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Abstract 

The immune system plays a crucial role in many human diseases. In this context, genome-

wide association studies (GWAS) offer valuable insights to elucidate the role of immunity in 

health and disease. The present multi-omics study aimed to identify genetic determinants of 

immune cell type distributions in the blood of healthy individuals and to assess whether the 

distributions of these cells may play a role for autoimmune and COVID-19 disease risk. 

To this end, the frequencies of different immune cells in 483 healthy individuals from the 

Berlin Aging Study II were quantified using flow cytometry, and GWAS was performed for 92 

immune cell phenotypes. Additionally, we performed linear regression analyses of immune 

cell distributions using polygenic risk scores (PRS) based on prior GWAS for five autoimmune 

diseases as well as for COVID-19 infection and post-COVID syndrome (“long COVID”).  

We validated seven previously described immune loci and identified 13 novel loci showing 

genome-wide significant (α=5.00E-8) association with different immune cell phenotypes. The 

most significant novel signal was conferred by the SLC52A3 locus, encoding for a riboflavin 

transporter protein, which was associated with naïve CD57+ CD8+ T cells (p=4.13E-17) and 

colocalized with SLC52A3 expression. Several novel loci contained immunologically plausible 

candidate genes, e.g., variants near TBATA and B3GAT1 representing genes associated with T 

cell phenotypes. The PRS of type 1 diabetes were significantly associated with CD8+ T cells at 

different differentiation states (p≤7.02E-4), and PRS of long COVID were associated with 

early-differentiated CD4+ T cells (p≤1.54E-4).  

In conclusion, our extensive immune cell GWAS analyses highlight several novel genetic loci 

of likely relevance for immune system function. Furthermore, our PRS analyses point to a 

shared genetic basis between immune cell distributions in healthy adults and T1D (CD8+ T 

cells) as well as long COVID (CD4+ T cells).  
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Introduction 

It is becoming increasingly evident that the immune system plays a crucial role not only in 

infectious and inflammatory diseases but also in a wide range of other human disorders, 

including cardiovascular diseases, cancer, neurological and even psychiatric diseases
1,2

. In 

this context, genome-wide association studies (GWAS) offer the possibility of elucidating 

physiological and pathophysiological mechanisms of immune system function and of 

investigating the genetic overlap of immune system-related phenotypes and human 

diseases
3,4

. At the same time, in-depth immune phenotyping using multicolor flow cytometry 

now allows comprehensive investigation of the composition of immune cell types in the 

blood. This blood-based immune cell signature reflects the impact of genetic, environmental, 

and lifestyle factors, and may reflect predisposition to disease
3,5,6

. Accordingly, in recent 

years, several GWAS have already been performed on immune cell type compositions in 

blood samples of healthy adults and have identified several dozen potential immune cell 

loci
3,7–10

 (Figure 1, Supplementary Table 1). Fourteen such immune cell loci were described 

in at least two independent studies, including the Fc gamma receptor (FCGR) gene locus on 

chromosome 1q23.3
3,7,8,10

, the MIR181A1HG/PTPRC locus on chromosome 1q31.3-q32.1
7,9

 

and the ANO2 locus on chromosome 12p13.31
7,10

 (Figure 1). In those studies, heritability of 

immune cell type compositions calculated from genome-wide genotyping data was 

estimated to be nearly 40% (median; range ~30-50%). Notably, the most heritable
 
cell types 

tended to be cells of the adaptive immune system, with complex functions
7
. These 

heritability estimates suggest that other non-heritable factors also impact immune cell type 

composition in blood. This has been described for several intrinsic and environmental 

factors, including age
3,10–12

, sex
3,10

, cytomegalovirus (CMV) infection
3,12

, and smoking
3
.  
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Here, we performed GWAS analyses on 92 different immune cell phenotypes in 483 

immunologically healthy individuals from the Berlin Aging Study II (BASE-II) and integrated 

these data with large-scale data from other omics domains (e.g., transcriptomics). In 

addition, we investigated previously described associations of age, sex, CMV infection, and 

smoking status with immune cell compositions. Finally, by analyzing the impact of polygenic 

risk scores (PRS) on the immune cell data, we assessed whether autoimmune disease, 

COVID-19, and post-COVD syndrome (“long COVID”) predisposition are associated with 

differential immune cell distributions in healthy individuals before disease manifestation.  
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Methods 

A detailed description of the methods can be found in the Supplementary Material. 

