH: 2.20, DWMH: 
1.92, p<0.001), WMH volume 
(0.065, p<0.001), and whole brain 
atrophy visual rating (1.01, 
p<0.001).  

(Zhang et al., 
2016) 

Random forest with features from 
steerable, optimally oriented flux, 
and Frangi filters. Step 1: skull 
strip, segment tissues, modality 
co-registration. Step 2: extract 
features. Step 3: fit features into 
random forest. 

Frangi filtering 
and machine 
learning. Fully 
automated, 3D 

Manual 
segmentation 

T1w: 
0.65×0.65×0.65 
mm3, T2w: 
0.5×0.5×0.5 mm3 
(or 0.4×0.4×0.4 
mm3), 
7T 

Unspecified. 
N =10 

PVS segmentation 
(Vascular features 
are extracted to 
train the Random 
Forest) 

Manual x Automated DSC = 0.6 - 
0.66 

(Zong et al., 
2016) 

Two aims. 1. Develop a sequence 
for better visualising PVS at 7T. 
2. Quantify PVS. Steps for 
quantification: Step 1. Intensity 
inhomogeneity correction using 
N3. Step 2. Skull stripping using 
BET. Step 3. Tissue segmentation 
with FAST. Step 4. Modality co-
registration using FLIRT. Step 5. 
Frangi vesselness filtering. Step 5. 
Binarisation. Step 6. Connected 
component analysis to remove 
small (<0.8mm) or (>30 mm) 
PVS. Step 7. Manual correction. 
Step 8. Morphology analysis to 
extract PVS diameter, length, and 
volume. 

Frangi filtering 
and 
thresholding. 
Fully 
automated, 3D 

None 
described 

T1w: 0.41x0.41x0.4 
mm3, T2w: 
0.65x0.65x0.65 
mm3. 
7T 

Healthy 
adults. 
N = 6 

Length, volume, 
and diameter 
distributions of 
PVS 

No performance metrics reported. 
Qualitatively, sequence optimisation 
leads to higher contrast and "much 
larger numbers of PVSs in young 
healthy subjects (age 21–37 years) 
than previously reported" 

(Dubost et al., 
2017) 

GP- Unet for lesion detection. 
Step 1: Registration to MNI space. 
Step 2: ROI computation using 
FreeSurfer and ROI smoothing 
using gaussian kernel. Step 3: GP-
Unet for lesion segmentation 

Deep learning 
(CNN). Fully 
automated, 3D 

Visual count 
PD: 0.49×0.49×0.8 
mm3. 
1.5T 

Rotterdam 
Scan Study. 
N = 1642 

Lesion heatmaps 
True Positive Rate = 62.0, number of 
false positives (Fpav) = 1.5 and 
False Discovery Rate = 31.4 

(González-
Castro et al., 
2017) 

Automated classification of  BG 
PVS burden. Descriptors: wavelet 
transform-based, local binary 
patterns, and Bag of Words using 
scale-invariant feature transform 
(SIFT) descriptors, Classifier: 
SVM with radial basis function 
kernel. 

Machine 
learning 
classifier 
(SVM). Fully 
automated, 2D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw) 

T2w: 0.469×0.469× 
6 mm3, slices 5 mm 
thick, 1 mm gap 
1.5T 

Mild Stroke. 
N = 264 

Dichotomised 
PVS scores in BG 

Cross-correlation K=0.62-0.67, 
AUC = 0.90-0.93. 
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(Hou et al., 
2017) 

PVS segmentation. Step 1: Image 
enhancement (Haar transform). 
Step 2: Image denoising (BM4D). 
Step 3: PVS segmentation 
(Vesselness filter and Random 
forest classifier). 

Frangi filtering 
and machine 
learning 
(random 
forest). Fully 
automated, 3D 

Manual 
segmentation 

T2w: 0.4×0.4×0.4 
mm3 or 0.5×0.5× 
0.5 mm3. 
7T 

Healthy 
adults.  
N = 17 

PVS segmentation DSC 0.75, PPV 0.73 and SN 0.77 

(Zhang et al., 
2017) 

Structured random forest with 
features from steerable, optimally 
oriented flux, and Frangi filters. 
Step 1: skull strip, segment 
tissues, modality co-registration. 
Step 2: extract features. Step 3: fit 
features into random forest 

Frangi filtering 
and machine 
learning 
(random 
forest). Fully 
automated, 3D 

Manual 
segmentation 

T1W: 0.65×0.65× 
0.65 mm3  
T2W: 0.5×0.5×0.5 
mm3 (or 0.4×0.4× 
0.4 mm3). 
7T 

Unspecified. 
N = 19 

PVS segmentation 
Manual x Automated DSC = 0.66 
(SD 0.03), SN = 0.65 (SD 0.04), 
PPV = 0.68 (SD 0.04) 

(Ballerini et 
al., 2018) 

PVS segmentation using the 
Frangi filter. Step 1. Segment 
CSO region of interest using 
Lesion Explorer. Step 2. Run 
Frangi filter. Step 3. Binarisation. 
All parameters were optimised 
against visual scores via ordered 
logistic modelling. 

Frangi filtering 
and 
thresholding. 
Fully 
automated, 3D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw 
scale) 

T1w SDS:  
0.86×0.86×1.4 
mm3, MSS: 
1.02×0.9×1.02 mm3 
voxel size, 
T2w SDS: 
0.78×0.78×3 mm3, 
MSS:  0.47×0.47×6 
mm3 voxel size, 
1.5T 

Dementia 
from 
Sunnybrook 
Dementia 
Study (SDS), 
Mild stroke 
(MSS). 
N = 365 

PVS segmentation 
in CSO, PVS 
scores in CSO 

SDS: PVS count in slice with max 
count vs visual score -  ρ = 0.74; 
total PVS count vs visual score -  
ρ = 0.67; total PVS volume vs visual 
score -  ρ = 0.53. MSS: PVS total 
count and volume correlates with 
visual rating scores (Spearman’s 
ρ = 0.47, p < 0.001 and ρ = 0.57, 
p < 0.001, respectively) 

(Boespflug et 
al., 2018) 

PVS segmentation using 4 types 
of images. Step 1: ROI extraction. 
Step 2: Intensity normalisation. 
Step 3: Cluster isolation. Step 4: 
Morphological constraint 
algorithm to fit lines. 

Morphology 
analysis and 
thresholding. 
Fully 
automated, 3D 

Visual count 

T1w: 1 mm 
isotropic voxel size, 
T2w and PD: 
0.938x0.938x2 
mm3, FLAIR 
0.938x0.938x3 mm3 
3T 

Older adults.  
N =14  

Total PVS count 
and volume, and 
morphology 
(linearity, volume, 
width) for each 
PVS 

Correlations with visual scores 
(MacLullich-Potter-Wardlaw scale): 
r=0.58-0.69 

(Jung et al., 
2018) 

PVS enhancement. Densely 
connected deep CNN. 

Deep learning 
(CNN). Fully 
automated, 3D 

Heuristically 
enhanced 
PVS 

T2w: 3D, algo. 
Used 60x60x60 
voxel patches 
7T 

Healthy 
adults.  
N = 17 

Enhanced T2w 
image 

PSNR 38.739 dB and SSIM 0.976 

(Lian et al., 
2018) 

PVS segmentation. Step 1: Image 
enhancement (Haar transform). 
Step 2: Image denoising (BM4D). 
Step 3: Fully Convolutional 
Network. 

Deep learning 
(CNN). Fully 
automated, 3D 

Manual 
segmentation 

T2w 
0.5×0.5×0.5 mm3 or 
0.4×0.4×0.4 mm3. 
7T 

Healthy 
adults.  
N = 20 

PVS segmentation 
DSC 0.77, PPV 0.83 and sensitivity 
0.74 
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(Martinez-
Ramirez et 
al., 2018) 

PVS in sporadic and hereditary 
cerebral amyloid angiopathy. PVS 
segmentation in 1 slice using 
semi-manual technique. Step 1: 
Selection of the slice. Step 2: 
Intensity adjustment. Step 3: 
Thresholding. Step 4: Manually 
create a mask containing the PVS 
inside the White matter. Step 5: 
Subtract both masks. Step 6: 
Manual correction. 

Thresholding. 
Semi-
automated, 2D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw 
scale) 

1.5T scanner: T1w 
1.5x1.5x1.5 mm3, 
T2w 0.859x0.859x 
4 mm3 
  
3T scanner: T1w 
FOV 224mm x 
177mm x 168mm, 
does not provide 
matrix size, T2w 
0.5x0.5x3.6 mm3, 
FLAIR 
1.125x0.8025x10 
mm3. 

Hereditary 
CAA 
carriers. 
N = 54 

PVS total volume 
in BG and CSO 

ICC for CSO-PVS relative volume 
measurement between two expert 
readers = 0.93 

(Niazi et al., 
2018) 

PVS for early diagnosis of Mild 
Cognitive Impairment. Step 1. 
Heuristically compute WM and 
Basal ganglia. Step 2: Compute 
image gradient. Step 3: Threshold 
gradient. 

Thresholding. 
Fully 
automated, 2D 

Visual 
inspection 

T2w: 0.4x0.4x2 
mm3 voxel size. 
3T 

MCI. 
N = 29 

PVS segmentation 
in WM and BG, 
total volume and 
count (density) in 
WM and BG 

Automated PVS vs. visual counting 
= 0.77% false positive pixels 
Automated PVS vs. visual counting 
= 19.39% false negative pixels 

(Dubost, 
Adams, et al., 
2019) 

3D regression convolutional 
neural network (CNN) to 
automatically score BG PVS, 
where the score corresponds with 
the count in one slice as per 
Adams et al., 2015. 

Deep learning 
(CNN). Fully 
automated, 3D 

Visual 
counting 

PD: 0.49mm x 
0.49mm x 0.8mm. 
1.5T 

Rotterdam 
Scan Study. 
N = 2063 

PVS scores and 
saliency maps (in 
BG only) 

Best results: ICC=0.803, MSE=4.85; 
ICC=0.787, MSE=4.65 

(Dubost, 
Yilmaz, et al., 
2019) 

PVS rating using deep CNN in 
midbrain, hippocampus, basal 
ganglia and centrum semiovale. 
Step 1: Bias field correction. Step 
2: Freesurfer. Step 3: ROI 
cleaning. Step 4: Deep CNN per 
ROI. -  Extends (Dubost, Adams, 
et al., 2019) to other three brain 
regions (one CNN per region), 
uses different CNN architecture 
(lighter models, introduces skip 
connections between blocks, and 
uses global pooling instead of two 
fully connected layers of 2000 
neurons), and provides a more 
elaborate evaluation. 

Deep learning 
(CNN): small 
ResNet adapted 
for regression 
in a 3D image. 
Fully 
automated, 3D 

Visual rating 
scores 
(UNIVRSE 
consortium) 

T2w: 0.49mm x 
0.49mm x 0.8mm. 
1.5T 

Rotterdam 
Scan Study. 
N = 1485 

PVS scores in 4 
regions 

Interclass correlation coefficients 
between 0.75 and 0.88 
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(Dubost, 
Dünnwald, et 
al., 2019) 

PVS quantification by 2 methods: 
(1) a neural network with 4 
convolutional layers and a max-
pooling layer which output the 
number of PVS (CNN) (2) a GP-
Unet to enable weakly supervised 
detection of PVS. 

Deep learning 
(CNN). Fully 
automated, 3D 

Visual rating 
scores 

T1w, T2w: 0.5mm x 
0.5mm x 0.8mm. 
1.5T, 3T, 1T 

Rotterdam 
Scan Study, 
Magdeburg 
PACS. 
N = 1676 

PVS scores and 
attention maps 

Pearson correlation: CNN: 0.52 
(CSO), 0.25 (BG), 0.33 
(hippocampi); GP-Unet: 0.78 (CSO), 
0.31 (BG), 0.51 (hippocampi). Mean 
absolute errors: CNN: 6.39 (CSO), 
5.49 (BG), 3.0 (hippocampi); GP-
Unet: 5.58 (CSO), 5.67 (BG), 2.58 
(hippocampi). Note: values 
presented in text and in tables differ. 

(Jung et al., 
2019) 

60x60x60 voxel patches, 3D 
Dense neural network (CNN) to 
enhance the quality of the PVS 

Filtering and 
deep learning 
(CNN). Fully 
automated, 3D 

Heuristically 
enhanced 
PVS 

T2w: 0.5mm x 
0.5mm x 2mm. 
7T 

Healthy 
adults. 
N = 17 

Enhanced image PSNR 47.98dB and SSIM 0.975 

(Schwartz et 
al., 2019) 

PVS segmented by stepwise local 
homogeneity search of white 
matter-masked T1w, constrained 
by FLAIR hyperintensity, and 
further constrained by width, 
volume, and linearity 
measurements. 

Morphological 
detection. Fully 
automated, 3D 

Visual 
inspection 

3D T1w 1 mm 
isotropic, 2D 
FLAIR 0.966mm x 
0.968mm x 2mm. 
3T, 1.5T 

Alzheimer’s 
disease, 
Older adults. 
N = 44 

 PVS 
segmentation 

Visual vs automatic correlation 
r=.72 p<0.0001. Repeated measures 
correlation: single slice r=.87, 
p<0.0001, whole brain r=.77, p=.001 

(Sepehrband 
et al., 2019) 

T1w - T2w PVS enhancement. 
Step 1: Bias filter correction. Step 
2: Co-registration. Step 3: Non-
local filtering to remove noise. 
Step 4: T1w/T2w image. Step 5: 
Frangi filter. 

Frangi filtering 
and 
thresholding. 
Fully 
automated, 3D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw 
scale) 

3D T1w 0.7 mm 
isotropic, 3D T2w 
0.7mm isotropic . 
7T 

Human 
Connectome 
Project. 
N = 900 

PVS 
segmentation, 
Total PVS 
volumes and 
counts in BG and 
CSO 

Lin’s concordance coefficient = 0.81 
and Pearson’s correlation coefficient 
= 0.61 

(Sudre et al., 
2019) 

3D region-based deep learning 
model (HighResNet convolutional 
neural network architecture 
implemented in niftynet and 
which operates in ROIs) to detect 
and characterise lacunes and/from 
PVS (both considered extremely 
small objects, abbreviated as 
ESO). It improves 2D Mask-R-
CNN models (not previously used 
for this purpose), and outputs: a) a 
probability "score" map and b) 
boxes encircling the PVS or 
lacunes. It does not segment the 
PVS or lacunes. 

Deep learning 
(CNN). Fully 
automated, 3D 

Probabilistic 
boxes for 
manually 
segmented 
PVS and 
lacunes, from 
two 
observers. 

T1w, T2w, FLAIR, 
all 3D 1mm 
Isotropic. 
7T 

Older adults. 
N = 16 

Probabilistic 
boxes identifying 
presence of PVS 
and lacunes 

Sensitivity of 72.7%, median overlap 
positive agreement of 59% for 
boxes/voxels agreed by all raters, 
and 30% when at least one rater 
disagreed. 
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(van Wijnen 
et al., 2019) 

PVS detected by Fully 
Convolutional Neural Network 
using Distance Maps: Euclidean 
(EDM), geodesic (GDM), 
intensity (IDM) distance maps 

Deep learning 
(CNN). Fully 
automated, 3D 

Manual 
annotation 

T2w 0.49 × 0.49 × 
0.8 mm3. 
1.5T 

Rotterdam 
Scan Study. 
N = 2202 

PVS detection 

On test set: EDM:  FAUC=45.761, 
Sensitivity= 53.63; DGM: 
FAUC=50.757, Sensitivity= 55.26; 
IDM: FAUC=53.078, 
Sensitivity=55.35 

(Choi et al., 
2020) 

PVS segmentation. Step 1: ROI 
segmentation using FreeSurfer. 
Step 2: Frangi Filter. Step 3: CNN 
for removing false positives. 

Frangi filtering 
and deep 
learning 
(CNN). Fully 
automated, 3D 

Manual 
segmentation 

3D T1w, 3D T2w 
both 0.7 mm 
isotropic. 
3T 

Human 
Connectome 
Project. 
N = 1210 

PVS segmentation 
and regional (BG 
and WM) 
volumes 

ICC 0.98 (validation set N = 10). 

(Dubost et al., 
2020) 

PVS counts are predicted using a 
weakly supervised detection 
method using neural networks that 
compute attention maps (GP-
UNet). The approach is weakly 
supervised because only image-
level counts are entered for 
training. Step 1. Put image 
through network. Step 2. Retrieve 
activation map but ignore those 
regions where attention maps 
contained negative values. Step 3. 
Non-maximal suppression. Step 4. 
Candidates with the highest 
responses are deemed as most 
likely candidates. 

