
1 

Development and Validation of the VIOSync Sepsis Prediction Index: A Novel 

Machine Learning Model for Sepsis Prediction in ICU Patients 

 

Authors: Sotirios G. Liliopoulos*, 1, Alexander Dejaco1,2, Lucas Paseiro-Garcia1, Vasileios S. 

Dimakopoulos1, Ioannis A. Gkouzionis1 

Affiliations: 

1Aisthesis Medical Ltd, Chester, United Kingdom. 

2Department of Anesthesia, University Hospital Regensburg, Regensburg, Germany. 

*Corresponding author: Sotirios G. Liliopoulos, MRes, MEng; Aisthesis Medical Ltd, Chester, 

United Kingdom; sliliopoulos@aisthesismed.com.  

Background: Sepsis is the third leading cause of death worldwide and the main cause of in-

hospital mortality. Despite decades of research, sepsis remains a major challenge faced by patients, 

clinicians, and medical systems worldwide. Early identification and prediction of patients at risk 

of sepsis and adverse outcomes associated with sepsis are critical. In this work, we aimed to 

develop an artificial intelligence algorithm that can predict sepsis early.  

Materials and Methods: We developed a predictive model for sepsis using data from the 

Physionet Cardiology Challenge 2019 ICU database. Our cohort consisted of adult patients who 

were admitted to the ICU. Sepsis diagnoses were determined using the Sepsis-3 criteria. The 

model, built with the XGBoost algorithm, was designed to anticipate sepsis prior to the appearance 

of clinical symptoms. An internal validation was conducted using a hold-off test dataset to evaluate 

the AI model's predictive performance.  

Results: We have developed the VIOSync Sepsis Prediction Index (SPI), an AI-based predictive 

model designed to forecast sepsis up to six hours before its clinical onset, as defined by Sepsis-3 

criteria. The AI model, trained on a dataset comprising approximately 40,000 adult patients, 

integrates variables such as vital signs, laboratory data, and demographic information. The model 

demonstrated a high prediction accuracy rate of 97%, with a sensitivity of 87% and a specificity 

of 98% in predicting sepsis up to 6 hours before the onset. When compared to the established 

qSOFA score, which has a specificity of 89% for sepsis prediction, our VIOSync SPI algorithm 

significantly enhances predictive reliability, potentially reducing false positive rates by a factor of 

5.5. 

Conclusions: The VIOSync SPI demonstrated superior prediction performance over current sepsis 

early warning scores and predictive algorithms for sepsis onset. To validate the generalizability of 

our method across populations and treatment protocols, external validation studies are essential. 
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INTRODUCTION 

Sepsis is identified as a critical condition characterized by life-threatening acute organ dysfunction 

caused by a dysregulated host response to infection (Singer et al., 2016). Recognizing the gravity 

of sepsis, in 2017, global health organizations including the World Health Assembly and the World 

Healthcare Organization prioritized its detection, prevention, and treatment globally (Reinhart et 

al., 2017; Paoli et al., 2018). It is estimated that sepsis affects 4-6% of adult hospital admissions 

(Rhee et al., 2017; Giamarellos-Bourboulis et al., 2023; Mellhammar et al., 2023) and is found in 

about one-third of patients in intensive care units (ICU) (Sakr et al., 2018). In 2017 alone, nearly 

49 million people globally were affected by sepsis, with 11 million succumbing to the condition, 

indicating a mortality rate of about 20% (Rudd et al., 2020). Particularly, in the United States, 

there are approximately 1.7 million cases for sepsis per year, a trend that has been increasing 

annually. This condition results in nearly 250,000 deaths annually in the U.S. alone, making sepsis 

the primary cause of mortality in non-cardiac ICUs (Vincent et al., 2009; Rhee et al., 2017). 