Study participants: In this study, we investigated 483 immunologically healthy participants of 

European descent from the BASE-II project, a multi-institutional and multi-disciplinary 

longitudinal study aimed at investigating factors modulating the aging process in inhabitants 

of the greater metropolitan area of Berlin, Germany
13,14

. All participants were part of the 

baseline recruitment of BASE-II and comprised a group of 344 older (aged 60-82 years) and 

139 younger adults (aged 23-35 years, Supplementary Table 2) for whom quality-controlled 

genetic and immune cell data were available. As the aim of the study was to identify 

determinants of immune cell composition in healthy individuals, we included only those 

BASE-II participants without prevalent immune system-related diseases or treatments at 

baseline (see Supplementary Methods). 

Generation of immune cell data by flow cytometry: Isolation of peripheral blood 

mononuclear cells (PBMCs) from whole blood samples and subsequent flow cytometry was 

performed as previously described
15,16

: Briefly, PBMCs were isolated, cryopreserved and 

biobanked in liquid nitrogen. For flow cytometry, PBMCs were thawed and two different 

antibody panels were applied, which comprised various differentiated T lymphocytes (panel 

1), monocytes, natural killer (NK) cells, natural killer T (NKT) cells, myeloid-derived 

suppressor cells (MDSC), and B cells (panel 2; Supplementary Figure 1, Supplementary Table 

3). Specifically, after thawing, PBMCs were incubated with GAMUNEX (human IgG; Bayer, 

Leverkusen, Germany) and ethidium monoazide (EMA) bromide (MoBiTec GmbH, Göttingen, 

Germany). For panel 1, cells were then incubated with mouse anti human CCR7 (CD197; R&D 

Systems, Minneapolis, Minnesota, USA), anti-mouse IgG Pacific Orange (Invitrogen, 

Waltham, Massachusetts, USA) and mouse serum. Next, for both panels, cells were stained 
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with monoclonal antibodies against the markers listed in Supplementary Table 4. The cells 

were acquired with a 3 laser BD LSRII (BD biosciences, Heidelberg, Germany) flow cytometer 

and DIVA6 software. Samples were analyzed with FlowJo version 7.5 (TreeStar, Portland, 

USA). Immune cells were analyzed as proportions of parental immune cell populations in 

blood, and where applicable, following visual inspection, immune cell proportions were 

transformed using log, root, log(100-x) and square transformations, respectively 

(Supplementary Figure 2, Supplementary Table 3).  

Some of the immune cell proportions analyzed in this study correlated with each other. 

Thus, we performed hierarchical clustering (calculated with R package NbClust
17

 [ward 

method, Euclidean distance]). Where appropriate, we present the results by clusters. The 

optimal number of clusters that best represents the data structure was determined by the 

majority rule on a combination of cluster analysis methods implemented in NbClust.  

Generation of genome-wide SNP data: Genome-wide microarray-based genotyping on blood 

DNA was performed using the Genome-Wide Human SNP Array 6.0 (Affymetrix Inc., Santa 

Clara, California, USA). Data processing and analysis were performed with PLINK v1.9 

(www.cog-genomics.org/plink/1.9/) or v2.0 (www.cog-genomics.org/plink/2.0/)
18

, unless 

stated otherwise. Prior to imputation, the genotype data underwent standard quality control 

(QC) as previously described
16,19

 (Supplementary Methods). Next, we performed genotype 

imputation on 723,727 genotyped and QC’ed SNPs using the Haplotype Reference 

Consortium reference panel and Minimac3 as described previously
19

 resulting in a total of 

38,407,851 SNPs. For post-imputation QC, the same QC criteria were applied as for the pre-

imputation QC. In addition, we excluded SNPs with an imputation quality score R
2
<0.7. 