Deep learning 
(CNN). Fully 
automated, 3D 

Manual 
annotation 

T2w 0.49 × 0.49 × 
0.8 mm3. 
1.5T 

Rotterdam 
Scan Study. 
N = 2202 

PVS detection, 
segmentation, 
volume (and 
count) in 4 
regions: 
hippocampi, 
midbrain, BG and 
CSO 

Manual x Automated: FAUCs = 72.0 
+- 13.3; Sensitivity = 62.1+-8.7; 
Average number of false positives = 
2.33+-1.71, Average number of false 
negatives = 2.44+-2.01 

(Smith et al., 
2020) 

Semi-automated MATLAB tool 
(GUI) for PVS segmentation, 
editing, and visualisation. Needs 
ROI as input and uses Frangi 
filter.  

Frangi filtering 
and 
thresholding. 
Semi- 
automated, 2D 
and 3D 

Manual 
segmentation 

T2w (any resolution 
can be accepted) 
7T 

MS. 
N = 1 

PVS 
segmentation, 
visualisation and 
editing 

83% of PVS match with the ground 
truth and 94% of the ground truth 
match with the segmentation. 

(Boutinaud et 
al., 2021) 

3D deep learning method that uses 
an auto-encoder and a U-Net to 
segment PVS in deep white matter 
(DWM) and BG from T1W 
images. 

Deep learning 
(CNN). Fully 
automated, 3D 

Manual 
segmentation 

T1w 1 mm 
isotropic. 
3T 

Healthy 
adults. 
N = 1832 

PVS segmentation 
and regional 
volumes in BG 
and deep WM 

In 10 people’s data, DSC=0.51 in 
DWM and 0.66 in BG; and 0.64 in 
DWM (0.71 in BG) for PVS cluster 
detection (volume threshold of 0.5 
within a range of 0 to 1). Dice values 
above 0.90 could be reached for 
detecting PVSs larger than 10 mm3 
and 0.95 for PVS larger than 15 
mm3. When applied to a sample of 
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n=1782, agreement with a semi-
quantitative visual rating done by an 
independent expert rater for DWM 
R2(thr0.1) = 0.38, R2(thr0.5) = 0.45 
see Figure 10C, R2(thr0.9) = 0.47, p 
< 0.001, and BG R2(thr0.1) = 0.02, 
R2(thr0.5) = 0.05, R2(thr0.9) = 0.04, 
p < 0.001. 

(Yang et al., 
2021) 

PVS rating using CNN-based 
deep learning model using 3 slices 
of the T2w (basal ganglia only). 
Step 1: Preprocessing (ROI 
extraction and image 
enhancement). Step 2: CNN. 
Output: PVS rating. 

Deep learning 
(CNN). Fully 
automated, 2D 

Visual rating 
scores 

T1W 1 mm 
isotropic, T2w 
0.573×0.573×5 
mm3. 
3T 

Alzheimer’s 
Disease.  
N = 96 

BG PVS scores 
Correlation 0.9169 with p=0.0001 
for images, and 0.9335 with 
p=0.0001 for subjects. 

(Ranti et al., 
2022) 

PVS segmentation using the 
Frangi filter in a MATLAB GUI. 
Step 1. WM segmentation using 
FreeSurfer. Step 2. Fill holes in 
WM mask. Step 3. Frangi 
filtering. Step 4. Boundary voxel 
removal. Step 5. Intensity and 
Frangi based binarisation. Step 6. 
Manual correction. 

Frangi filtering 
and 
thresholding. 
Semi-
automated, 2D 
or 3D. 

Manual 
segmentation 

T1w, T2w 0.4x0.4 
mm in-plane resol. 
interpolated to 
0.2x0.2 mm, 
thickness=2 mm, 
and 0.6 mm inter-
slice gap. 
7T 

MDD N=21 
and healthy 
controls 
N=27.  
Total N = 48 

PVS total volume, 
count, density, 
PVS individual 
length and width 
(median values 
given) 

Manual x Automated: Sensitivity = 
82.9, Specificity = 91.9; Semi-
automated x Semi-automated (two 
raters): Dice = .9914, inter-rater 
reliability = 97.8. 

(Spijkerman 
et al., 2022) 

Automated detection and 
quantification of PVS. Binary 
PVS probability maps created 
using kNN classifier using T1w, 
T2w and vesselness values. 

Machine 
learning 
classifier 
(kNN). Fully 
automated, 3D 

Manual 
annotation in 
a single slice 
CSO right 
hemisphere 

T1w 1mm3, T2w 
0.7 mm-isotropic. 
7T 

Healthy 
adults. 
N = 50 

Total count, 
density, and 
individual PVS 
lengths and 
tortuosity 

Bland-Altman: smaller PVS count 
identified by automated method 
compared to human. ICC 
(absolute/consistency) = 0.64/0.75. 
DSC = 0.61 between automated and 
manually labelled. 

(Sudre et al., 
2022) 
‘BigrBrain’  

U-Net, Dice loss, 225x225 
patches size. 

Deep learning 
(CNN). Fully 
automated, 2D 

Manual 
annotation in 
selected 2D 
slices 

T1w, T2w, FLAIR. 
SABRE sample: 
1.09x1.09x1.0 mm3  
RSS sample:  
0.49x0.49x 0.8 mm3 
3T, 1.5T 

Rotterdam 
Scan Study, 
SABRE. 
N = 106 

PVS detection and 
segmentation, 
Total PVS volume 
and count 

F1=35.81, AED=14.50, Mean 
Dice=61.09, AVD=45.30 

(Sudre et al., 
2022) 
‘Neurophet’  

Mask RCNN, Losses: BCE, 
Focal, & MAE. 

Deep learning 
(CNN). Fully 
automated, 
2.5D 

Manual 
annotation in 
selected 2D 
slices, 2.5D 

T1w, T2w, FLAIR. 
SABRE sample: 
1.09x1.09x1.0 mm3  
RSS sample:  
0.49x0.49x 0.8 mm3 
3T, 1.5T 

Rotterdam 
Scan Study, 
SABRE. 
N = 106 

PVS detection and 
segmentation, 
Total PVS volume 
and count 

F1=0, AED=29, Mean Dice=28.23, 
AVD=390.15 
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(Sudre et al., 
2022) 
‘TeamTea’ 

nnU-Net, Dice loss, 256x224 
patches size. 

Deep learning 
(CNN). Fully 
automated, 2D 

Manual 
annotation in 
selected 2D 
slices 

T1w, T2w, FLAIR. 
SABRE sample: 
1.09x1.09x1.0 mm3  
RSS sample:  
0.49x0.49x0.8 mm3 
3T, 1.5T 

Rotterdam 
Scan Study, 
SABRE. 
N = 106 

PVS detection and 
segmentation, 
Total PVS volume 
and count 

F1=17.12, AED=41, Mean 
Dice=55.07, AVD=106.05 

(Sudre et al., 
2022) 
‘TheGPU’ 

Random forest (minimal detail 
reported). 

Machine 
learning 
classifier 
(random 
forest). Fully 
automated, 2D 

Manual 
annotation in 
selected 2D 
slices 

T1w, T2w, FLAIR. 
SABRE sample: 
1.09x1.09x1.0 mm3  
RSS sample:  
0.49x0.49x0.8 mm3 
3T, 1.5T 

Rotterdam 
Scan Study, 
SABRE. 
N = 106 

PVS detection and 
segmentation, 
Total PVS volume 
and count 

F1=38.92, AED=16, Mean 
Dice=72.38, AVD=45.20 

(Williamson 
et al., 2022) 

PVS graded by ResNet-152. Each 

image (512×512×16) input to a 
3D convolutional layer (7×7×7, 
64 filters) with ReLu activation 
and batch normalization, followed 
by a series of 50 residual units, 
each with 3 convolutional layers. 

Deep learning 
(CNN). Fully 
automated, 3D 

Visual rating 
scores 
(MacLullich-
Potter-
Wardlaw 
scale) 

T2w (5 sites, 24-36 
slices, median=32). 
7T 

Stroke.  
N = 262 

PVS scores 

Accuracy/AUC of 0.802/0.834 on 
the training set, 0.768/0.847 on the 
validation set, and 0.897(95% CI = 
[0.758, 0.971])/0.879 on the test set. 
On the held-out test set, 
specificity=0.96, sensitivity=0.80, 
and F1=0.86 

Lan et al. 
(2023) 

Weakly supervised conditional 
random field recurrent neuronal 
network (CRF-RNN). Combines 
Frangi filter with U-Net using 
conditional random field theory, 
optimised using weighted cross 
entropy loss function training 
patch selection. 

Deep learning 
(CNN) and 
Frangi filtering. 
Fully 
automated, 3D 

Scan-rescan 
interclass 
correlation 
0.97, 33% 
manual 
corrected by 2 
raters 
 
 

T1w, T2w from two 
protocols: 0.7 mm 
isotropic and 0.8 
mm isotropic, 3T 

Healthy 
female 
volunteers 
from the 
Human 
Connectome 
Project 
(N=400) 

PVS 
segmentation, 
saliency map 

Frangi FP = 0.0067 ± 0.0063; WPSS 
FP = 0.0093 ± 0.0069; U-Net FP = 
0.0146 ± 0.0096. WPSS and U-Net 
trained using QC data: Frangi FP = 
0.0068 ± 0.0060, WPSS FP = 0.0020 
± 0.0026, U-Net FP = 0.0033 ± 
0.0035. 

Rashid et al. 
(2023) 

Implements a lightweight U-Net 
adapted for PVS detection and 
investigates different 
combinations of information 
from SWI, FLAIR, T1-weighted 
(T1w), and T2-weighted (T2w) 
MRI sequences to inform best 
sequence combination for the task 
using deep learning in a multi-
ethnic cohort. 

Deep learning 
(CNN). Fully 
automated, 2D 

Manual 
segmentations 
in 21 subjects 

FLAIR, T1w, T2w 
1 mm isotropic, 
SWI 1 x 1 x 1,5 
mm3, 3T 

21 MESA 
participants 
with age 
range from 
64 to 94 
years  

PVS segmentation 

T2w MRI is the most important for 
accurate PVS detection, and the 
incorporation of SWI, FLAIR and 
T1w MRI in the deep neural network 
had minor improvements in accuracy 
and resulted in the highest sensitivity 
and precision (sensitivity = 0.82, 
precision = 0.83). 
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Note: The MRI sequence(s) underlined is(are) the one(s) used specifically to generate the PVS assessments. The non-underlined MRI sequences in each case are used in pre-

/post-processing. Legend:  PVS: Perivascular Spaces, AUC: Area Under the (ROC) Curve, FAUC: F stat (ratio of two variances) of the AUC from two measurements (e.g. 

manual vs. automatic) CI: Confidence Interval, CNN: Convolutional Neural Networks, GUI: Graphic Unit Interface, AED: Absolute Error Difference, ICC: Intra-class 

Correlation Coefficient, AVD: Absolute Volume Difference, DSC: Dice Similarity Coefficient, BG: basal ganglia, CSO: centrum semiovale, FOV: Field Of View, CLAHE: 

Contrast Limited Adaptive Histogram Equalization, FP: False Positives, SWI: Susceptibility Weighted Images, MDD: Major Depressive Disorder,  WM: White Matter, GM: 

Grey Matter,  DWM: Deep White Matter, PSNR: Peak Signal-to-Noise Ratio, SSIM: Structural Similarity Index Metric,  PPV: Positive Predictive Value, SABRE: Southall 

And BRent Revisited study, MESA: Multi-Ethnic Study of Atherosclerosis, WPSS: Weakly Supervised Perivascular Spaces Segmentation, PVH: periventricular 

hyperintensities, DWMH: deep white matter hyperintensities, MSE: Mean Squared Error, MAE: Mean Absolute Error, F1: accuracy metric that combines the precision and 

recall scores of a model by computing how many times a model made a correct prediction across the entire dataset, QC: Quality Control, TPR: True Positive Rate, FDR: 

False Discovery Rate, CNN: Convolutional Neural Network, SIFT: Scale Invariant Feature Transform, SD: Standard Deviation.
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3.3.1. Computational methods 

Seven of the 48 ‘method development’ studies used a semi-automated approach, while the remaining 

41 used a fully automated one. Broadly speaking, computational methods included filtering, machine 

learning, deep learning, combined approaches and intensity thresholding (i.e., as main technique) 

(Table 6). It is worth noting that most, if not all papers, involve thresholding. CNNs for example, 

often output a response map that is thresholded to get the binary masks. Also, filtering techniques 

generate a response that is thresholded to obtain the PVS proxies. The most frequent approach was the 

use of deep learning, proposed in 16 studies (33.33%). Frequencies of all types of approaches 

proposed are presented in Table 7. 

Table 7. Types of computational approaches 
 N % 

Classical image processing   

Intensity thresholding 7 14.58 

Frangi filtering + Thresholding 6 12.50 

Machine learning   

Stochastic geometry 3 6.25 

Support Vector Machine (SVM) 3 6.25 

Random Forest (RF) 2 4.17 

Convolutional Neural Networks (CNN) 16 33.33 

K-Nearest Neighbours (KNN) 1 2.08 

Classical image processing + Machine learning   

Intensity thresholding + Neural network 2 4.17 

Frangi filtering + RF 3 6.25 

Filtering + CNN 1 2.08 

PVS Morphological detection (width, length, size) 2 4.17 

Frangi filtering + CNN 2 4.17 

Legend: N: number of sources, %: Percentage with respect to the 48 sources in the Method development group 

 

From all the sources in this category, only nine provide their code in a public repository,  28 do not 

provide the code, and one provides via to request the code (Supplementary Table 2). The rest use 

publicly available resources like the Frangi vesselness filter implementation by Dirk-Jan Kroon 

(2009) hosted by Matlab Central File Exchange 

(https://www.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-

filter), or the 3D multi-radii optimally oriented flux responses for curvilinear structure analysis 

implementation by Max W.K. Law (2013) also hosted by Matlab Central File Exchange 

(https://www.mathworks.com/matlabcentral/fileexchange/41612-optimally-oriented-flux-oof-for-3d-

curvilinear-structure). The FMRIB Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) is the 

preferred software used for sequence co-registration, occasionally for brain extraction, and in two 

sources (Gonzalez-Castro et al., 2016b, 2017) it is also used for generating priors of the basal ganglia 
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region. AFNI (https://afni.nimh.nih.gov/) is used by two sources (Boespflug et al., 2018; Williamson 

et al., 2022) for co-registration and skull-stripping, and elastix (https://elastix.lumc.nl/) is used for co-

registration by one (Spijkerman et al., 2022). Not all methods correct for b1 inhomogeneities in the 

magnetic field, compensate for the presence of noise, or refer to a software/algorithm for normalising 

the intensities of the images prior to segmentation. The software most commonly used for generating 

the regions of interest is Freesurfer (https://surfer.nmr.mgh.harvard.edu/) (See Supplementary Table 

2). 

3.3.2. Model training 

Thirty-two (66.68%) of the 48 quantification methods developed required training. Training and 

validation approaches included ‘leave one out’ (5 studies, 10.42%), ‘k-fold cross-validation’ (7 

studies, 14.58%) and variations involving training data in one subset of data and testing in another (14 

studies, 29.17%), training in one subset, validating in another, and testing in a further subset (4 

studies, 8.33%), and a progressive/iterative training including altering thresholds and increasing 

sample sizes (2 studies, 4.17%). 

 

3.3.3. Reference standard 

The reference standard, or ‘ground truth’, most frequently used in PVS quantification method 

development was visual rating scores (13 studies, 27.08%). Other visual reference standards included 

visual count of PVS (5 studies, 10.42%) and ‘visual inspection’ (often lacking further detail of what 

this entailed, but where mentioned included differentiating PVS from lacunes; 5 studies, 10.42%). 

Manual segmentation was used in 11 (22.92%) studies, and manual annotation in eight (16.67%). 

Three studies (6.25%) did not describe a ground truth or reference standard, and a further 3 studies 

(6.25%) used more idiosyncratic reference standards (e.g., heuristically enhanced PVS, and 

probabilistic boxes for previously manually segmented PVS). 