Despite the steady admission rate of sepsis patients to ICUs across European hospitals from 2002 

to 2012, the severity of the disease increased significantly (Vincent et al., 2018). Mortality rates 

vary widely but are reported to be at least 10%, jumping to 40% in cases involving septic shock 

(Vincent et al., 2018), and exceeding 30% when sepsis is left untreated (Liu et al., 2014; Rhee et 

al., 2017). Additionally, the financial burden of sepsis treatment is substantial. In the U.S., hospital 

expenses for sepsis management were the highest among all diseases, exceeding USD 20 billion 

in 2011, reaching over USD 23 billion in 2013, and consistently costing more than USD 24 billion 

annually, which represents 13% of total U.S. healthcare expenditures (Arefian et al., 2017; 

Reinhart et al., 2017; Paoli et al., 2018; Buchman et al., 2020). 

Prompt and effective intervention for sepsis is critical, particularly in ICUs, where the most 

critically ill patients are treated. The urgency in treating sepsis cannot be overstated, as mortality 

rates increase by approximately 4-8% with each hour treatment is delayed (Churpek et al., 2016). 

Studies have shown that early identification of sepsis can minimize treatment delays, enhance the 

delivery of suitable interventions, and ultimately reduce mortality (Kumar et al., 2006; Mok et al., 

2014; Husabø et al., 2020). Despite the high risk of mortality associated with sepsis, there is 

general consensus in medical guidelines (Rhodes et al., 2017) that prompt action involving 

antibiotics, fluid resuscitation, source control, and support of vital organ function lead to 

dramatically improved patient outcomes. The challenge in early sepsis detection lies in its 

heterogeneous syndromic nature, which can evolve based on diverse pathophysiological factors, 

the complexity of each clinical case, and the clinical phenotypes. This challenge is compounded 

by the absence of reliable blood- or plasma-based biomarkers for early detection of sepsis. 

Although hundreds of potential biomarkers have been evaluated for their prognostic value in sepsis 

(Pierrakos and Vincent, 2010; Cho and Choi, 2014; Pierrakos et al., 2020), their lack of sufficient 

specificity or sensitivity prevents their routinely use in clinical practice (Pierrakos and Vincent, 

2010). There is thus a significant unmet need for new tools to support clinicians swiftly identifying 

hospitalized patients at risk of developing sepsis. 
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Currently, sepsis diagnosis involves a combination of clinical assessments by healthcare 

professionals and data from monitoring devices and screening laboratory tests. This approach is 

both time-intensive and subjective, relying heavily on the expertise and judgment of the healthcare 

professional. Timely intervention is critical for patients with sepsis, yet with the manual routines 

used at present, there is a risk of delayed diagnosis of sepsis and initiation of treatment. Enhancing 

the timely prediction and detection of patients at risk of developing sepsis is crucial for mitigating 

its detrimental effects. Given the complexity of sepsis as a clinical syndrome, characterized by a 

broad spectrum of clinical and biological indicators, relying on a single clinical marker may not 

accurately represent the disease’s state (Hernandez, Bellomo and Bakker, 2019). 

To capture the critical window for controlling sepsis progression, clinical practices often 

implement rule-based scoring systems, such as the systemic inflammatory response syndrome 

(SIRS) criteria (van Wyk et al., 2019), sequential organ failure assessment (SOFA) scores (Vincent 

et al., 1996) , and modified early warning score (MEWS), to alert the possible occurrence of sepsis. 

The timely application of these scoring methods facilitates early detection and allows for the 

initiation of preemptive treatment measures or alert programs with a high degree of sensitivity. 

Nevertheless, while these systems are effective in identifying potential sepsis cases, they often 

lack specificity, leading to false alarms and thus alert fatigue. 

Given that intensivists are overwhelmed with the ever-increasing volume of data collected at the 

bedside, the interest in machine learning prediction algorithms has surged within both research 

and clinical practice. This growing attention is attributed to the algorithms’ potential to enhance 

early detection, ensure better compliance with treatment protocols, and reduce the time to 

antibiotic administration. Such improvements have been demonstrated to significantly improve 

patient outcomes (Kumar et al., 2006; Mok et al., 2014; Seymour et al., 2017; Husabø et al., 2020). 