Following QC and merging of the genetic and phenotypic data, the effective sample size 

included in all subsequent statistical analyses was 483 participants (420 individuals for panel 
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1 and 352 individuals for panel 2; Supplementary Table 3 for exact sample sizes per GWAS 

analysis) and 6,932,885 SNPs.  

Statistical analyses on immune cell distributions: GWAS were performed on 51 immune cell 

phenotypes from panel 1 and 41 phenotypes from panel 2 using linear regression analyses 

adjusting for sex and principal components (PC) 1-4 to account for ancestry. GWAS for each 

immune cell subpopulation were run separately for both age groups and subsequently 

combined by fixed-effect meta-analyses. Heterogeneity of effects was estimated using the �� 

statistic. Possible inflation of the GWAS test statistics was assessed by visual inspection of 

the corresponding quantile-quantile (QQ) plots and by calculation of the respective inflation 

factor λ
20

. We visualized the main results in a Manhattan plot generated by the R package 

CMplot
21

, which allowed us to display all GWAS results in one plot by color-coding the 

different cell type clusters (“Candy plot”). Genome-wide significance was defined at an 

α=5.00E-8. To identify additional independent signals for each locus with a genome-wide 

significant association signal, we performed linear regression analyses conditioning on the 

index SNP in a ±1Mb window. The conditional results were false discovery rate (FDR)-

controlled at 1%. In addition, we examined the previously reported (see above) association 

of age (older vs younger age group), CMV status (positive vs negative), sex (women vs men), 

and smoking (current vs non-current [former/never smokers]), and the 92 immune cell 

phenotypes using multivariate linear regression (lm function in R). The results were FDR-

controlled at 1%. 

Functional annotations of GWAS results: Index SNPs and, where applicable, their proxies 

(r
2
>0.6) were annotated according to genomic location, nearest gene, functional 

consequence, Combined Annotation–Dependent Depletion (CADD) score
22

, molecular cis 

quantitative trait loci (QTL) effects, and colocalization analyses
23

. Cis QTL effects were 
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assessed using the QTLbase
24

 (http://www.mulinlab.org/qtlbase/index.html, downloaded on 

March 16th, 2022). Specifically, we considered cis QTL results for four molecular markers 

(i.e., expression QTL [eQTL], protein QTL [pQTL], methylation QTL [mQTL] and histone 

modification QTL [hQTL]) in whole blood and in a selection of 12 blood cell types depending 

on their relevance to the respective GWAS finding (i.e., B cells, monocytes, CD14+ 

monocytes, NK cells, CD16+ neutrophils, CD4+ T cells, naïve CD4+ T cells, CD8+ T cells, 

activated CD8+ T cells, naïve CD8+ T cells, and lymphocytes). We considered all molecular 

QTLs with p<1.00E-05. We assessed a shared genetic etiology for both the immune cell 

GWAS signal and gene expression signals in the same locus by performing colocalization 

analyses
23

 of each GWAS region (index SNP ±1Mb) using the largest blood eQTL dataset 

published to date
25

 (n=31,684; data downloaded from QTLbase on May 04
th

, 2022) based on 

the R package coloc v5 (https://cran.r-project.org/web/packages/coloc/index.html)
26

 (Table 

1, Supplementary Table 5). Colocalization of association signals was defined as the posterior 

probability of a shared causal variant >80% (‘PP.H4’>0.8). Furthermore, we compared our 

genome-wide significant findings with those from previous immune cell GWAS
3,7–10

 (and vice 

versa) by using the data provided in the original publication
3,7,8,10

 or by using GWAS 

summary statistics made available to us by the investigators
9
 (Table 1, Supplementary Table 

1), and to immunologically relevant phenotypes listed in the GWAS Catalog
27

. 