 

3.3.4. Populations and sample sizes 

A brief overview of populations and sample sizes across all study types is provided in section 3.2.2, 

Tables 1, 2 and 3. The most frequent age group in which computational PVS quantification methods 

have been developed was in mid- and older adults (participants aged 40 years and over; 11 studies, 

22.92%), followed by general adult (18 years and over; 10 studies, 20.83%), and older adult (60 years 

and over; 10 studies, 20.83%). Non-clinical populations were more widely represented than clinical 

(27 studies, 56.25% non-clinical, 17 studies, 35.42% clinical). Of the method development studies 

that used clinical populations, medical conditions within these populations included hereditary 
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conditions (one study involving hereditary cerebral amyloid angiopathy carriers; 2.08%), six studies 

involving stroke patients (i.e., cerebrovascular; 12.5%), nine studies with samples with neurological 

or neurodegenerative diseases (e.g., Alzheimer’s disease, multiple sclerosis; 18.75%), and one study 

involving patients with major depressive disorder; 2.08%). However, there is considerable overlap 

between the samples used by the different studies. Figure 3 comparatively illustrates the distribution 

of sample sizes of the studies in this category. Dubost et al. (2017, 2019a, 2019b, 2019c, 2020) and 

van Wijnen et al. (2019) use more than 1000 scans from the Rotterdam Scan Study. A manually 

annotated subset of it is used in the four studies described by Sudre et al. (2022). Ballerini et al. 

(2018) and Ramirez et al. (2011, 2015) use data from the Sunnybrook Dementia Study. Gonzalez et 

al. (2016a, 2016b, 2017), Wang et al. (2016), and Ballerini et al. (2018) all use scans from the 

Edinburgh Mild Stroke Studies. Other common data sources used are the Human Connectome Project 

(Shepehrband et al., 2019; Choi et al., 2020; Lan et al., 2023), the Lothian Birth Cohort 1936 

(Ballerini et al., 2016, Wang et al., 2016), the Multi-Ethnic Study of Atherosclerosis (MESA) cohort 

(Rashid et al., 2023) and the Southall And BRent REvisited (SABRE) (Sudre et al., 2022, 4 

participating studies). All these are well-known clinical and population studies with data available 

either by request to the data holders or through public databases, which facilitates comparability in the 

results. Studies using small or not publicly available samples (22 studies), or which did not specify the 

source of data used (4 studies) made up 54.17% of the total number of studies.  
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Figure 3. Comparative sample sizes of the studies in the method development category. Dubost et al. and 

Ramirez et al. used overlapped subsamples from the same data sources. For these cases, the largest sample is 

represented in the graph. 

 

3.3.6. Assessing computational PVS quantification 

A number of different approaches to assessing the quality of PVS quantification were used, making 

direct comparisons difficult. More commonly used assessments include measures of associations 

between computational output and reference standard (e.g., correlations), measures of accuracy (e.g., 

false positive/false negatives, ROC analyses), and measures of spatial agreement. Eighteen studies 
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calculated association (correlation, regression) with reference standard measurements or scores (Table 

6), with best performance (manual vs. computational approach) plotted in Figure 4. Best results were 

achieved with semi-automated thresholding methods (Wuerfel et al., 2008; Ramirez et al., 2011), and 

by the approach presented by Choi et al. (2020) that uses a CNN to remove false positives from 

segmentation priors derived from thresholding the output from the Frangi filter, although this was 

only validated in 10 scans. The CNN schemes proposed by Dubost et al. (2019a) and Yang et al. 

(2021) followed in order of good performance. The highest variability in the method’s performance 

was achieved with the filtering approach proposed by Boespflug et al. (2018).  

 

Figure 4. Forest plot of correlation coefficients of best performance (non-computational vs. 
computational) PVS quantification (MedCalc (https://www.medcalc.org/)). Square size indicates 
relative sample size, diamond indicates pooled fixed and random effects correlation coefficient.  

 

Accuracy metrics varied, largely depending on the reference standard, but all methods reporting 

accuracy results used various metrics (Table 6 and Supplementary Table 3). Average Dice similarity 

coefficient (DSC) values from sources that report them are illustrated in Figure 5. The majority are 

between 0.6 and 0.8. Only Ranti et al. (2022) stands out with a value of 0.9914 (Table 6, Figure 5).  
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Figure 5. Average DSC and standard deviations (interquartile range for the schemes proposed in Sudre et al., 
2022) results for each of the schemes proposed. 

 

3.4. Improvement studies 

Summaries of all improvement studies identified, which fitted our inclusion criteria (N = 8), are 

presented in Table 8. Targets for quantification improvement included image compression, motion 

artefacts and noise in general, image texture, comparison of vessel likelihood filters, and any source 

from which to derive useful recommendations for improving any of the methods developed up to date. 

Three sources are chapters in conference proceeding books (Bernal et al., 2020, 2021; Duarte Coello 

et al., 2023). The rest are journal publications. 
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Table 8. Computational PVS quantification improvement study summaries 

Study Overview Approach 
Reference 
standard 

MRI sequences 
Sample 
N 

Result 

(Paz et al., 
2009) 

Determines level of compression that 
allows for the detection of small 
lesions (including PVS) 

Mathematical 
observer models 

Visual assessment 
T2w. 
Unspecified 

MS. 
N = 10 

The blurring effect introduced by the JPEG 2000 
compression technology does not jeopardize the 
lesion detection task when using bit rates higher 
than 0.125 bpp. 

(Bernal et 
al., 2020) 

Framework for improving PVS 
segmentation by analysing image 
texture (i.e., energy, contrast, 
correlation, homogeneity, entropy 
and variance) and filtering when 
required (i.e., if the texture analysis 
suggest the image is noisy), using a 
total variation filter. 

Frangi filtering 
and thresholding 

Visual rating scores 
T2w. 
3T 

Mild 
stroke. 
N = 60 

Combination of all 6 textural features improved 
classification in noisy vs. less noisy/clean 
(AUC=88.8%), R2  values were approximately 13% 
and 40% for count and volume of PVS in the basal 
ganglia in original scans, and increased to 30% and 
47% for the same measurements when filtered. In 
the CSO, the improvement in R2 values was from 
0.73% to 11% for counts and from 7.55% to 35% 
for volume. Overall, the scheme proposed improves 
the PVS quantification, but it is unclear if can be 
extended to other protocols/ images from other 
scans. 

(Bernal et 
al., 2021) 

Explores motion artefact reduction. 
PVS segmented using Frangi filter. 
Step 1: quality assessment. Step 2: if 
images are of bad quality (contain 
motion artefacts), filter them by 
manually removing segments of k-
space displaying errors. Step 3: filter 
images with Frangi filter. Step 4: 
threshold. 

Frangi filtering 
and thresholding 

Visual rating scores 
T2w. 
3T 

Mild 
stroke. 
N = 60 

Visual x Automated Counts: pBG = 0.50, 
pCSO=0.34; Visual x Automated Volume: pBG = 
0.72, pCSO = 0.86. This proof-of-concept paper 
shows that processing images depending on their 
quality leads to improved results. 

(Zong et 
al., 2021) 

Determines effect of motion artefacts 
and motion correction of PVS 
quantification. 

Deep learning 
(CNN) 

Data without 
motion artefacts 

T2w. 
7T 

Healthy 
adults. 
N = 39 

Without motion correction (MC), VF, and count 
decreased significantly with increasing head 
rotation. MC improved PVSV visualization in all 
cases with severe motion artefacts. While  both  
raters  agreed  on  the  improvements  of  PVSV  
visibility  by  MC  in  all  cases  with  severe  motion  
artefacts,  the  agreement  was  only  43%  in  other  
cases. MC decreased diameter in white matter (WM) 
and increased VF, count, and contrast in basal 
ganglia and WM. The changes of VF, count, and 
contrast after MC strongly correlated with motion 
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severity. MC eliminated the significant dependences 
of VF and count on rotation and reduced the inter-
subject variations of VF and count. 

(Bernal et 
al., 2022) 

Compares different vesselness 
filtering methods with synthetic data 
and shows quantification problems. 

Frangi, Jerman, 
RORPO filtering 
and thresholding 

T2w-like images 
with synthetically 
generated PVS-like 
tubular structures 
(i.e., cylinders) 

T2w-like synthesised 
data 

Synthetic 
data 

RORPO best when voxels isotropic. Performance of 
all filters affected by image quality. Filters unable to 
distinguish PVS from hyperintense structures. Area 
under precision-recall curve dropped substantially 
(Frangi: from 94.21 [IQR 91.60, 96.16] to 43.76 
[IQR 25.19, 63.38]; Jerman: from 94.51 [IQR 91.90, 
95.37] to 58.00 [IQR 35.68, 64.87]; RORPO: from 
98.72 [IQR 95.37, 98.96] to 71.87 [IQR 57.21, 
76.63] without and with other hyperintense 
structures, respectively.  

(Duarte 
Coello et 
al., 2024) 

Uses a purpose-built digital reference 
object to construct an in-silico 
phantom for establishing the limits of 
validity of PVS quantification, and 
validates it using a physical phantom. 
Uses cylinders of different sizes as 
models for PVS. Also evaluates the 
influence of 'PVS' orientation, and 
different sets of parameters of the 
two vesselness filters that have been 
used for enhancing tubular structures, 
namely Frangi and RORPO filters, in 
the measurements' accuracy. 

Frangi or 
RORPO filtering 
and thresholding. 

Ideal values, 
physically 
measured using a 
hole gage and a 
calliper in the 
physical phantom, 
or derived from the 
cylinder equation in 
the in-silico 
phantom 

T2w contrast using a 
turbo spin-echo 
sequence (Physical 
phantom imaged at 
7T) 

Synthetic 
data 

PVS measurements in MRI are only a proxy of their 
true dimensions, as the boundaries of their 
representation are consistently overestimated. The 
success in the use of the Frangi filter relies on a 
careful tuning of several parameters. Alpha= 0.5, 
beta= 0.5 and c= 500 yielded the best results. 
RORPO does not have these requirements and 
allows detecting smaller cylinders in their entirety 
more consistently in the absence of noise and 
confounding artefacts. The Frangi filter seems to be 
best suited for voxel sizes equal or larger than 
0.4 mm-isotropic and cylinders larger than 1 mm 
diameter and 2 mm length. ‘PVS’ orientation did not 
affect measurements in data with isotropic voxels. 

(Duarte 
Coello et 
al., 2023) 

Curve approximation for accurate 
estimation of PVS morphometrics: 
length and diameter, out from PVS 
segmentations. 

Approximation 
of the connected 
component to a 
Bezier curve 

Ideal values, 
derived from 
counting the voxels 
in a binarised 
curve, derived from 
a PVS-DRO with 
voxel size of 0.35 × 
0.35 × 0.35 mm3 

Not applicable 
Not 
applicable 

The Bézier curve approximation performs better 
than the ellipsoid, being closer to the ideal 
measurements. For diameter: MSE Bezier=0.26mm, 
MSE ellipsoid=7.74mm, For length: MSE 
Bezier=0.051mm, MSE ellipsoid=10.34mm 
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(Valdés 
Hernández 
et al., 
2024) 

Evaluates modifications and 
alternatives to a state-of-the-art PVS 
segmentation method that uses a 
vesselness filter to enhance PVS 
discrimination, followed by 
thresholding of its response, applied 
to brain magnetic resonance images 
(MRI) from patients with sporadic 
small vessel disease acquired at 3T. 

Frangi or Jerman 
filtering and 
thresholding. 

Visual rating scores 
(McLullich-Potter-
Wardlaw), and 
visual inspection 

T1w (1 mm 
isotropic), T2w 
(0.90 mm × 0.937 mm 
× 0.937 mm), 3T 
(SWI and FLAIR are 
used for visual 
assessment of the 
results) 

Mild 
stroke 
N=228.  
 
(mean 
age (SD): 
65.77 
(11.17) 
years, 
34% 
female) 

The method is robust against inter-observer 
differences in threshold selection, but separate 
thresholds for each region of interest (i.e., BG, CSO, 
and midbrain) are required. Noise needs to be 
assessed prior to selecting these thresholds, as effect 
of noise and imaging artefacts can be mitigated with 
a careful optimisation of these thresholds. PVS 
segmentation from T1w images alone, misses small 
PVS, therefore, underestimates PVS count, may 
overestimate individual PVS volume especially in 
the basal ganglia, and is susceptible to the inclusion 
of calcified vessels and mineral deposits. Visual 
analyses indicated the incomplete and fragmented 
detection of long and thin PVS as the primary cause 
of errors, with the Frangi filter coping better than the 
Jerman filter. 

 

Legend:  PVS: perivascular spaces, T1w: T1-weighted MRI sequence, T2w: T2-1weighted MRI sequence, SWI: Susceptibility Weighted Imaging, FLAIR: Fluid-Attenuated 
Inversion Recovery MRI sequence, SD: Standard Deviation, RORPO: Ranking Orientation Responses of Path Operators, IQR: Inter-Quartile Range,  BG: basal ganglia 
region, CSO: centrum semiovale region, PVS-DRO:  PVS Digital Reference Object, MSE: Mean Squared Error
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3.4.1. Computational approach 

Five out of the eight studies in this category utilised Frangi filtering and thresholding approaches 
(with three also assessing RORPO and/or Jerman filters). One study used a Deep Learning (CNN) 
approach (Zong et al., 2021), and two used mathematical observer models (Paz et al., 2009; Duarte 
Coello et al., 2023). 

 

3.4.2. Reference standards 

Three of the eight studies used visual rating scores (Bernal et al., 2020, 2021, Valdés Hernández et al., 
2024), two used visual assessment of the results (Paz et al., 2009; Valdés Hernández et al., 2024), one 
used data without motion artefacts (Zong et al., 2021), and three used measurements of synthetically-
generated cylindrical structures (Bernal et al., 2022, Duarte Coello et al., 2023, 2024) as reference 
standards. 

 

3.4.3. MR sequences and field strengths 

All studies aimed at improving the detectability and segmentation accuracy of PVS used T2w 
imaging, or synthesised T2w-like images in one case, as this is the preferred sequence to identify PVS 
as per STRIVE recommendations (Wardlaw et al., 2013). Three studies used 3T images, two used 7T 
images, and one study did not specify field strength. The study that used T1w images (Valdés 
Hernández et al., 2024) found inconsistencies in the results compared with those from T2w, and 
suggested these might reflect presence of vessel mineralisation, hypointense, as PVS, in T1w MRI 
sequence. 

 

3.4.4. Populations and sample sizes 

Populations used in improvement studies included clinical groups (multiple sclerosis, mild stroke), 
and healthy adults. Three studies used synthetic data. Sample sizes ranged from N = 10 to N = 228 
participants, although one study (Bernal et al., 2022) used intensity values from T2w images from 700 
community-dwelling older individuals, in addition to WMH probability distribution maps derived 
from 47 patients with systemic lupus erythematosus to generate the Digital Reference Object used for 
the evaluations. 

 

3.4.5. Improvement study results 

Each of the eight improvement studies had different targets (Table 8). One study examined image 
compression (Paz et al., 2009), finding that JPEG 2000 compression does not jeopardise PVS 
detectability when bit rates are greater than 0.125bpp. One study proposes a framework for PVS 
quantification by analysing image texture features and applying a total variation filter if necessary, to 
improve PVS quantification in noisy versus less noisy or clean imaging (AUC = 88.8%) (Bernal et al., 
2020). Three studies examined the impact of motion artefacts on PVS quantification, finding that 
correcting motion artefacts improved PVS quantification when using Frangi filtering plus 
thresholding (Bernal et al., 2021) and when using a convolutional neural network approach (Zong et 
al., 2021), or that simply using higher thresholds after filtering for noisy images compared with the 
thresholds used for clean images will be enough (Valdés Hernández et al., 2024). Comparison of the 
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performance of Frangi, RORPO and Jerman filters for highlighting PVS candidates was the subject of 
three studies. One study compared the three filtering approaches and found that RORPO performed 
best in isotropic imaging, but that all filter types were unable to distinguish between PVS and other 
hyperintense features (Bernal et al., 2022). Another compared Frangi with Jerman and found more 
incomplete and fragmented detection of long and thin PVS with Jerman than with Frangi (Valdés 
Hernández et al., 2024). Another compared the performance of RORPO and Frangi in phantoms to 
conclude that RORPO, in addition of having less adjustment requirements, detected smaller cylinders 
in their entirety more consistently while Frangi seemed to be best suited for voxel sizes equal or larger 
than 0.4 mm-isotropic and cylinders larger than 1 mm diameter and 2 mm length (Duarte Coello et al., 
2024). One study diverges from the rest in terms of aims (Duarte Coello 2023), as its focus is the 
improvement in the accuracy of the quantification of the PVS morphometrics, namely length and 
width, and not in the detection or segmentation of PVS per se. PVS morphometrics are traditionally 
assessed by measuring the maximum and minimum diameters of the ellipsoid that encircles each PVS 
(Ballerini et al., 2020). The traditional approach, implemented in Matlab by the function 
regionprops3, is accurate if the PVS are linear and straight, but not if they are curved or elongated 
with irregular shapes. Three sources have linked data/code repositories: Bernal et al. (2022), Duarte 
Coello et al. (2024), and Valdés Hernández et al. (2024) to enable compatibility in follow-up 
improvements, reproducibility, and fair comparability of these results with those from further 
analyses.   