To date, and to the best of our knowledge, three ICU algorithms are available for clinical use 

(Henry et al., 2015; Calvert et al., 2016; Persson et al., 2021). Persson et al. leveraged the MIMIC-

III database to devise the NAVOY algorithm, which forecasts sepsis occurrence within ICU 

settings up to 3 hours prior to its onset (Persson et al., 2021). Calvert et al. utilized the MIMIC-II 

database to create the InSight algorithm, also predicting sepsis onset with a 3-hour lead time 

(Calvert et al., 2016). In a similar vein, Henry et al. analyzed physiological and laboratory data 

from ICU patients, resulting in the development of TREWScore, a predictive tool capable of 

anticipating septic shock up to 28 hours in advance (Henry et al., 2015). Nemati et al. used 

electronic medical record data combined with high-resolution time series of heart rate and blood 

pressure to dynamically predict sepsis, with an area under the receiver operating characteristic 

(AUROC) of 0.83–0.85 (Nemati et al., 2018). However, a limitation among these studies is the 

lack of information on potential confounding factors or variables not included in the predictive 

models that could influence the accuracy of sepsis prediction within ICU settings. 

The purpose of this study is to harness the potential of machine learning technologies to address a 

critical challenge in ICUs worldwide: the early prediction of sepsis. By leveraging clinical data 

routinely collected in electronic health records (EHRs), this study develops a sophisticated 
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machine learning algorithm capable of predicting the onset of sepsis within a crucial six-hour 

window. The adoption of machine learning in healthcare offers a promising avenue for enhancing 

predictive analytics, surpassing traditional statistical methods in accuracy, speed, and efficiency. 

The successful development of such an algorithm has the potential to significantly impact patient 

care in ICUs by enabling timely interventions, thereby reducing mortality rates, improving overall 

patient outcomes, and optimizing the allocation of healthcare resources. 

MATERIALS AND METHODS 

In addressing the critical challenge of early sepsis detection in ICU patients, our study leverages 

advanced machine learning techniques to develop a predictive model capable of accurately 

predicting sepsis before onset. The careful selection and fine-tuning of these techniques are pivotal 

in ensuring the model's practical applicability and reliability in clinical environments. For this 

reason, we have developed an exhaustive methodology that harmonizes clinical data examination 

with advanced algorithmic approaches (Figure 1). All computational analyses and model 

development were conducted using Python. 

Dataset and Study Population 

We used the PhysioNet/Computing in Cardiology Challenge 2019 dataset (Goldberger et al., 2000; 

Reyna et al., 2020). The data were obtained from three geographically distinct U.S. hospital 

systems with three different Electronic Medical Record (EMR) systems: Beth Israel Deaconess 

Medical Center, Emory University Hospital, and a third, unidentified hospital system. These data 

were collected over the past decade with approval from the appropriate institutional review boards. 

Data and sepsis labels from a total of 40,336 patients were used. The data consisted of a 

combination of hourly vital sign observations, laboratory values, and static patient descriptions. 

The data contained 40 clinical variables: eight vital sign variables, such as heart rate, respiration 

rate, blood pressure and blood oxygen saturation, 26 laboratory variables (e.g., lactate, bilirubin, 

hemoglobin, etc.), and six demographic variables such as age, gender, and ICU length-of-stay 

(hours since ICU admit). Altogether, these data included over 2.5 million hourly time windows 

and 15 million data points. 

Data Labeling 

The data was labeled in accordance with Sepsis-3 criteria (Singer et al., 2016). Three time points 

were specified for each septic patient in order to define the onset time of sepsis. These include 

tsuspicion, marking the initial suspicion of infection based on the administration of intravenous 

(IV) antibiotics and blood culture timings; tSOFA, indicating the occurrence of organ failure as 

evidenced by a two-point increase in the SOFA score within 24 hours; and tsepsis, defined as the 

onset of sepsis, determined by the earliest tsuspicion or tSOFA, as long as tSOFA occurs no more 

than 24 hours before or within 12 hours after tsuspicion. These criteria ensured that IV antibiotics 

are administered for a minimum of 72 consecutive hours, with a mandatory temporal relationship 

between the administration of IV antibiotics and the acquisition of blood cultures to accurately 
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reflect clinical practice (Singer et al., 2016). This approach characterized septic patients as those 

with a finite tsepsis, whereas non-septic patients were characterized by an infinite tsepsis value. 