 

 

3.5. Application studies 

Summaries of all included application studies (N = 59) are presented in Table 9. Methodological and 
clinical differences between the studies ruled out meta-analysis of the estimates obtained. 
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Table 9. Application study summaries 

Study Overview 
PVS 
quantification 
method 

MRI 
sequences 

Sample 
N  

Results 

(Berezuk et 
al., 2015)  

Correlation between PVS and sleep. 
(Ramirez et al., 
2011) 

T1w, T2w. 
3T 

Adults with stroke 
risk. 
N = 26 

Sleep efficiency negatively correlated with PVS (ρ = -0.47, 
p = .03) and BG PVS (ρ = -0.54, p = .01). Wake after sleep 
onset positively correlated with BG PVS (ρ = 0.52, p = .02) 
and negatively correlated with duration of N3 (ρ = -0.53, p = 
.01) 

(Wang, 
Chappell, et 
al., 2016) 

Exploration of peripheral blood markers in 
association with basal ganglia PVS in 
patients with recent minor ischemic 
stroke. 

(X. Wang, Valdés 
Hernández, et al., 
2016) 

T1w, T2w, 
FLAIR. 
1.5T 

Mild ischaemic stroke 
patients.  
N = 100 

Univariate analysis found BG PVS count and volume 
increased with age (p = .003, = .02). BG PVS count 
increased with hypertension (p = .013), but not PVS vol. No 
association found for BG PVS count or vol with sex, 
smoking, or diabetes. Univariate analysis found association 
between BG PVS count and thrombosis: F 1 + 2 (p = .05) 
and TAT (p= .013), and BG PVS vol and TAT (p = .037). 
Associations lost significance after adjusting for age, sex, 
and risk factors, but endothelial function (vWF) became 
negatively associated with BG PVS count (p = .032). 

(Ballerini et 
al., 2019)  

Application of computational PVS 
segmentation in the CSO, and assessment 
of association of PVS volume, count, and 
morphology, with vascular risk and 
WMH. 

(Ballerini et al., 
2016) 

T1w, T2w, 
FLAIR. 
1.5T 

LBC1936. 
N = 533 

PVS segmentation acceptable for 77% of participants. No 
significant differences in successful segmentation, other 
than small age difference (unsuccessful were older by 51 
days on average). Visual PVS score correlated positively 
with all computational PVS measures. All PVS measures 
(score and comp) correlated with WMH (visual and 
volume), with computational measures other than count 
showing stronger association. Greater PVS size and width 
associated with hypertension and stroke. No association 
between PVS and diabetes, CVD, or cholesterol. 

(Valdés 
Hernández et 
al., 2019) 

Exploration of Huntington's Disease (HD) 
in Colombian family groups, with regards 
to neuroimaging (volumetrics, PVS 
burden) and cognitive, behavioural, and 
motor factors. 

(X. Wang, Valdés 
Hernández, et al., 
2016) 

T1w, T2w, 
FLAIR. 
1.5T 

Huntington’s Disease 
(patients, families). 
N = 29 

GM volume in BG and thalami differentiated manifest 
disease vs. disease vulnerability in HD families. PVS burden 
was predictive of reduced fluid intelligence in HD patients, 
but not in vulnerable group. Raven's matrices best 
discriminator between overt HD vs. vulnerability to disease. 
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(Ballerini, 
Fetit, et al., 
2020) 

Associations between morphological 
measurements of the retinal vasculature, 
obtained from fundus camera images, and 
of features of Small Vessel Disease 
(SVD), as white matter hyperintensities 
(WMH) and perivascular spaces (PVS), 
obtained from MRI brain scans. 

(Ballerini et al., 
2018) 

T1w, T2w, 
T2*w, 
FLAIR. 
1.5T 

LBC1936. 
From N = 866, 381 
had both retina 
measurements and 
PVS. 478 had both 
Retina and WMH. 

Arteriolar bifurcation coefficients, vessel tortuosity and 
fractal dimension predicted WMH volume in 23% of the 
trials. Arteriolar widths, venular bifurcation coefficients, and 
venular tortuosity predicted PVS in up to 99.6% of the trials. 

(Ballerini, 
McGrory, et 
al., 2020) 

Comparison of computationally-derived 
PVS morphologies with retinal vessel 
morphologies in older people. 

(Ballerini et al., 
2018) 

T1w, T2w, 
T2*w, 
FLAIR. 
1.5T 

LBC1936. 
N = 381. 

Increasing total PVS volume and count associated with 
decreased central retinal artery equivalent (CRAE) in left 
eye (vol B = -0.17, count B = -.184, p < .01). 

(Choi et al., 
2020) 

Investigate heritability of MRI-visible 
PVS in healthy young adult twins and 
non-twin siblings. 

(Choi et al., 2020) T1w, T2w, 3T 

N=138 monozygotic, 
N=79 dizygotic twin 
pairs, and N=133 
nontwin sibling pairs 
(age 28.7 ± 3.6 years) 
from the Human 
Connectome Project 

In univariate analysis, heritability estimates of BG PVS was 
65.8%, and for WM PVS it was 90.2% after adjusting for 
age and sex. In bivariate analysis, both BG PVS and WM 
PVS showed low to moderate genetic correlations (0.30–
0.43) but high shared heritabilities (71.8–99.9%) with 
corresponding regional and intracranial volumes. Older age 
was significantly associated with larger PVS volume in both 
regions even after adjusting for clinical and volumetric 
variables, while blood pressure was not associated with PVS 
volume although there was weak genetic correlation. 

( Valdés 
Hernández et 
al., 2020) 

Associations of CSO-PVS volume and 
count with brain IDs and cognitive 
abilities in 700 community-dwelling 
individuals from the Lothian Birth Cohort 
1936 who underwent detailed cognitive 
testing and multimodal brain MRI at mean 
age 72.7 years. 

(Ballerini et al., 
2018) 

T1w, T2*w. 
1.5T 

LBC1936. 
N = 540 

CSO-PVS burden is not directly associated with general 
cognitive ability in older age. 
 

(Jokinen et 
al., 2020) 

Exploration of global SVD burden on 
longitudinal cognitive and functional 
outcomes (baseline and 3- and 7-year 
follow-up included). 

(Guerrero et al., 
2017) 

T1w, T2w, 
FLAIR. 
1.5T, 0.5T 

LADIS study. 
N = 561 

PVS volume significant predictor of processing speed 
performance (p = .047) and decline in processing speed (p < 
.001), and of decline in memory (p = .009) and in total 
VADAS score (p < .001). PVS volume was not significant 
predictor of disability or death at 7-year follow up. 
Combined measures of global burden of SVD-related brain 
changes were a more powerful predictor of cognitive decline 
than individual features. 
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(Liu et al., 
2020a) 

Relationships between visible VRS on 
MRI and seizures, to detect changes in 
glymphatic function. 

In-house method 
(Frangi filtering) 

T1w, T2w, 
FLAIR. 
3T 

Idiopathic Generalised 
Epilepsy (IGE) 
children 
(N = 32) and controls 
(N = 30) 

Visible PVS counts were higher in IGE than control group 
(IGE: 234.34 ± 113.88 vs. Control: 111.83 ± 52.46; P < 
0.001). Similar results were found in PVS volume (IGE: 
1377.47 ± 778.79 mm3 vs. Control: 795.153 ± 452.49 mm3; 
P = 0.001). Visible PVS counts and volume positively 
correlated with seizure duration (r_counts = 0.638, r_volume 
= 0.639; P < 0.001) and gradually decreased with time after 
seizure onset (r_counts = −0.559, r_volume = −0.558; P < 
0.001). 

(Piantino et 
al., 2020) 

Exploration of morphological 
characteristics of PVS and their 
association with demographic factors in 
adolescents. 

(Schwartz et al., 
2019) 

T1w, T2w. 
3T 

Adolescents. 
N = 118 

Males had higher PVS number than females (male mean = 
98.4 (+/- 50.5), female mean = 70.7 (+/- 36.1); p < .01). 
PVS burden was bilaterally symmetric, with PVS more 
common in frontal and parietal lobes than 
occipital/temporal. Age and pubertal status not associated 
with PVS burden. 

(Zong et al., 
2020) 

Characterisation of morphology of 
perivascular spaces and their enclosed 
blood vessel. Exploration of age, spatial 
heterogeneity, and dynamic changes (with 
carbogen breathing). 

(Lian et al., 2018) 
T1w, T2w. 
7T 

Healthy adults. 
N = 46 

PVSV count and volume fraction significantly increase with 
age in BG. rCNR increased with age in BG, MB, and WM. 
PVSV diameter showed positive association with age, but 
not significant. Carbogen breathing significantly increased 
PVSV volume fraction in BG and WM, and significantly 
increased rCNR in thalamus, BG, and WM compared to air 
breathing. 

(Barisano et 
al., 2021) 

Exploratory analysis of PVS 
pathophysiology: PVS burden and 
clinical, cognitive, and emotion factors in 
healthy adults 

(Sepehrband et al., 
2019) 

T1w, T2w. 
3T 

Human Connectome 
Project. 
N = 897 

Mean WM PVS vol = 5.03 cm (+/- 2.15). PVS ratios highest 
in WM adjacent to cingulate, insula, supramarginal gyrus; 
smallest ratios in WM underlying cuneus, entorhinal cortex, 
frontal pole. PVS volume higher in older and male 
participants. BMI, time of day (of scan), and genetics 
significantly associated with PVS. 

(Chan et al., 
2021a) 

Quantification of the percent volume of 
regional PVS (excluding cortex) in 
patients with early Huntington disease 
(HD) and exploration of the relationship 
between PVS and disease severity. 

In-house method 
described in-text. 
Thresholding. 

T1w, T2w. 
3T 

Huntington’s disease. 
N = 48 

Patients with HD had the greatest percent volume of PVS in 
the putamen (left putamen: odds ratio 2.06 [95% confidence 
interval (CI) 1.62–2.62], HD 3.27% [95% CI 2.83–3.78] vs 
controls 1.62% [95% CI 1.32–1.97], p < 0.001; right 
putamen: odds ratio 1.66 [95% CI 1.33–2.08], HD 3.43% 
[95% CI 2.94–4.01] vs controls 2.09% [95% CI 1.79–2.45], 
pfdr < 0.001) and several white matter regions compared to 
controls. PVS increased with disease severity. 
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(Hamilton, 
Cox, Okely, 
et al., 2021)  

Association between SVD and 
longitudinal cognitive performance in 
older adults (Lothian Birth Cohort 1936). 

(Ballerini et al., 
2018) 

T1w, T2w, 
FLAIR. 
1.5T 

LBC1936. 
N = 540 

All cognitive scores declined significantly over 9-year 
period. With covariates, total SVD negatively associated 
with slope of general cognitive ability and processing speed, 
but not verbal memory or visuospatial ability. SVD burden 
accounted for 4% variance in slow of cog ability and 5% 
variance in slope of processing speed. SVD burden 
associated with greater decline in general cog prior to FDR 
and without covariates. No significant association between 
SVD burden and other cognitive variables. SVD burden 
associated with overall decline in cognitive ability. 

 (Hamilton, 
Cox, 
Ballerini, et 
al., 2021) 

Association between SVD and domain-
specific cognition in (community-
dwelling) older adults. 

(Ballerini et al., 
2018) 

T1w, T2w, 
FLAIR. 
1.5T 

LBC1936. 
N = 540 

Computational SVD score negatively associated with 
cognitive domains, remaining significant after covariates 
included. SVD burden accounted for 13% variance in 
general cognition, 14% variance in processing speed, 7% 
variance in verbal memory, and 3% variance in visuospatial 
ability. Independent negative association found between 
SVD burden and processing speed. 

(Huang, Zhu, 
et al., 2021b) 

Associations between PVS volume and 
imaging, vascular, cognitive, and 
demographic factors in healthy adults. 

(Lian et al., 2018) 

T1w, T2w, 
FLAIR, 
MRA. 
3T 

Healthy adults. 
N = 103 

Age and hypertension positively associated with BG PVS 
volume (B = 0.224, p = .023; B = 0.282, p = .004). Deep 
WM PVS positively associated with intracranial volume (B 
= 0.262, p = .007). 

(Huang, 
Zhang, et al., 
2021b) 

Exploration of relationship between 
WMH, PVS, and interstitial fluid. 

(Lian et al., 2018) 
T1w, T2w, 
FLAIR, DTI. 
3T 

Older adults.  
N = 136 

Most PVS spatially connected to dWMH (89%). PVS and 
WMH volumes significantly positively correlated (r = .002, 
p <.001). Free water found to mediate PVS x WMH 
association in whole sample (B = .069, p = .037) and in 
subset with high WMH load (B = .118, p = .006). 

(Lee et al., 
2021)  

Assessment of spatial similarity (Dice, 
structural similarity, mean squared error) 
of PVS in adult twin and non-twin sibling 
pairs (Human Connectome Project). 

(Choi et al., 2020) 
T1w, T2w. 
3T 

Human connectome 
project. 
N = 700 

PVS most spatially similar within MZ twins (Dice = 0.38, 
SSIM = 0.96, MSE = .005), with significantly higher Dice 
and SSIM and significantly lower MSE than DZ twins (p < 
.001, p = .015, p = .004) and NT siblings (all p < .001). 
Results suggest genetic influence on PVS location. 
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(Piantino et 
al., 2021) 

Exploration of PVS in association with 
morbidity following mild TBI in veterans. 

Boespflug et al., 
2018), (Schwartz et 
al., 2019) 

T1w. 
3T 

Veterans. 
N = 56 

PVS number and volume positively correlated across 
hemispheres (p < .001). PVS N and vol highest in temporal 
lobes. Number of mTBIs in military and sBP both 
significantly related to PVS N and vol. Age significantly 
associated with PVS vol. After adjustment for covars, each 
additional mTBI sustained in military had average 0.1 
increase in (ln) PVS number/cm3 of WM and 0.1 increase in 
(ln) PVS vol (mm3)/cm3 of WM. No association found for 
mTBI outside military, blast mTBI without LOC, or poor 
sleep with PVS vol or N. No difference in PVS burden 
between clinically high sBP and normal sBP categories. 
Significant interaction between poor sleep and N military 
mTBI on PVS vol (p = .04 in poor sleep vs good sleep). 
Low significant positive correlation between PVS N and vol 
and severity of post-concussive symptoms (p = .03 and p = 
.04, respectively). Significant correlation between PVS N 
and vol and post-concussive balance problems (p = .0002 
each).  

(D. Ranti et 
al., 2021) 

Assessment of link between PVS and 
trauma. 

Unspecified 
Unspecified. 
7T 

MDD.  
N unspecified. 

After controlling for age and gender, number of traumatic 
live events correlated positively with PVS volume in MDD 
patients (r = .5, p = .028) and in the overall population (r = 
.34, p = .024). Age correlated with PVS count (r = .37, p = 
.013), volume (r = .53, p < .001), and density (r = .68, p < 
.001). 

(Sepehrband 
et al., 2021) 

Exploration of PVS volume in association 
with mild cognitive impairment and 
associated neuroradiological findings. 

 (Sepehrband et al., 
2019) 

T1w, FLAIR. 
3T 

Alzheimer’s Disease. 
N = 596 

Early MCI patients have altered PVS presence compared to 
normal controls, irrespective of amyloid-B. Lower PVS 
presence in anterosuperior medial temporal lobe (1.29 times 
lower PVS fraction in MCI than cognitively normal). Higher 
PVS fraction in CSO in females (1.47 times higher PVS vol 
fraction in cognitively impaired). 

(S. Wang et 
al., 2021) 

Compute quantitative and morphological 
PVS features and to assess their 
associations with vascular risk factors and 
cerebral small vessel disease. 

(Lian et al., 2018) 
T1w, T2w. 
3T 

Healthy adults. 
N = 161 

WM-PVS visual score and count were associated with 
hypertension, WM-PVS size was associated with diabetes, 
WM-PVS and BG-PVS were associated with CSVD 
markers, especially white matter hyperintensities, WM/BG-
PVS quantitative measures were widely associated with 
vascular risk factors and CSVD markers. 
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(Barnes et al., 
2022)  

Topological relationship between PVS 
and WMH, and potential PVS influence 
on WMH progression across 3 scanning 
waves. 

(Ballerini et al., 
2018) 

T1w, T2w, 
T2*, FLAIR. 
1.5T 

LBC1936. 
N = 29 

Most deep WMH clusters were adjacent to or enclosed PVS 
(77% wave 1, 76% wave 2, 69% wave 3). In WMH clusters 
that increased most between scan waves, most increased 
around PVS (wave 1-2 = 73%, wave 2-3 = 72%). 

(Hupfeld et 
al., 2022) 

Exploration of longitudinal effects of long 
(~6 month) spaceflight on PVS, with pre-
launch and post-landing measures. 

(Schwartz et al., 
2019) 

T1w. 
3T 

Astronauts. 
N = 11 

PVS identified in all participants at all time-points. No 
statistically significant changes in PVS characteristics from 
pre- to post-flight in whole group. Novice astronauts showed 
increase in total PVS vol from pre- to post-flight while 
experienced astronauts showed decrease (p = .02). No 
difference in PVS between SANS/no SANS experience. 

(Langan et al., 
2022) 

Identify and quantify differences in 
perivascular spaces between a group of 10 
COVID-19 patients and a similar subset of 
controls to determine whether PVS might 
be biomarkers of COVID-19-mediated 
neuroinflammation. 

(Smith et al., 2020) 
T1w. 
7T 

COVID-19. 
N = 19 

PVS count was significantly higher in COVID-19 patients 
compared to healthy controls (p = 0.0373). There was no 
statistically significant difference between other PVS 
measures or intracranial volume metrics between groups. 

(Lysen et al., 
2022) 

Determine whether sleep is associated 
with perivascular spaces on brain 
magnetic resonance imaging (MRI). 

(Dubost, Yilmaz, et 
al., 2019) 

T1w, T2w, 
T2*, FLAIR. 
1.5T 

Rotterdam Scan 
Study. 
N = 559 

Actigraphy estimated sleep efficiency was associated with 
higher PVS load in the centrum semiovale; no associations 
of any other sleep characteristics with higher PVS load in 
the basal ganglia, hippocampus, or midbrain. 

(Perosa et al., 
2022a) 

Investigation of histopathological 
correlates of PVS and relationship with 
vascular amyloid-B in cerebral amyloid 
angiopathy (CAA) using deep learning 
algorithm (3D Unet). 

In-house method 
based on (Dubost, 
Yilmaz, et al., 
2019) and 
(Sepehrband et al., 
2019) 

Ex-vivo 
compared to 
in-vivo. 
T2w. 
3T, 7T (N = 
2) 

Cerebral Amyloid 
Angiopathy. 
N = 24 

MRI-visible PVS corresponded to enlarged spaces around 
blood vessels in WM on histopathology. Spaces contained 
cells and extracellular material. PVS burden positively 
associated with CAA severity (total CAA + myelin 
rarefaction = 52% of PVS variance). PVS large around WM 
portion of perforating cortical arteries affected by CAA. 
PVS in hereditary CAA comparable with sporadic CAA. 

(Ramirez et 
al., 2022) 

Exploration of association between small 
and large BG PVS, cognition, and 
motor/non-motor features in patients with 
Parkinson's Disease.  

(Yushkevich et al., 
2006) 

T1w, T2w, 
FLAIR, PD. 
3T 

Parkinson’s Disease. 
N = 13 

In small BG-PVS group, significant association between 
BG-PVS counts and scores in MDS-UPDRS Part I [Daily 
non-motor symptoms] (p = .008) and Part II [Daily motor 
symptoms] (p = .024), but not Parts III and IV. Patients in 
large BG-PVS group had significant associations with BG-
PVS counts and scores in MDS-UPDRS Part III (p < .0001) 
and Part IV (p = .001), but not Parts I and II. No significant 
correlation between BG-PVS count and MoCA score. 
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(Vikner et al., 
2022b) 

Investigate 5-Year Associations among 
Cerebral Arterial Pulsatility, PVS 
Dilation, and White Matter Lesions in 
cognitively normal older individuals 

(Boespflug et al., 
2018), (Schwartz et 
al., 2019) 

T1w, T2w, 
FLAIR, 4D 
flow. 
3T 

Older adults. 
N = 178 baseline, N = 
114 follow-up 

White matter lesions and PVS predict increases in pulsatility 
index (PI), lacunes are unrelated to Pulsatility Index (PI). 
PVS intercept x ICA PI slope: R=0.23, p = 0.025; PVS 
intercept x Distal PI slope: R = 0.32, p = .002. 

(Barisano et 
al., 2022) 

The effect of prolonged spaceflight on 
cerebrospinal fluid and perivascular 
spaces of astronauts and cosmonauts 

(Sepehrband et al., 
2019) 

T1w, 3T 

NASA astronauts 
(N=24); ROS 
cosmonauts (N=13); 
ESA astronauts 
(N=not reported); 
Healthy volunteers 
(N=13); Shuttle 
NASA astronauts 
(N=7) 

PVS enlarged long-duration spaceflight. WM-PVS were 
correlated with a reduction in the subarachnoid space at the 
vertex. WM-PVS increase was correlated with mission 
duration. BG-PVS were associated to previous spaceflight 
experience. 

(Cheng et al., 
2022) 

Determine risk factors for hippocampal 
cavities in a marginally housed 
population, to shed light on possible 
aetiology, one of which is that they are 
PVS. 

In-house intensity-
based thresholding 
3D segmentation 

T1w, 3T 
Marginally housed 
population (N=240) 

On average, a 1 mmHg greater systolic blood pressure was 
associated with a 2.17% greater total hippocampal cavity 
(i.e,, ~PVS) volume (95% CI = [0.57%, 3.79%], p = .0076), 
while each cigarette smoked per day trended toward a 
2.69% greater total hippocampal (~PVS) volume (95% CI = 
[−0.87%, 5.54%], p = .058). A diagnosis of stimulant 
dependence was associated with a 95.6% greater total 
hippocampal (~PVS) volume (95% CI = [5.39%, 263.19%], 
p = .0335). Hypertension and diagnosis of stimulant 
dependence were associated with a greater total volume of 
hippocampal cavities (i.e., ~PVS). 

(Donahue et 
al., 2022) 

Examine relationship between PVS 
volume and magnetic resonance 
spectroscopy metabolites in Parkinson’s 
Diseaase. 

(Ballerini et al., 
2018) 

T1w, 3T 
Idiopathic Parkinson’s 
Disease patients 
(N=17) 

Greater PVS volume was associated with higher levels of 
choline-containing compounds (Cho; P = 0.047) in frontal 
white matter and lower PVS volume with higher levels of 
N-acetyl compounds (NAA; P = 0.012) in anterior middle 
cingulate cortex. 

(Hadad et al., 
2022) 

Comparison of Diffusion Tensor Imaging 
Metrics in Normal-Appearing White 
Matter to Cerebrovascular Lesions and 
Correlation with Cerebrovascular Disease 
Risk Factors and Severity 

(Ramirez et al., 
2015) 

T1w, T2w, 
T2*w, 
FLAIR, fMRI, 
DTI, 3T  

Ontario 
Neurodegenerative 
Disease Research 
Initiative (ONDRI) 
study participants 
(N=152) 

FA in NAWM was inversely related to hypertension and 
modified Rankin scale (mRS). There were differences 
between conventional DTI metrics, FA, MD in cerebral 
vascular lesions and healthy tissue types. FA in PVS was not 
significantly different from FA in NAGM, but differed from 
the rest of the normal and abnormal tissue types. 
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(Kamagata et 
al., 2022) 

Examine the association of MRI indices of 
glymphatic system (i.e., PVS VF, 
NAWM, ALPS) with amyloid deposition 
and cognition in Mild Cognitive 
Impairment and Alzheimer Disease 

(Sepehrband et al., 
2019) 

DWI, T1w, 
FLAIR, 3T 

AD (N=36), MCI 
(N=44), cognitively 
normal (N=31) from 
ADNI-2 database 

Patients with AD had significantly higher total, WM, and 
basal ganglia PVS VF (Cohen d = 1.15–1.48; p < 0.001) and 
FW-WM (Cohen d = 0.73; p < 0.05) and a lower ALPS 
index (Cohen d = 0.63; p < 0.05) than healthy controls. 
Meanwhile, the MCI group only showed significantly higher 
total (Cohen d = 0.99; p < 0.05) and WM (Cohen d = 0.91; p 
< 0.05) PVSVF. 

(Li et al., 
2022) 

Explore the association of PVS with 
duration of simple febrile seizures- (SFS) 
in children 

PVS segmented by 
FSL and custom 
algorithm 
following Ballerini 
et al., (2018) 

T1w, T2w, 
FLAIR, 3T 

Children N=105 (with 
SFS lasting more than 
5 minutes N=30, 5 
minutes or less N=40, 
and seizure free 
controls N=35)  

PVS counts were lower (P < .001) in the SFS ≤ 5min 
(445.80 ± 66.10) and the control (430.77 ± 182.55) than in 
SFS > 5min (642.70 ± 100.62). It was similar for PVS 
volume (SFS > 5min, 8514.63 ± 835.33mm3, SFS ≤ 5min, 
6390.43 ± 692.74 mm3, control, 6048.37 ± 111.50 mm3; P < 
.001). However, in the SFS ≤ 5min, PVS measurements 
were lower than in the SFS > 5min (P < .001). PVS 
measurements were positively correlated with seizure 
duration and inversely correlated with the course following 
seizure onset and MRI scan time in both SFS groups. 

(Moses et al., 
2022) 

Investigate PVS as a marker of disease 
severity and neurodegeneration in patients 
with behavioural variant frontotemporal 
dementia (FTD), through the association 
between PVS burden and disease severity 
(given by cognitive composite score and 
CSF t-tau) 

(Schwartz et al., 
2019) 

T1w, 3T 
Possible/probable 
behavioural variant 
FTD patients N=12 

Cognition total composite scores were associated with PVS 
burden (PVS cluster ß = −0.802e–3, p ≤ 0.001; PVS volume 
ß = −1.30e–3, p ≤ 0.001), as well as change in the cognition 
total composite score and the change in PVS volume (ß = 
4.36e–3, p = 0.046) over 1 year. CSF t-tau was associated 
with number of PVS clusters (ß = 2.845, p = 0.036), and 
change in CSF t-tau and the change in the number of PVS (ß 
= 1.54, p < 0.001) and PVS volume (ß = 13.8, p = 0.003) 
over 1 year, change in NfL and the change in PVS volume 
(ß = 1.40, p = 0.045). Within the “non-progressor” group (n 
= 7), there was a significant relationship between the change 
in the CSF total-tau (t-tau) levels and the change in the PVS 
burden (PVS cluster (ß = 1.46, p = 0.014; PVS volume ß = 
14.6, p = 0.032), and between change in NfL levels and 
change in the PVS burden over time (PVS cluster ß = 0.296, 
p ≤ 0.001; PVS volume ß = 3.67, p = 0.002). 

(Aribisala et 
al., 2023) 

Explore the relationship between sleep 
quality, PVS and brain health markers in 
ageing 

(Ballerini et al., 
2016) 

T2w, 1.5T 

Community-dwelling 
older participants in 
the LBC1936 study 
(N=388) 

High burden of PVS at age 73 (volume, count, and visual 
scores), was associated with faster deterioration in white 
matter: reduction of NAWM volume (β = −0.16, P = 0.012) 
and increasing white matter damage metric (β = 0.37, P < 
0.001) between ages 73 and 79. On SEM, centrum 
semiovale PVS burden mediated 5% of the associations 
between sleep parameters and brain changes. 
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(Bown et al., 
2023) 

Explore relationship between baseline 
PVS burden and neuropsychological 
performance (cross-sectional and 
longitudinal) and aortic stiffness. 

(Remedios et al., 
2020) 

T1w, 3T 

Cognitively 
unimpaired (N=169), 
early MCI (N=27), 
MCI (N=131) 

Higher aortic stiffness related to greater BG-PVS volume (β 
= 7.0×10−5, p = 0.04). Higher baseline PVS volume was 
associated with worse baseline information processing (β = -
974, p = 0.003), executive function (β = -81.9, p < 0.001), 
and visuospatial performances (β = -192, p = 0.02) and 
worse longitudinal language (β = -54.9, p = 0.05), 
information processing (β = -147, p = 0.03), executive 
function (β = -10.9, p = 0.03), and episodic memory 
performances (β = -10.6, p = 0.02). Results were similar for 
PVS count. 

(Butler et al., 
2023) 

Determine whether MRI-based 
measurements of glymphatics (DTI-ALPS 
and PVS volumes) differed between 
traumatic brain injury (TBI) and non-TBI 
subjects. 

(Sepherband et al., 
2019) 

T1w, T2w, 3T 
TBI (N=37) and 
controls (N=13) 

Manual x Automated: Correlation between PVS volume and 
manual PVS count (R = 0.901, P < 0.001) and visual score 
(R = 0.842, P < 0.001). PVS volumes and DTI-ALPS did 
not correlate (R=-0.108; P=0.46). No difference in PVS 
between TBI and controls (P=0.16). Perivascular space 
volume did not differ in subjects with traumatic brain injury 
as compared with controls and did not correlate with blood 
levels of neurofilament light chain, suggesting it may be a 
less sensitive measure for injury-related perivascular 
clearance changes. 

(Charisis et 
al., 2023) 

Assessment of risk factors and clinical 
importance of PVS by Whole-Brain 
Investigation in the Multi-Ethnic Study of 
Atherosclerosis 

(Rashid et al., 
2023) 

T1w, T2w, 
FLAIR, 3T 

Community-based 
subjects (N=1026) 
from the Multi-Ethnic 
Study of 
Atherosclerosis 
(MESA) 

Manual x Automated Sensitivity = 82%; Precision = 83%. 
BG PVS volume was positively associated with age 
(β = 3.59 × 10−3), systolic blood pressure (β = 8.35 × 10−4), 
use of antihypertensives (β = 3.29 × 10−2), and negatively 
associated with Black race (β = −3.34 × 10−2). Thalamic 
PVS volume was positively associated with age 
(β = 5.57 × 10−4) and use of antihypertensives 
(β = 1.19 × 10−2). Insular region PVS volume was positively 
associated with age (β = 1.18 × 10−3). Brainstem PVS 
volume was smaller in Black than in White participants 
(β = −5.34 × 10−3). Frontoparietal PVS volume was 
positively associated with systolic blood pressure 
(β = 1.14 × 10−4) and negatively associated with age 
(β = −3.38 × 10−4). Temporal region PVS volume was 
negatively associated with age (β = −1.61 × 10−2), being 
Chinese American (β = −2.35 × 10−1) and being Hispanic 
(β = −1.73 × 10−1). 
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(Chen et al., 
2024) 

By assessing the glymphatic function in 
children with attention-deficit 
hyperactivity disorder (ADHD), aims to 
determine whether PVS differ between 
ADHD and typical developing children. 

(Ballerini et al., 
2018) 

T1w, T2w, 
FLAIR, 3T 

Pediatric ADHD 
(N=47), age- and 
gender-matched 
typical developing 
children (N=52) 

PVS volume (mean, 15.514 mL vs. 11.702 mL) and PVS 
volume ratio in the ADHD group were larger than those in 
the TD group (all p < 0.001). 

(Evans et al., 
2023) 

Identify determinants of PVS burden in a 
pooled analysis of multiple cohort studies 
using one harmonized PVS rating method 
and automatic count. 

(Dubost, Yilmaz, et 
al., 2019) 

T1w or T2w, 
1.5T and/or 
3T 

Adults from 20 to 96 
years old from various 
studies N=39,976 

The average count of PVS in the 4 regions increased from 
the age 20 years (0–1 PVS) to 90 years (2–7 PVS). Men had 
more mesencephalic PVS (OR [95% CI] = 1.13 [1.08–1.18] 
compared with women), but less hippocampal PVS (0.82 
[0.81–0.83]). Higher blood pressure, particularly diastolic 
pressure, was associated with more PVS in all regions (ORs 
between 1.04–1.05). Hippocampal PVS showed higher 
counts with higher high-density lipoprotein cholesterol 
levels (1.02 [1.01–1.02]), glucose levels (1.02 [1.01–1.03]), 
and APOE ε4-alleles (1.02 [1.01–1.04]). WMH volume and 
presence of lacunes were associated with PVS in multiple 
regions, but most strongly with the basal ganglia (1.13 
[1.12–1.14] and 1.10 [1.09–1.12], respectively). 