Septic patients were assigned a label=1, while non-septic patients received a label=0, providing a 

binary classification framework for our analysis. To enhance the predictive model's utility in 

clinical settings by enabling early intervention, labels for septic patients were shifted ahead by six 

hours, indicating the goal to predict sepsis onset six hours before it clinically manifests. This 

temporal adjustment allows the model to identify potential sepsis cases with a lead time, offering 

a crucial window for preemptive medical intervention. This approach provides a clear, 

standardized method for labeling and analyzing patient data in the predictive modeling of sepsis. 

Handling Missing Values 

A critical aspect of preparing the dataset for the early prediction of sepsis involved addressing the 

issue of missing values. To ensure the integrity and continuity of our dataset, we adopted the “last-

one carry forward” (LOCF) method for filling missing values (Methods for handling missing data, 

2016). This method, also known as forward fill, involves filling missing data points in a time series 

with the last available non-null value for each variable. This approach was suitable for our datasets 

since the measurements were taken at regular intervals, and the last observation was a reasonable 

approximation for the missing value. By carrying forward the last known value, we maintained the 

temporal consistency of each patient's clinical data, ensuring that our predictive models had a 

complete dataset to learn from.  

Feature Extraction 

To enhance the predictive capability of the models for early sepsis detection, we devised a 

lookback window approach that was implemented for each patient. This methodology allowed the 

extraction of temporal statistics, providing a detailed snapshot of each patient's physiological state 

over time. For each variable within this window, key statistical measures were calculated, 

including the maximum, mean, minimum, median, standard deviation, and the difference between 

consecutive measurements. We chose these statistics to encapsulate the variability and trends in 

the data, offering insights into the patient's condition that are not apparent from isolated data points. 

In addition to these statistical features, we also generated lag features for vital signs. These lag 

features represented the values of vital signs at previous time points, enabling the model to 

incorporate information about the temporal sequence of physiological changes. This temporal 

sequencing was particularly relevant for sepsis prediction, where the trajectory of vital sign 

changes is indicative of the onset and progression of the condition. We further enhanced the dataset 

by including the Shock Index (SI), a vital measure of hemodynamic instability. The SI is a simple, 

non-invasive marker calculated as the ratio of heart rate to systolic blood pressure.  

Predictions Methodology 

To facilitate a comprehensive evaluation of the predictive model, we employed an observational 

period that served as the foundation for our prediction strategy, delineating the historical data 
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intervals, hereafter referred to as lookback window. These lookback intervals are crucial as they 

provide the temporal context from which our predictive model draws insights. For the analysis, we 

segmented the collected data into distinct subsets. Each subset was then processed through a 

specified lookback time frame. This time frame was meticulously chosen to represent the historical 

data depth used as input for our predictive model. To assess the predictive performance and 

temporal sensitivity of the model, we established a prediction horizon of six hours. This horizon 

represents the future time window for which the model attempts to make accurate sepsis 

predictions (Figure 2). 

Machine Learning Algorithm Development 

For the prediction of sepsis onset, we utilized the XGBoost (eXtreme Gradient Boosting) 

algorithm. We chose XGBoost for its robustness in handling imbalanced datasets, its capability to 

manage missing data, and its proficiency in capturing nonlinear relationships between features and 

the target variable. Prior to model training, we applied the Standard Scaler to normalize the dataset, 

ensuring all numerical features were standardized to have a mean of zero and a standard deviation 

of one. The model was trained using an enriched feature set derived, including statistical 

summaries and lag features of vital signs, to predict the onset of sepsis. Given the dataset's highly 

unbalanced nature, we used the XGBoost scale_pos_weight parameter. This parameter is 

specifically designed to tackle the issue of class imbalance by adjusting the weight of the minority 

class, in this case, the sepsis cases, during the training of the model. We set the scale_pos_weight 

to a value that inversely reflects the proportion of the minority class. The algorithm thus 

compensated for the minority class underrepresentation, ensuring that the model pays more 

attention to correctly predicting sepsis cases.  

Hyperparameter tuning 

Hyperparameters were carefully tuned to optimize model performance, balancing the trade-off 

between bias and variance to prevent overfitting while ensuring high predictive accuracy. For this 

reason, we employed Optuna, an automatic hyperparameter optimization software framework. 

Optuna facilitates the selection of the best set of hyperparameters by efficiently exploring the 

hyperparameter space using a Bayesian optimization technique. The optimization process with 

Optuna involved defining a search space for the hyperparameters of interest, such as learning rate, 

number of trees (n_estimators), depth of trees, and regularization terms. Optuna then iteratively 

tested different combinations of these hyperparameters in the defined search space, assessing 

model performance based on a predefined objective function. We aimed at maximizing the area 

under the receiver operating characteristic curve (AUC-ROC) to ensure both high sensitivity and 

specificity in sepsis prediction. Each trial in the optimization process involved training the 

XGBoost model with a unique set of hyperparameters and evaluating its performance using cross-

validation on the training dataset. 
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Performance Validation 

To quantify the prediction performance of our model we computed the accuracy, precision, the F1 

score, specificity, and the Area Under the Receiver Operating Characteristic (AUC-ROC) we 

defined the confusion matrix for the prediction as follows: 

● True Positives (TP): Instances where the model correctly predicted the presence of sepsis. 

● False Positives (FP): Instances where patients without sepsis were incorrectly identified 

by the algorithm to be at risk of developing sepsis. 

● True Negatives (TN): Instances where the model accurately identified patients without 

sepsis. 

● False Negatives (FN): Instances where the model failed to predict sepsis in patients who 

actually developed it. 

RESULTS  

Patient Characteristics 

We analyzed data from the Physionet Cardiology Challenge 2019, focusing on adult ICU patients 

labeled as septic and non-septic. Patients below the age of 18 were excluded. The dataset consisted 

of a total of 1,259,376 observations, out of which 22,808 were labeled as septic according to 

Sepsis-3 criteria, revealing the challenge posed by the imbalanced nature of the clinical data. The 

septic and non-septic groups were nearly identical in mean age. The gender distribution in both 

cohorts showed a higher proportion of males, with a male-to-female ratio of approximately 1.45 

in the septic group and 1.28 in the non-septic group, suggesting a slightly higher risk or a higher 

detection rate of sepsis among males in this ICU population. Furthermore, the length of ICU stay 

(in hours) demonstrates a marked difference between the two groups, with septic patients having 

a mean stay of nearly 65 hours, significantly longer than the 38 hours for non-septic patients. This 

difference is also reflected in the median values, indicating that on average, septic patients tend to 

stay longer in the ICU, which is an expected outcome given the complexity of sepsis management. 

A detailed breakdown of the demographics and clinical characteristics of the patient cohorts (both 

septic and non-septic groups) is presented in Table 1. 

Data preprocessing results 

In our analysis, we identified that approximately 8% of the patient cohort was classified as septic, 

a significant finding given that explicit timestamps indicating sepsis accounted for only around 

2% of the dataset. To address this imbalance and improve model performance, we leveraged the 

XGBoost algorithm's scale_pos_weight parameter. This parameter was critical for enhancing the 

model's sensitivity to the less represented septic cases, calculated based on the ratio of non-septic 

to septic patients, thereby ensuring a balanced consideration during training.  
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The dataset exhibited a notable amount of missing data, as visualized in the heatmap of Figure 3. 

The heatmap reveals dense blue areas, indicating higher data completeness, contrasted starkly with 

white gaps that signify the absence of recorded values across various features. The extreme rates 

of missing values could potentially bias our model's predictions. Thus, features such as Troponin, 

Fibrinogen, or Bilirubin_total were excluded from our analysis due to high missing rate (over 

95%). This step of feature elimination, along with the application of the last-one carry forward 

method for handling missing values in remaining variables, was instrumental in maintaining the 

integrity and robustness of the dataset for predictive modeling. 