(Hicks et al., 
2023) 

Associations of PVS with brain lesions, 
brain age, sleep, and clinical outcomes in 
chronic Traumatic Brain Injury (TBI) 

(Schwartz et al., 
2019) 

T1w, FLAIR, 
3T 

Patients with 
Traumatic Brain 
Injury (TBI) N=100, 
controls N=75 

The TBI group had greater burden of PVS (prevalence ratio 
rate [PRR] = 1.29, p = 0.013). In TBI: the presence of 
bilateral lesions was associated with greater PVS burden 
(PRR = 1.41, p = 0.021), PVS burden was not associated 
with sleep quality, sleep duration, emotional distress or 
brain age. It was associated with verbal memory (β = -0.42, 
p = 0.006), but not with other cognitive domains.  

(Jian et al., 
2023) 

Study the correlation between PVS and 
WMH in patients with a recent small 
subcortical infarct 

(Wang et al., 2016) 
T1w, T2w, 
FLAIR, 3T 

Patients with recent 
small subcortical 
infarct (RSSI) N=215 

Patients with moderate-to-severe BG-PVS had higher 
DWMH and PWMH severity than those with mild BG-PVS, 
both in terms of volume and grade, but no significant 
difference in WMH severity between patients with mild vs. 
moderate-to-severe CSO-PVS. From multivariate analysis 
DWMH volume (β = 0.311; p = .002) and PWMH volume 
(β = 0.296; p = .004) were independently associated with 
BG-PVS. BG-PVS volume was correlated with PWMH 
volume (r = .589; p < .001) and DWMH volume (r = .596; p 
< .001). 
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(Kim et al., 
2023a) 

Explore the association of PVS burden 
with age and WMH 

(Choi et al., 2020) T1w, T2w, 3T 
3 datasets from 
Human Connectome 
Project N=1789 

Age was related to PVS volume in all regression models (R2 
range, 0.41-0.55; P < .001). Age-PVS volume relationships 
were altered at the mid-30s and age 55 years; BG-PVS and 
WM-PVS volumes negatively correlated with age until the 
mid-30s (β, -1.2 and -7.8), then positively until age 55 years 
(β, 3.3 and 54.1) and beyond (β, 3.9 and 42.8; P < .001). The 
90th percentile for PVS grades was grade 1 for age 49 years 
and younger, grade 2 for age 50-69 years, and grade 3 for 
age 70 years and older (overall, grade 2) for BG-PVS, and 
grade 3 for age 49 years and younger and grade 4 for age 50 
years and older (overall, grade 3) for WM-PVS. 

(Kim et al., 
2023b) 

Explore the association of PVS burden 
with age, sex and preterm birth 

(Ballerini et al., 
2018) 

T1w, T2w, 3T 
Human Connectome 
Project Neonates 
N=244 

For BG PVSs, all neonates showed either grade 0 (90 of 
244; 37%) or grade 1 (154 of 244; 63%), and for WM PVSs, 
most neonates showed grade 0 (227 of 244; 93%). Negative 
correlation of BG-PVS fraction with postmenstrual age at 
MRI (r = −0.008; P < .001). No evidence of sex differences 
for BG PVS volume (P = .07) or BG PVS fraction (P = .28). 
The BG PVS volume was smaller in preterm neonates than 
in term neonates (median, 45.3 mm3 vs 49.9, respectively; P 
= .04). 

(Lynch et al., 
2023) 

Study the normative time course of PVS 
alterations with age through the 
characterization of the influence of age, 
sex and cognitive performance on PVS 
anatomical characteristics in a large cross-
sectional cohort of healthy subjects across 
the lifespan. 

(Sepehrband et al., 
2019) 

T1w, T2w, 3T 
N=~1400 healthy 
volunteers ages 8-90 

Age is associated with wider and more numerous MRI-
visible PVS over the course of the lifetime with spatially-
varying patterns of PVS enlargement trajectories. In 
particular, regions with low PVS volume fraction in 
childhood are associated with rapid age-related PVS 
enlargement (e.g., temporal regions), while regions with 
high PVS volume fraction in childhood are associated with 
minimal age-related PVS alterations (e.g., limbic regions). 
PVS burden was significantly elevated in males compared to 
females with differing morphological time courses with age. 

(Park et al., 
2023) 

Study the relevance of PVS dilatation to 
normal aging across the lifespan by 
exploring changes in different 
characteristics of PVS dilatation across a 
wide range of age 

(Choi et al., 2020) T1w, T2w, 3T 
N=1220 healthy 
subjects ages 18-100 

PVS could be detected with a higher probability for older 
subjects than for younger subjects. For the random forests 
model that used 90 PVS features, RMSE in estimating the 
subjects’ age was 9.53 ± 0.09 years, and the correlation 
between estimated age and actual age was 0.875 ± 0.003. 
The combined set of PVS burden and location features 
provided the best estimation performance. 
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(Soitgu et al., 
2023) 

Explore the associations between brain 
PVS and autism: clinical and pathogenic 
implications 

(Sepehrband et al., 
2019) but without 
filtering. Applies 
intensity 
thresholding 

T1w, T2w, 
1.5T 

ASD patients N=65 
and controls N=71  

Higher WM-PVS associated with male sex (p=0.01), not 
significant correlation with ASD severity and younger age. 
PVS related with insomnia but not with epilepsy or IQ. 

(Tachibana et 
al., 2024) 

Determine the association between BP and 
PVS volumes and to examine the 
interactions of vascular risk factors, 
exercise, dementia diagnosis, MCI 
diagnosis, and presence of APOE e4 
carrier. 

In-house U-ResNet 
(4 convolutional 
filters downscaling 
and 4 upscaling) 

T1w, 1.5T, 3T 
N=9296 community 
dwelling subjects of 
age >=65 

Mean PVS volumes increased with increase in systolic and 
diastolic BP levels (P for trend = .003, P for trend<.001, 
respectively), even after excluding subjects with dementia. 

(Wang et al., 
2023) 

Investigate whether or not impaired 
glymphatic drainage underlying 
obstructive sleep apnea is associated with 
cognitive dysfunction 

Intensity 
differences, 
detected in ImageJ 

T1w, T2w, 
and DCE-
MRI, 3T 

Obstructive Sleep 
Apnea patients 
(N=28) and Controls 
(N=31) 

The relative area ratios of PVS in the bilateral frontal cortex 
and the BG were significantly higher in the OSA group, and 
even more in the severe OSA group than in the mild-
moderate OSA group, showing higher accuracy for 
distinguishing these groups. 

(Yu et al., 
2023) 

Examine the association between SVD 
markers (including PVS) with higher 
ratios of soluble‐epoxide hydrolase 
derived linoleic acid diols (12,13‐
dihydroxyoctadecenoic acid 
[DiHOME] and 9,10‐DiHOME) to their 
parent epoxides (12(13)‐
epoxyoctadecenoic acid [EpOME] and 
9(10)‐EpOME) in stroke 

(Ramirez et al., 
2020) 

T1w, T2w, 
FLAIR, PD, 
3T 

N=80 patients with 
small vessel stroke 
(N=50, age 70.3 (7.7), 
34% female) or large 
vessel stroke (N=30, 
age 67.4 (6.3), 23% 
female)  

Ratios of 12,13‐DiHOME/12(13)‐EpOME and 9,10‐
DiHOME/9(10)‐EpOME were associated with greater 
volumes of WMH (β=0.364, P<0.001; β=0.362, P<0.001) 
and white matter MRI‐visible PVS (β=0.302, P=0.011; 
β=0.314, P=0.006). 

(Zebarth et 
al., 2023) 

Explore the association between type 2 
diabetes mellitus (T2DM) and 
hypertension with MRI-visible PVS 

(Ramirez et al., 
2020) 

T1w, T2w, 
FLAIR, PD, 
3T 

81 participants 
diagnosed with T2DM 
and 395 without 
T2DM at baseline, 
and 70 participants 
diagnosed with T2DM 
and 346 without 
T2DM at 1 year 
follow-up. 

Patients with T2DM had greater wmPVS volume and there 
were greater wmPVS volumes in patients with T2DM and 
hypertension together. Counterfactual moderated mediation 
models found indirect effects of T2DM on volumes of other 
SVD and diffusion markers that were mediated by wmPVS: 
pWMH, dWMH, periventricular lacunes, and deep lacunes, 
and progression of deep lacunes over 1 year, in patients with 
hypertension, but not in patients without hypertension. 
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(Sibilia et al., 
2023) 

Understand the potential interactions 
between PVS, cortisol, hypertension, and  
inflammation in the context of cognitive 
impairment 

Sepherband et al. 
(2019), but only 
using T1w 

T1w, 3T 

ADNI-1 population 
with all biomarker 
info (N=465, age 
range=55-90). But 
final sample is N=456 
after removing 
outliers from PVS 
segmentation 

In the centrum semiovale, higher levels of inflammation 
reduced cortisol associations with PVS volume fraction. 
PVS were negatively associated with ACE only when 
interacting with TNFr2 (a transmembrane receptor of TNF). 
BG PVS were positively associated with TRAIL (a TNF 
receptor inducing apoptosis). 

(Kern et al., 
2023) 

Evaluate whether intensive systolic blood 
pressure (SBP) treatment affects PVS 
structure 

Sepherband et al. 
(2019, 2021) 

T1w, T2w, 
FLAIR, 3T 

N=610 participants in 
Systolic PRessure 
INtervention Trial 
(SPRINT)  

At baseline (N=610) greater PVS volume fraction was 
associated with older age, male sex, non-Black race, 
concurrent CVD, WMH, and brain atrophy. At follow-up 
(N=381) intensive treatment was associated with decreased 
PVS volume fraction relative to standard treatment 
(interaction coefficient: −0.029, p = 0.029). Reduced PVS 
volume fraction was also associated with exposure to 
calcium channel blockers (CCB). 

(Shih et al., 
2023) 

Analyze the relationship between sleep 
and the PVS in cognitively healthy adults 
across the aging continuum. 

(Sepherband et al.,  
2019) 

T1w, T2w, 3T 

N=725 cognitively 
healthy participants 
(36–100 years old) 
from the HCP-Aging 
Lifespan Release 2.0. 

Older adults who had better sleep quality and sleep 
efficiency had larger BG-PVS volume fraction. However, 
sleep measures were not associated with CSO-PVS volume 
fraction. BMI influenced the BG-PVS across middle-aged 
and older participants. The effect of sleep quality on PVS 
volume fraction was mediated by BMI. There were 
significant differences in PVS volume fraction across 
racial/ethnic groups. 

(Duperron et 
al., 2023) 

Investigate GWAS associations of SVD 
markers. Only 2/18 cohorts applied a 
quantitative approach to score PVS burden 
automatically, which was later 
dichotomised on the top quartile for 
uniformity with the rest of the cohorts. 
Method of analysis: meta-regression. 

(Dubost et al., 
2019) 

T1w, T2w, 
1.5T, 3T 

N=31,700 participants 
from the UK Biobank 
and the Rotterdam 
Scan Study III (out 
from 40.095 from 18 
population-based 
cohorts) 

24 genome-wide significant PVS risk loci were associated 
with white matter PVS in young adults (N = 1,748; 
22.1 ± 2.3 yr) and were enriched in early-onset 
leukodystrophy genes and genes expressed in foetal brain 
endothelial cells. Mendelian randomization supported causal 
associations of high blood pressure with BG and 
hippocampal PVS, and of BG PVS and hippocampal PVS 
with stroke, accounting for blood pressure. 

(Karvelas et 
al., 2023) 

Identify PVS correlates with other SVD 
features and cognition in CADASIL. 

(Boespflug et al., 
2018), and 
curvilinear filter 
from Sato et al., 
(1998) 

T1w, T2w, 
FLAIR, 3T 

24 individuals with 
CADASIL and 24 age 
and sex matched 
controls (N=48) 

CADASIL and control groups did not exhibit differences in 
mean PVS volumes. However, increased PVS volumes in 
CADASIL were associated with increased WMH volume 
(β=0.57, p=0.05), Clinical Dementia Rating (CDR) Sum-of-
Boxes score (β=0.49, p=0.04), and decreased brain 
parenchymal fraction (BPF) (β=-0.03, p=0.10). Two central 
hub proteins were identified in protein networks associated 
with PVS volumes: CXCL8/IL-8, and CCL2/MCP-1. 
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(Li et al., 
2023) 

Use deep learning U-shaped networks (U-
Net) to explore the PVS distribution in 
Huntington’s Disease (HD) patients and 
controls 

(Boutinaud et al., 
2021) 

T1w, T2w, 7T 

N=106: 49 healthy 
controls, 32 pre-HD 
individuals and 25 HD 
patients 

Significantly increased BG-PVS in HD patients and in pre-
HD individuals compared to controls.  BG-PVS was closely 
related to cognitive decline and BG atrophy. 

 

Legend: PVS: Perivascular Spaces, F1+2: Prothrombin Fragment 1 + 2, TAT: Thrombin-Antithrombin III complex, HD: Huntington’s Disease, vWF: von 
Willebrand’s Factor, GM: Grey Matter, WM: White Matter, CVD: Cerebrovascular Disease,  CAA: Cerebral Amyloid Angiopathy,  TBI: Traumatic Brain 
Injury, CSVD: Cerebral Small Vessel Disease, PVSVF: Perivascular spaces volume fraction, AD: Alzheimer’s Disease, MCI: Mild Cognitive Impairment,  
ADNI-2: Alzheimer’s Disease Neuroimaging Initiative second recruitment wave,  ASD: Autism Spectrum Disorder,  RMSE:  Root  Mean Square Error, 
T2DM: Type 2 Diabetes Mellitus, wmPVS (or WM PVS): Perivascular Spaces in the White Matter. 

 

Note: Choi et al., (2020) is a method development study as well as an application study. Therefore, it is included in both: Table 6 and Table 9, with the 
relevant information for each analysis.
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3.5.2. Factors explored in relation to PVS burden 

Application studies explored a range of factors in relation with PVS. These are: PVS morphology and 

topology (6 studies, 10.17%), broad epidemiology (typically clinical risk factors and 

cognitive/functional outcomes, 19 studies, 32.20%) in the presence or not of a pathology or disabling 

event (e.g., in patients with stroke, traumatic brain injury, or Parkinson’s disease, 4 studies), 

pathophysiology and manifestation of a particular disease or disorder (e.g., Parkinson’s disease, 

Huntington’s disease, autism, obstructive sleep apnoea, COVID, diabetes mellitus, among others, 22 

studies, 37.29%), vascular function or vascular disease (including concurrent SVD lesions and white 

matter hyperintensity burden, 13 studies, 22.03%), cognition (10 studies, 16.95%), sleep (5 studies, 

8.47%%), retinal vasculature parameters (2 studies, 3.39%), space flight duration (2 studies, 3.39%), 

and one study exploring PVS in relation to preterm birth. Often, multiple factors or themes were 

explored (e.g., PVS associated with cognition and established disease or disorder).  Two studies 

(3.39%) investigated, in the same sample, various aspects of PVS heritability in twins (Choi et al., 

2020; Lee et al., 2021) 

3.5.2. Computational PVS quantification methods used 

Many of the computational methods used in the application studies have been described in section 3.3, 

and have been applied directly or used as the basis of PVS quantification approaches in application 

studies. The most frequently applied method was thresholding the response of the Frangi filter, as 

described by Ballerini et al.’s (2016, 2018) (12 studies) or in the frameworks proposed by Sepehrband 

et al., (2019) (10 studies), Smith et al., 2020 (1 study), or Ranti et al., (2022) (1 study), which in total 

make up for 54.24% of the application studies. Ten studies use CNN configurations, mainly U-Net 

and U-ResNet (16.95%), to assess PVS burden, and four studies use this approach to post-process the 

output from the Frangi filter. Morphological detection as proposed by Schwartz et al. (2019), followed 

by thresholding is used in six studies, while a study uses the morphological detection approach 

described by Sato et al., (1998).  

Computational PVS quantification methods applied but not described in section 3.3. include 

approaches based on Guerrero et al.’s (2017) method (a deep learning/CNN approach), Yushkevich et 

al’s (2006) method (a semi-automated, 6-connected voxel active contours approach), and seven in-

house methods (including thresholding and filtering methods, and approaches based on Dubost et al. 

(2019) and Sepehrband et al.’s (2019) methods). One study refers using the 2D U-Net approach for 

multisite learning as developed by Remedios et al., (2020) for segmenting haemorrhages in CT 

scans.These were not among ‘method development’ papers included in this review as they did not 

independently meet inclusion criteria (e.g., the quantification approach may not have been designed 

explicitly for PVS detection (Guerrero et al., 2017; Remedios et al., 2020), or may have relied heavily 

on a manual component (Yushkevich et al., 2006)). A list of the computational PVS quantification 
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approaches and the frequency of their use in the application studies identified in this review is 

presented in Table 10.  

 

Table 10. Frequency of computational PVS applications in included studies 

Method 
N 

applications 
Principle of PVS assessment 

Ballerini et al., 2016, 2018 12 Frangi Filtering + thresholding 

Boefsplug et al., 2018; Schwartz et al., 2019 2 
Morphological detection + 

thresholding 

Boefsplug et al., 2018; Sato et al., 1998 1 
Morphological detection + 

thresholding 

Boutinaud et al., 2021 1 Deep learning (CNN) 

Choi et al., 2020 4 
Frangi filtering + Deep 

learning (CNN) 

Dubost et al., 2019 3 Deep learning (CNN) 

In-house methods 7 varied 

Lian et al., 2018 4 Deep learning (CNN) 

Ramirez et al., 2011, 2015 4 Thresholding 

Ranti et al., 2022 1 Frangi Filtering + thresholding 

Rashid et al., 2023  1 
Deep learning (CNN) + 

thresholding 

Remedios et al., 2020 1 
Deep learning (CNN) + 

thresholding 

Schwartz et al., 2019 4 Morphological detection 

Sepehrband et al., 2019, 2021 10 Frangi Filtering + thresholding 

Smith et al., 2020 1 Frangi Filtering + thresholding 

Wang et al., 2016 3 Adaptive thresholding 

Yushkevich et al., 2006 1 
Texture analysis – active 

contours 
 

3.5.3. MR sequences and field strengths 

Frequencies of MR sequences and field strengths used in ’application’ studies in comparison with 

other study types are outlined in section 3.2.3, Tables 4 and 5. The most common combinations of 

MR sequences used in these studies were T1w and T2w (19 studies). This was also the combination 

of sequences used by Choi et al., (2020), which can be considered both: a ‘method development’ and 

an ‘application’ study. T1w alone, and the combination of T1w, T2w, T2*w and FLAIR (10 studies 

each) were also commonly used. The latter, however, was not used specifically for identifying PVS, 

but was used by full pipelines to extract regions of interest and obtain other imaging markers that 

were analysed by the studies in relation to PVS.  
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Application studies most frequently used 3T imaging (42 studies, 71.19%), although a large 

proportion used 1.5T imaging (20 studies, 33.9%) and only five studies used 7T (8.47%). This differs 

from method development studies, where distribution of field strengths was fairly evenly distributed, 

with a slight bias towards 1.5T imaging. 

 

3.5.4. Population types and sample sizes 

Application studies were almost evenly split between those using a clinical population (50.85%) and 

those using only a non-clinical population (49.15%). Participants were most commonly independently 

living older adults (>60 years; 18 studies, 30.51%), followed by patients with cerebrovascular disease-

related phenotype (e.g., stroke patients, hypertensive patients, patients with artherosclerosis) (9 

studies, 15.25%). In terms of population characteristics, application and method development studies 

shared similar distribution (i.e., proportion). Median sample size of PVS application studies was N = 

161 (IQR = 482.5), with two multicentre epidemiological studies with sample sizes greater than 

30,000 (Evans et al., 2023; Duperron et al., 2023) and five with more than 1,000. Broad population 

type and age-groupings used in application studies compared to method development and 

improvement studies are presented in Tables 3 and 4, respectively.  

 

3.5.5. Application results 

Six areas of interest emerged in common across a number of application studies: age, sex, 

hypertension, diabetes, sleep, white matter hyperintensities (WMH), and cognition. 

 

3.5.5.i. Age 

Eleven studies reported a positive association between computational PVS measures and age 

(Barisano et al., 2021; Huang, Zhu, et al., 2021b; Piantino et al., 2021; D. Ranti et al., 2021; Wang, 

Chappell, et al., 2016; Zong et al., 2020; Choi et al., 2020; Aribisala et al., 2023; Evans et al., 2023; 

Park et al., 2023; Kern et al., 2023), one of which was a study in young adults (mean age = 28.8 

years). But studies on life-time trajectories point at varying patterns of these associations throughout 

the lifespan (Kim et al., 2023a; Lynch et al., 2023).  One study of adolescents (N=118) found no 

association between age and PVS burden (Piantino et al., 2020), and neither another study on children 

(Soitgu et al., 2023).  A study on chronic traumatic brain injury did not find PVS burden being 

associated with brain age (Hicks et al., 2023). Studies that analysed the PVS association with age in 

different regions had conflicting results, with the majority reporting a positive association/correlation 
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with age in all regions, and one study finding a negative association between age and PVS volume in 

the temporal region (Charisis et al., 2023; N=1026). 

 

3.5.5.ii. Sex 

Nine studies provided information on PVS burden aggregated by sex. Two found no association 

between PVS burden and sex (Wang, Chappell, et al., 2016; Kim et al., 2023b), while the 

majority(i.e., six out of nine) found PVS burden to be greater in males than in females (Barisano et al., 

2021; Piantino et al., 2020; Evans et al., 2023; Lynch et al., 2023; Soitgu et al., 2023; Kern et al., 

2023). It is worth noting, however, that Evans et al., (2023) performed a regional analysis and also 

reported no sex differences in the number of PVS in the hippocampus. Only one study found higher 

CSO PVS fraction (burden) in females compared with males (Sepehrband et al., 2021). 

 

3.5.5.iii. Hypertension 

Eleven out of thirteen studies identified a positive association between hypertension and PVS burden 

(Ballerini et al., 2019; Huang, Zhu, et al., 2021b; Wang et al., 2021; Wang, Chappell, et al., 2016; 

Cheng et al., 2022; Hadad et al., 2022; Charisis et al., 2023; Evans et al., 2023; Tachibana et al., 2024; 

Zebarth et al., 2023; Duperron et al., 2023). Duperron et al., (2023), the largest study amongst the 

ones included, found causal associations of high blood pressure with BG and hippocampal PVS, and 

of BG PVS and hippocampal PVS with stroke, accounting for blood pressure, even after Mendelian 

randomisation. In Wang et al. (2021), basal ganglia PVS count was associated with hypertension, but 

not PVS volume. Piantino et al. (2021) found no association between systolic or diastolic blood 

pressure and PVS burden, and Choi et al., (2020) did not find blood pressure to be associated with 

PVS volumes.  

 

3.5.5.iv. Diabetes 

No association between PVS burden and diabetes was found in two studies (Ballerini et al., 2019;  

Wang, Chappell, et al., 2016), but a positive association was identified in a third study between white 

matter PVS burden and diabetes (S. Wang et al., 2021), and in another study exploring specifically the 

putative role of PVS burden in type 2 diabetes mellitus (T2DM) (Zebarth et al., 2023). This study also 

found that indirect effects of T2DM on volumes of other SVD markers (i.e., WMH and lacunes) were 

mediated by the PVS burden in the white matter.  

 



54 
 

3.5.5.v. Sleep 

The relationship between sleep and PVS burden was explored in eight studies (Berezuk et al., 2015; 

Lysen et al., 2022; Piantino et al., 2021; Aribisala et al., 2023; Hicks et al., 2023; Soitgu et al., 2023; 

Wang et al., 2023; Shih et al., 2023), with all except one (Hicks et al., 2023) identifying an association 

between at least one metric of sleep and PVS burden. Berezuk et al., (2015) and Lysen et al., (2022) 

reported a negative correlation between both sleep efficiency and PVS burden. Berezuk et al., (2015) 

further reported a negative association between the duration of N3 (i.e., deep sleep) and PVS burden, 

and a positive association between wakefulness after sleep onset (i.e., number of interruptions to 

sleep) and BG-PVS burden. But Lysen et al. (2022) found no associations between any other metric 

of sleep and PVS burden in any location. In a very heterogeneous sample Shih et al., (2023) found 

that older adults who had better sleep quality and sleep efficiency had larger BG-PVS volume 

fraction, while CSO-PVS volume fraction was not associated with sleep measures. But this study also 

found that the effect of sleep quality on PVS volume fraction was mediated by BMI, and that there 

were significant differences in PVS volume fraction across racial/ethnic groups. Piantino et al., (2021) 

reported a significant association between poor sleep and PVS volume, with PVS volume greater in 

those with poor sleep and mild traumatic brain injury (TBI) than those with good sleep and mild TBI. 

Aribisala et al., (2023) found that CSO-PVS volume mediated 5% of the associations found between 

sleep parameters and brain structural changes. Soitgu et al., (2023) reported that white matter PVS 

were related with insomnia in autistic children, and Wang et al., (2023) found that PVS volume ratios 

were associated with obstructive sleep apnoea (OSA), showing higher accuracy for distinguishing 

groups of patients with different degrees (i.e., severity) of OSA.  

3.5.5.vi. White matter hyperintensities 

Nine studies reported positive associations between PVS burden and WMH volumes (Ballerini et al., 

2019; Huang et al., 2021; Wang et al., 2021; Barnes et al., 2022; Aribisala et al., 2023; Evans et al., 

2023; Kern et al., 2023; Karvelas et al., 2023; Jian et al., 2023), with the latter finding the association 

only for PVS in the BG and not in the CSO. Two of them found also topological relationships 

between the occurrence of PVS and the location of WMH deep clusters (Huang et al., 2021; Barnes et 

al., 2022). A study in chronic TBI (Hicks et al., 2023) reported a positive association between PVS 

burden, given as prevalent ratio rate, and bilateral lesions. However, it is unclear if the lesions referred 

are only as a consequence of the injuries or including also WMH. 

 

3.5.5.vii. Cognition 

Fifteen studies explored the relationship between cognition and PVS with results varying depending 

on the characteristics of the cohorts and the cognitive domains assessed. Hicks et al., (2023), for 
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example, reported PVS burden impacting verbal memory but not any other cognitive domain. Two 

studies found no direct or significant association between general cognition (general cognitive ability, 

Montreal Cognitive Assessment score) and PVS burden (Ramirez et al., 2022; Valdés Hernández et 

al., 2020). Valdés Hernandez et al. (2019) reported PVS burden as predictive of reduced fluid 

intelligence in Huntington’s disease patients but not in family members without overt disease, while 

Soitgu et al., (2023) did not find association between PVS burden and IQ in autistic children In mild 

cognitive impaired (MCI) and dementia, all studies reported different measures of PVS being more 

relevant in MCI (Seperhband et al., 2021; Bown et al., 2023) and frontotemporal dementia (Moses et 

al., 2022) groups than in controls. Jokinen et al (2020) reported PVS volume to be a significant 

predictor of processing speed, decline in processing speed, decline in memory, and of total vascular 

dementia assessment (VADAS-cog) score. PVS burden was related to poor cognition in CADASIL 

(Karvelas et al., 2023), and in Huntington’s disease (Valdés Hernández et al., 2019; Li et al., 2023). 

Kamagata et al., (2022) reported higher PVS volume fraction (total, in basal ganglia, and white 

matter) in Alzheimer’s disease (AD) patients compared to controls, and higher white matter PVS 

volume fraction in the mild cognitive impaired (MCI) group compared to controls. Hamilton et al. 

(2021a, 2021b) reported that worse total SVD burden (PVS-inclusive) was associated with cognitive 

decline, but did not report PVS-specific results.  

 

3.6. Risk of Bias assessments 

Risk of bias assessments were conducted based on the QUADAS-2 framework, with potential sources 

of bias assessed including: patient selection, index method bias (i.e., does the method used to quantify 

PVS introduce bias), reference accuracy (i.e., accuracy of ground truth), reference blind to index (i.e., 

was PVS quantification influenced by prior knowledge of ground truth), same reference for all, 

inclusion of all participants, method/application matches review question, applicability, and overall 

assessment. 

3.6.1. Method and improvement 

Due to the small number of ‘improvement’ studies, these were grouped with ‘method development’ 

studies in the presentation of risk of bias assessments. In general, 42.31% of method and improvement 

studies were rated as low risk of bias, 17.31% were rated as instilling some bias concerns, and 40.38% 

had high risk of bias. One study did not provide enough detail for a bias assessment. The individual 

domain with the most frequent high risk of bias scoring was ‘applicability’ (how well the index 

measure can be applied to PVS quantification in the context of the review question). Reasons 

provided when rating applicability as having a high risk of bias included a lack of detail in the 

methodology, lack of validation testing, and no ability to discriminate between PVS and other lesion 

types. A summary risk of bias plot for method and improvement studies is shown in Figure 6.  
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 Figure 6. Risk-of-bias summary plot for method development and improvement studies. 

3.6.2. Application 

There was low risk of bias in 59.32% of application studies, some risk in 25.42%, and high risk in 

15,25%. The domain most frequently scoring as having a high risk of bias was ‘includes all 

participants’, rated high risk in 49.15% of application studies. Often, a small number of patients were 

excluded from application studies due to poor image quality (noise and motion artefacts) which 

compromised PVS quantification performance, without a statistical analysis of the relevance of 

missing values as a consequence. A summary risk of bias plot for application studies is provided in 

Figure 7. 

 

 

 Figure 7. Risk-of-bias summary plot for application studies. 
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4. Discussion 

4.1. Overview 

We conducted a systematic review of the development, improvement, and application of 

computational PVS quantification approaches, including studies published up to September 2023. We 

explored 67 approaches involving 48 methods presented as part of 45 publications, eight frameworks 

or suggestions for improving some of these methods, nine in-house pipelines or methodologies using 

different elements or combinations from some of the computational approaches presented, and two re-

purposed implementations from approaches developed for other purposes, these applied to clinical 

research. We collated information on the main aims and outcomes of each study, and extracted and 

analysed data relating to MR imaging sequences and field strengths used, population types and sample 

sizes, method characteristics including training and validation, and results. 

 

The number of studies developing or using computational PVS quantification approaches has 

increased steadily since the first identified study of this type in 2002 (Kruggel et al., 2002), reaching a 

peak of 8 computational PVS assessment methods published in 2019, year from which the number of 

studies applying these methods has been experiencing an exponential growth. Currently, research into 

PVS using quantification approaches comprises a large field, favoured by the increase in the ability to 

analyse large datasets for which visual scores are lacking, and the increased interest in the function 

and relevance of PVS in brain health.  

 

The use of a morphological filter to enhance PVS-like structures, with Frangi being the most 

commonly used, and the use of a U-Net configuration with or without residual connexions, were the 

two most widely applied and promising approaches, which have been independently validated. The 

commonest PVS feature (s) that are measured are volume and count, obtained from the PVS 

segmentations. From them, PVS volume, absolute, or as a percentage in the region of interest, appears 

to be the most consistent PVS parameter used by the clinical studies that applied a computational 

approach to assess PVS.  

 

Imaging data from older adults, or a wide age range of adults, has most frequently been used in both 

the development and application of computational PVS quantification approaches, consistent with 

studies using non-computational approaches to PVS quantification (Francis et al., 2019). MR imaging 

was most often obtained from 1.5T and 3T imaging, with a recent increase in the use of 7T imaging. 

T2w imaging was most commonly used across all study types, often in combination with T1w and 
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FLAIR imaging, these mainly being used as part of the frameworks developed for eliminating 

confounds and generating regions of interest, although a number of application studies used T1w only 

for assessing the PVS. We limited the scope of the present review to static, structural imaging of PVS, 

as opposed to including fluid dynamics, functional imaging, and/or cerebrovascular reactivity studies 

which may make greater use of alternative imaging modalities, including diffusion tensor imaging, 

4D-flow, positron emission tomography (PET), single-photon emission computed tomography 

(SPECT).  

 

4.2. Method development studies 

The most common approaches to computational PVS quantification were thresholding, thresholding 

and filtering, and deep learning (CNN) methods. Deep learning approaches have become almost 

ubiquitous since 2017, with 19 of the 48 method development studies using CNN methodology. They 

have higher processing speed and capacity than the more conventional methods, and a single 

architecture can be designed and trained to separately assess different confounding features, e.g., 

lacunes, PVS, and WMH. But the large number of parameters that CNN architectures manage and 

need to adjust require a breath of size and variability in the training dataset impossible to achieve at 

present. Then, as the resultant model is overfitted to the imaging parameters and clinical presentations 

of the dataset used for training, these models would need to be re-trained for every different cohort at 

hand. This entitles a reasonable number of ground truth manual segmentations, not always feasible 

and highly observer-dependant. While some of the architectures reviewed here have been made 

publicly available, we could not find any pre-trained CNN model to independently test the accuracy 

levels reported in their original publications. The conventional approaches that threshold the output 

from a morphological filter that enhances PVS-like structures, on the other hand, do not require large 

amount of data to be tuned, but still the threshold and some parameters would need to be adjusted 

depending on the imaging protocol and image quality. Also, separate developments would be required 

to remove confounding pathology and deal with artefacts. In terms of reproducibility, sustainability, 

and applicability, both types of approaches, being fully automatic, could reach high levels, but these 

would depend, for now, on the skills of the computer programmers that generate and manipulate 

them, and data availability. 