Prediction Results 

Our XGBoost-based predictive model was trained on 75% of the data and optimized using Optuna 

under 100 trials, with the remaining 25% reserved for testing. The model's performance was 

rigorously validated using a 10-fold cross-validation method to ensure generalizability across the 

dataset. The model demonstrated a high AUROC of 0.98, indicating strong ability to identify sepsis 

despite the challenges presented by the dataset. Figure 4 illustrates the receiver operating 

characteristics curve of the algorithm for hold-out test data predictions. The accuracy rate was 97% 

in predicting sepsis up to 6 hours. The sensitivity of the model, standing at 87%, underscored a 

high true positive rate.  The model's specificity was recorded at 98%, illustrating a high true 

negative rate. A key factor in refining the model's performance was the utilization of the XGBoost's 

scale_pos_weight parameter. This adjustment proved crucial for calibrating the model, especially 

given the complexity of the dataset due to the class imbalance. Table 2 provides a detailed 

summary of the prediction results, including essential metrics such as accuracy, sensitivity, and 

specificity. Figure 5 shows the confusion matrix, where the model predicted sepsis in 98.53% of 

the cases (Specificity, TP) with 1.47% missed cases (FN). The model correctly predicted that the 

patients did not develop sepsis in 86.53% (Sensitivity, TN) with 13.47% of the cases predicted 

falsely as sepsis (FP).   

Comparison to previous work 

We compared the performance of our AI model with other clinical screening tools (i.e. MEWS, 

SOFA, and SIRS) as well as with commercially available AI products to demonstrate the potential 

application of VIOSync’s SPI in the clinical practice (Figure 6). VIOSync’s SPI achieved an 

AUROC = 0.98 that was higher than SOFA (AUROC = 0.83), NEWS (AUROC = 0.81) and SIRS 

(AUROC = 0.82). Interestingly qSOFA has worse performance than SOFA with an AUROC = 

0.8. With respect to other commercial softwares, the platform offered by BIOcogniv achieves 

similar performance to our VIOSync’s SPI performance with an AUROC = 0.94. The commercial 

model with the worst performance was the NAVOY algorithm by AlgoDx that achieved an 

AUROC = 0.8. The AUROC scores for the commercially available models have been extracted 

from either peer-reviewed publications of the companies or their commercial websites. To our 

knowledge we used the latest sources that reported these values. As such there may exist potential 
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deviations from their performance that could be currently validated in clinical trials or larger 

cohorts of patients.   

 

DISCUSSION 

Principal Results 

Early identification and treatment of sepsis is a highly complex and multifaceted challenge and 

requires highly skilled and well-trained human experts (Helms and Perner, 2020; Komorowski, 

2020). This study used a supervised machine learning method to build a predictive model of sepsis 

events predicted by XGBoost. The dataset’s inherent imbalance, with a significant majority of 

non-septic instances, presented a substantial challenge toward this goal. Despite that, the 

sensitivity, specificity and AUC of this proposed method was 87%, 98%, and 0.98, respectively, 

demonstrating excellent predictive performance. The SPI algorithm more accurately predicted the 

onset of sepsis developed during hospitalization than the frequently used rules-based patient 

decompensation screening tools MEWS, SOFA, and SIRS. While used for sepsis screening in 

many clinical settings, these tools are not designed to exploit information from trends in patient 

data, and demonstrate suboptimal efficiency (Vincent et al., 1996; Subbe et al., 2006; Usman, 

Usman and Ward, 2019). In comparison to other predictive models, the SPI algorithm's 

performance metrics not only surpass those of MEWS, SOFA, and SIRS but also exhibit 

competitive advantage to other leading machine learning models in the field. This includes models 

based on deep learning, neural networks, and other ensemble methods that have been proposed for 

sepsis prediction. Figure 6 provides a visual representation of this comparative analysis, plotting 

the AUROC of the SPI algorithm against both the traditional risk scores like qSOFA and SIRS 

and other SOTA models. The graph clearly demonstrates the superior performance of the SPI 

algorithm, with its AUC higher than that of the conventional tools and comparable or superior to 

the AUCs of other advanced predictive models.  