 

Computational segmentation pipelines used different pre-processing steps. General steps involved co-

registration of the different MRI sequences to the one in which PVS are assessed, and intensity 

normalisation. No justification of the intensity normalisation approach has been given or evaluated in 

any of the studies. A study classed as improvement (Valdés Hernández et al., 2024) only evaluates the 

impact of the point, within the pipeline, in which a linear intensity normalisation is done. Evaluation 
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of the impact of the type of intensity normalisation in the results is currently lacking. Few methods 

perform bias field correction. But the similarity indices and performance metric of all the methods 

presented is similar, raising questions about the impact bias field correction may have in the overall 

performance of the method. Few methods involve denoising too, which, contrary to the correction of 

inhomogeneities in the b1 magnetic field aimed at filtering out the low-frequencies, is designed to 

remove the high-frequencies in the image. But given the nature of the task, the application of a band-

pass filter in the preprocessing stage may not be the best option to consider. Another preprocessing 

step worth mentioning is the generation of regions of interest (ROIs), mostly carried out using 

freesurfer. In some other cases, ROIs are the grey and white matter tissue classes. Given the 

importance of this step, its validation in different scenarios would have been required. For example, in 

the presence of narrow ventricles with disconnected horns resembling tubular structures, presence of 

calcified vessels resembling tubular structures that are also hypointense in T1w images, to mention 

just two of the most common scenarios (Valdés Hernández et al., 2024).  

 

Computational PVS quantification approaches were validated against a range of reference standards; 

most often visual rating scores (27.08% of studies), although there was a relatively high proportion 

(22.92%) of them which used manual segmentations as a reference standard. While visual rating 

scores may be less time consuming and applicable to much larger sample sizes than producing manual 

segmentation data, high correlation between segmentation results and visual scores does not 

necessarily mean that the segmentations are good. Gonzalez Castro et al., (2017) showed that 

neuroradiological assessments can be subconsciously influenced by the degree of the overall disease 

present. Therefore, it is likely that, for example, visual rating scores of PVS in the basal ganglia in 

patients with SVD would be highly correlated with PVS segmentations, but perhaps not so in the 

basal ganglia of obstructive sleep apnoea patients that would not necessarily have any other 

confounding imaging feature in their brain scans. Further exploration of the correlation between 

different computational parameters with visual scores in cohorts with different characteristics is 

needed. Manual segmentations, on the other hand, enable comparison of more PVS metrics (e.g., 

volume, width, length) than visual-only assessments, but they have been only available for a limited 

number of scans or for one slice per region per scan, and most of the studies lack reports of inter-

annotator reliability assessment of the manual annotations used. 

 

Not all of the method development studies provided information on the performance or validation of 

their method, with three studies not using any reference standard of ground truth. Performance metrics 

used in those that did report results varied, although more common measures included correlations 

between computational and non-computationally derived PVS values, number of false positives/false 
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negatives, and spatial similarity (Dice coefficient). It is important to note that method development 

studies reporting the strongest validation results between computational and manual/visual PVS 

quantification often had either small sample sizes or a significant user-intervention aspect to their 

methodology in their validation datasets. For example, Weurfel et al. (2008) reported an intraclass 

correlation coefficient of 1 (a perfect score), but data from only 4 participants were used, and Ranti et 

al. (2022) report a DSC score of 0.99 (almost perfect spatial overlap) but their method includes a final 

‘manual correction’ stage.  

 

A large proportion of method development studies lacked sufficient information with regards to 

parameters to be adjusted in methods using filtering and thresholding approaches, differentiation 

between PVS and other lesions (notably lacunes, which can have similar appearance), or applicability 

(and adjustments required) when using multi-site or multi-modality imaging. Some studies provided 

little to no information about MR equipment and sequences used including critical factors like voxel 

size and slice thickness, nor about the population from which imaging data were derived or the 

process of participant selection. This is reflected in the large number of studies rated as having a high 

risk of bias for applicability. Deep learning is able to deal with changes in voxel size and slice 

thickness as long as the model has been trained with such a data. The vanilla implementation of the 

Frangi filter, for example, is also not able to deal with anisotropic data while the implementation of 

the Jerman filter in Matlab is. This information, therefore, impacts in the subsequent number of 

applications using the methods developed. 

 

Given the varied approaches to assessing and reporting performance of novel PVS quantification 

methods, it may be beneficial to work towards a standard for validation and reporting. For example, a 

dedicated open-source PVS quantification validation dataset/repository would be worthwhile, with 

representative PVS and SVD, image sequence, image quality, and multi-site imaging, and phantom 

data. This would enable validation of novel methods by developers themselves and reproducibility 

assessments from outside parties. It is worth noting that although most method developments have 

used data acquired at the commonly used field strengths and from relevant populations – e.g., older 

individuals who are therefore likely to have bigger or more visible PVS, some atrophy, and 

confounding pathologies like WMH –, this does not imply that they would yield successful results if 

applied without variations, to MRI data from more, less, or simply different disease and age 

populations, even if acquired in the same scanners. It may also be of benefit to identify minimum 

reporting standards for validation performance, such as agreement on a preferred reference standard, 

minimum required validation sample size, and relationship, accuracy, and spatial overlap metrics. 
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4.3. Improvement studies 

We identified eight studies concerned with improving computational PVS quantification. Targets for 

improvement included maintaining PVS detectability with image compression (Paz et al., 2009), 

reducing noise and motion artefacts (Bernal et al., 2020, 2021, 2022; Zong et al., 2021; Valdés 

Hernández et al., 2024), comparing filtering approaches when applied to synthetic data (Bernal et al., 

2022; Duarte Coello et al., 2024), works on physical and in-silico phantoms for establishing the limits 

of validity of PVS assessment methods (Duarte Coello et al., 2024), comparing PVS segmentations 

from T1w vs. T2w (Valdés Hernández et al., 2024), drawing recommendations for threshold selection 

(Valdés Hernández et al., 2024), tuning of filter parameters (Duarte Coello et al., 2024; Valdés 

Hernández et al., 2024), and improving the calculation of PVS morphometrics (i.e., width and length) 

(Duarte Coello et al., 2023). While compression, noise, and motion artefacts appeared to have viable 

proposed solutions, one study identified remaining issues with differentiation between PVS and other 

hyperintense (in T2w) features, finding none of the more commonly used filter methods (Frangi, 

Jerman, RORPO) were effective at differentiating lesion types. This review has identified two ways in 

which methods have approached this issue: 1) by excluding WMH from the PVS ROIs, and 2) by 

combining multiple sequences simultaneously (e.g., Boespflug et al. (2018), identify as PVS the 

voxels with CSF-like intensities in T1w, T2w, FLAIR and PD, while Seperhband et al., (2019) 

segment on the combination of T1w and T2w and look for the intensity profile in FLAIR excluding 

the voxels on the top 10 percentile of the FLAIR signal distribution). But both approaches has 

drawbacks. The first one dismisses the existence of PVS inside WMH, consequently leading to 

misleading results, for example reporting few PVS in patients with wide and confluent WMH, just 

because the “clean” ROIs were small. The second one could also lead to erroneous results depending 

on the sensitivities of the MRI sequences involved, especially in the presence of thick slices and inter-

slice gaps. Distinguishing between PVS and other hyperintense lesions remains an important target 

for improvement in computational PVS quantification. 

 

4.4. Application studies 

The three most frequently applied computational PVS quantification approaches identified in this 

review were the one firstly proposed by Ballerini et al. (2016) and implemented as part of different 

frameworks (24 applications), those derived from the work of Lian et al. (2018) (10 applications), and 

morphological detection as proposed by Schwartz et al. (2019) (6 applications). Ballerini et al.’s 

approach involved a Frangi filter approach with thresholding optimised based on visual PVS scores. 

Lian et al.’s approach was a deep learning (CNN) method, involving image enhancement and 

denoising stages prior to deploying a fully-automated CNN, trained on manually segmented PVS data. 

Schwartz et al. segmented PVS using a stepwise local homogeneity search of a white matter-masked 
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T1w image, with FLAIR hyperintensity constraints and further linearity, width, and volume 

constraints. While these three approaches are the most frequently implemented, this is driven by the 

research groups in which the methods were developed, rather than an indication of a unification of 

PVS quantification approaches. 

 

Factors identified in common among application studies included age, sex, hypertension, diabetes, 

WMH, sleep, and cognition, although comparable results were only available for a modest number of 

studies per factor. Other factors, like ethnicity, are starting to emerge, with two studies (Charisis et al., 

2023; Shih et al., 2023) reporting differences in the spatial distribution (Charisis et al., 2023) and 

volume fraction (Shih et al., 2023) of PVS across racial/ethnic groups. Computational PVS measures 

used varied, but commonly included PVS count and volume, often segregated by region (e.g., basal 

ganglia PVS, centrum semiovale/white matter PVS). Increased age, hypertension, WMH, and sleep 

parameters were broadly associated with computational PVS metrics, although the only one that 

consistently (i.e., in all the nine studies that explored it) showed an association (in this case positive) 

with PVS burden was WMH either total volume or visual scores. This was followed by hypertension, 

with eleven out of twelve studies identifying a positive association between hypertension and PVS 

burden. The associations between age and PVS burden and hypertension and PVS burden have been 

previously documented in the literature, and been identified in non-computational studies (Francis et 

al., 2019). However, this review, different from previous reviews, as includes recent and large 

population studies involving adults from the whole lifespan or children and adolescents, points at the 

existence of various patterns of associations and correlations between age and PVS burden, with no 

association (Piantino et al., 2020; Soitgu et al., 2023) or even negative associations in some brain 

regions (Lynch et al., 2023) in early life, a negative correlation until the mid-30s (Kim et al., 2023a), 

and a positive association/correlation afterwards with different strength degrees (Kim et al., 2023). 

Other equally large population studies covering a large lifespan point to some factors that may relate 

to these findings. For example, Shih et al., (2023) report that body mass index (BMI) influenced the 

basal ganglia PVS burden across middle-aged and older participants. A large GWAS study (Duperron 

et al., (2023) investigating the associations of small vessel disease markers found that 24 genome-

wide significant PVS risk loci were associated with white matter PVS only in young adults, 

suggesting a genetically linked effect of age in PVS burden. In relation to sleep, the eight studies that 

explored its association with PVS evaluated different parameters: sleep efficiency, interruptions, 

quality, duration, falling asleep at different times during the day, for just mentioning some. But all 

results suggest a positive association between PVS burden and poor sleep health. The dimension of 

the relationship between sleep and PVS (e.g., in clinical populations with different characteristics) has 

been less extensively explored, and may be a good candidate for further research. 
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Associations between sex and PVS burden were mixed, with two studies out of nine finding no 

association (X. Wang, Chappell, et al., 2016; Kim et al., 2023b), one reporting that PVS burden was 

higher in females (Sepehrband et al., 2021), and six reporting that PVS burden was higher in males. 

These findings reflect the broader literature, which often has not reported on sex differences, or 

reports that potential sex differences in PVS burden remain unclear. Similarly, mixed results were 

identified for associations between PVS burden and diabetes. Of the four studies that referred to 

diabetes, two found no association (Ballerini et al., 2019; X. Wang, Chappell, et al., 2016) and two 

found a positive association between diabetes and white matter PVS (S. Wang et al., 2021; Zebarth et 

al., 2023). A previous systematic review and meta-analysis reported no associations identified 

between diabetes and PVS burden (Francis et al., 2019), but studies reporting on diabetes in relation 

to PVS burden are too few to draw any substantial conclusions as of yet.  

 

PVS burden has been explored in association with cognition in a number of studies. In the present 

review, we found studies reported mixed evidence for poorer performance on cognitive testing in 

those with greater PVS burden. Two of the fifteen studies identified that examined cognition relied on 

a measure of total SVD burden, rather than PVS-specific associations. Both reported negative 

associations between SVD burden and cognitive decline (particularly decline in processing speed; 

Hamilton, Cox, Ballerini, et al., 2021; Hamilton, Cox, Okely, et al., 2021). From the rest, three studies 

reported no association between PVS burden and measures of cognition (Ramirez et al., 2022; Valdés 

Hernández et al., 2020; Soitgu et al., 2023), and nine indicated a positive association between poor 

cognition, at least in one domain, and PVS burden. But those indicating a positive association studied 

specific clinical populations for which cognitive impairment was one of their phenotypes: 

Huntington’s disease (Valdés Hernández et al., 2019; Li et al., 2023), CADASIL (Karvelas et al., 

2023), TBI (Hicks et al., 2023), MCI (Seperhband et al., 2021; Bown et al., 2023; Kamagata et al., 

2023), frontotemporal dementia (Moses et al., 2022), and AD (Kamagata et al., 2023). One study 

involving elderly patients aged 65-84 enrolled in the LADIS study (Pantoni et al., 2005), also reported 

a positive association between PVS burden and cognition. But all participants in this study had mild 

cognitive complaints, motor disturbances, minor cerebrovascular events, mood disturbances, and/or 

other neurological problems (Jokinen et al., 2020). Other systematic reviews and meta-analyses in 

recent years have also yielded mixed results as to the association between PVS and cognition (Francis 

et al., 2019; Hilal et al., 2018; Jie et al., 2020), with further research required to shed a light on the 

role of PVS by stage in cognitive decline, since PVS could increase or decrease depending on 

compensatory mechanisms, or as part of possibly a neuroprotective or coping mechanism, prior to or 

amidst continual decline in cognitive functions. 
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4.5. Strengths and Limitations 

The systematic nature of this review, the broad search terminology and inclusion criteria, and the 

large number of years covered (i.e., up until September 2023), are perhaps the main strengths of this 

work. Although there would have been sources missed due to database indexing issues, articles not 

being published in English language, or access restrictions, the systematic and inclusive nature of our 

work have allowed us to cover most of the literature on the theme published up to this date, distil, and 

make available data to inform future research in the field of PVS research. We have summarised and 

meta-analysed the characteristics, advantages, scope, applicability, and shortcomings of the 

computational methods developed up to date to assess PVS burden. This work has also covered the 

works to support the improvement of these methods, establish their limits of validity, and facilitate 

their use by explaining the effect of tuning their different parameters and drafting recommendations 

based on the evaluation of the most widely used methods in different settings. But this review covers 

only findings from computationally-derived measurements. Owed by the availability of databases 

with imaging and associated neuroradiological assessments and clinical data, still a considerable 

number of studies use visual scores in their analyses. For illustration, from January to September 2023 

alone, our search in Web of Science identified 47 publications of clinical studies with PVS either as 

outcome measure or as predictor (at least one of them in some cases) that used PVS visual scores, 

which were excluded from our analyses, against only 23 studies that used computationally-derived 

metrics and were, therefore, included. Consequently, conclusions cannot be drawn from our findings 

on factors related to PVS burden as they only reflect results from a percentage of all the studies in this 

area of research. A wider literature analysis including also data obtained from neuroradiological (i.e., 

visual) assessments would be necessary to better inform on the associations of PVS with clinical, 

demographic, genetic, cognitive, and lifestyle factors. 

 

4.6. Conclusions and future directions 

Computational approaches to PVS quantification have increased in prevalence in recent years. Novel 

automated PVS quantification approaches often use thresholding and filtering approaches, or deep 

learning (CNN) approaches, each with different advantages as well as shortcomings. The method to 

use will, ultimately, depend on resources availability (i.e., ground truth, disposal or not of a pre-

trained model, computational capacity, and skills of the researchers/image analysts). Barriers to 

successful computational PVS quantification, including image compression, image quality, and nature 

and quality of the reference standard assessments have been identified, and potential solutions have 

been proposed. In particular, further work is needed to address the issue of lesion type discrimination 

(e.g., PVS differentiation from lacunes and small WMH in T2w contrast images, and calcified vessels 
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or mineralisation around small arterioles in T1w contrast images). Although some methods were 

developed using images from different scanners and magnetic field strengths, methods’ performance 

in the same population imaged at different magnetic field strengths are not known. Best practices and 

adjustments for assessing longitudinal changes in PVS are also not documented. Also, most methods 

were developed using representative samples with wide range of PVS and confounding disease 

burden, but results were not analysed taking these into account. Further studies that develop methods 

for quantifying disease markers should analyse accuracy results by disease load in order to inform 

better the scope of their applicability. Computational PVS approaches are increasingly being applied 

in epidemiological and clinical studies, with age, WMH, hypertension, different diseases involving 

cognitive deficits as part of their phenotypes, and sleep, emerging as factors associated with PVS 

burden. More research is needed to better understand the mechanisms and mediating factors in the 

associations that have been consistently found, and the reasons for discrepancies in the factors that 

have yielded conflicting results across the studies.  
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