Limitations 

This study has some limitations. First, the algorithm was developed using retrospective data and 

has not yet been evaluated prospectively. Second, it would have been valuable to test the 

performance of the algorithm with an additional external validation cohort, for example, data from 

the MIMIC III (Goldberger et al., 2000; Johnson et al., 2016) or IV (Goldberger et al., 2000; 

Johnson et al., 2023), or the eICU Collaborative Research Database (Goldberger et al., 2000; 

Pollard et al., 2018). It should, however, be noted that external validation was performed in this 

study on hold-out test data. Because we do not perform any subgroup analyses in the present study, 

we also cannot verify the generalizability of these results to specific patient subpopulations. Future 

work investigating performance on subpopulations defined by medical or demographic 

characteristics is therefore warranted. Moreover, this study does not provide information on the 

clinical or economic impact of the integration of the developed algorithm in clinical practice. 

Finally, because our study is a retrospective analysis of encounters which do not involve the 
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intervention of predictions from the SPI algorithm, we must await real-time, prospective 

evaluation of the algorithm before making claims of impact on clinical practice and patient 

outcomes. 

Future Work 

The accuracy, sensitivity, and specificity of the SPI algorithm developed in this study are to 

potentially be validated in a prospective clinical trial (ClinicalTrials.gov; NCT06238180). That 

study also intends to further explore the developed algorithm’s integration into clinical workflow 

and effect on relevant clinical outcomes beyond the ICU (i.e., surgical ward). Finally, with access 

to data from different institutions, the algorithm can be retrained and continuously improved or 

adjusted to work well in different settings (regions, hospitals, populations). 

Conclusions 

Sepsis remains a leading cause of mortality and morbidity in ICUs worldwide. Early detection is 

key to effective management and patient outcome, as there is no specific sepsis treatment available. 

We have developed a high-performance machine learning sepsis prediction algorithm that 

outperforms existing early warning scoring systems. The algorithm is based on variables routinely 

collected and readily available in electronic health records in ICUs of all categories and may 

provide an opportunity for enhanced patient monitoring, earlier detection of sepsis, and improved 

patient outcomes. Should the results of this study be confirmed by future prospective randomized 

clinical trials, our algorithm has the potential to emerge as a groundbreaking tool for use in 

hospitals, establishing a new benchmark for early detection of sepsis. A tool like VIOSync SPI, 

which identifies patients at risk of sepsis early, would offer caregivers a greater opportunity to 

intervene before clinical deterioration and the onset of sepsis. 
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Figure Captions 

Figure 1. Flowchart of the proposed sepsis prediction methodology. 

Figure 2.  Prediction Methodology. The 'Lookback window' indicates the period used to gather features 

for the model, while the 'Prediction' segment shows the six-hour horizon within which the model predicts 

the onset of sepsis, differentiated by the red (Sepsis) and cyan (No sepsis) timelines across the patient's 

length of stay. 

Figure 3. Heatmap of missing data across the dataset. The dense blue areas suggest a higher completeness 

of data, whereas the white gaps highlight the absence of recorded values for each feature. 

Figure 4. Receiver operating characteristics curve of the algorithm for hold-out test data predictions up to 

six hours before sepsis onset. 

 

Figure 5. Confusion matrix of the XGBoost model. 

 

Figure 6. ROC curves of the VIOSync SPI model compared to SOTA model and scores for sepsis 

prediction onset.  
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Tables 

 

Table 1. Basic characteristics of the patient population. 

Grouped by Status (sepsis/non sepsis) 

Patient characteristic Sepsis Non sepsis 

Number of observations 22,808 1,259,376 

Age (years)  

Mean 61.84 61.85 

Median 64 63.37 

Gender  

Male 1,415 16,917 

Female 975 13,220 

Length of ICU stay (hours)  

Mean 64.92 37.98 

Median 44 40 

 

 

Table 2. XGBoost performance on test data. 

Performance metric Value 

AUROCa 0.98 

Accuracy 0.97 

Sensitivity 0.87 

Specificity 0.98 

aAUROC: area under the receiver operating characteristic curve. 
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