Polygenic risk score analyses: Next, we assessed whether autoimmune diseases or COVID-19 

phenotypes already manifest themselves by differential immune cell type compositions in 

healthy adults. Using PRSice-228, we calculated the best-fitting PRS on five autoimmune 

diseases and on COVID-19: These analyses based on large, publicly available GWAS summary 

statistics on multiple sclerosis
29

 , type 1 diabetes (T1D)
30

, rheumatoid arthritis
31

, Crohn’s 

disease
32

, ulcerate colitis
32

, COVID-19 (three partly overlapping case-control GWAS 
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datasets)
33

, long COVID
34

 (four largely similar datasets using strict or broader case and 

control definitions), and – as a negative control – human height
35

. We performed linear 

regression analyses of the 92 immune cell types in the BASE-II dataset on the respective PRS 

adjusting for sex and the first four PCs. Empirical p values were derived using 10,000 

permutations (--perm 10000). We chose a conservative approach and defined a result as 

being statistically significant if it showed empirical significance (α=0.01) following 

permutation and if it passed FDR control at 1%. Further, for statistically significant PRS 

associations in our primary analyses we re-calculated the PRS using only genome-wide 

significant SNPs from the respective GWAS summary statistics (only applicable to the T1D 

GWAS summary statistics
30

 due to the absence of multiple genome-wide significant hits in 

the long COVID summary statistics
34

).   
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Results 

Dataset 

The effective dataset analyzed in this study comprised 483 immunologically healthy BASE-II 

participants on whom we performed genome-wide association analyses for 92 immune cell 

phenotypes across 6,932,885 SNPs (Supplementary Tables 2-3). Hierarchical clustering of 

the 92 immune cell phenotypes in BASE-II yielded 20 clusters (Supplementary Figure 3). The 

correlation matrix revealed many known interdependencies, e.g., a positive correlation 

between effector memory T cells re-expressing CD45RA (TEMRA) and CD57+ T cells, a 

negative correlation between TEMRA cells and early-differentiated T cells
36

 as well as 

correlations between multiple differentiation states of CD4+ and CD8+ T cells
37

. However, to 

the best of our knowledge, a few interdependencies were identified that had not been 

described previously, such as the correlation between NKT cells, MDSCs, and monocytes, as 

well as the negative correlation between T cell subsets and mature NK cells (Supplementary 

Figure 3).  

Genome-wide association analyses 

Genome-wide association analyses on the 92 immune cell types yielded 24 index SNPs in 20 

genetic loci that were genome-wide significantly (α=5.00E-8) associated with at least one 

immune cell type (Table 1, Figure 2). In three of these 20 loci, the GWAS yielded different 

index SNPs for different immune cell types (Table 1). However, in two of the three loci, these 

different index SNPs were in at least moderate LD (i.e., rs4497244, rs113116201 and 

rs116517602 on chromosome 1q with r
2
=0.33-0.75; rs12318583 and rs11053803 on 

chromosome 12p with r
2
=0.37) possibly pinpointing the same underlying functional genetic 

variant. Only the two index SNPs on chromosome 5p13.2 (rs34356513, rs13159713) were 

independent of each other in our dataset (r
2
=0.0009) indicating that they reflect 
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independent functional genetic variants (Table 1). A total of 35 of the 92 GWAS (with 

immune cell types originating from 16 of the 20 cell clusters) yielded at least one genome-

wide significantly associated SNP. Furthermore, 14 additional loci (non-overlapping with the 

20 genome-wide significant loci) showed borderline genome-wide significant association 

(p<1.00E-7 but p≥5.00E-8; Supplementary Tables 6-7). QQ plots and inflation factor λ did 

not show any noteworthy inflation of the test statistics in any of the GWAS (λ=0.99-1.03; 

Supplementary Figure 4). The MAF of the index SNPs ranged from 0.01 to 0.37 with 

approximately half of the SNPs being common with MAF ≥0.05, and half being infrequent 

with MAF 0.01-0.05. Four loci (MIR181A1HG/PTPRC, ZFHX4, KLR gene locus, RMC1) were 

each associated with immune cell distributions from different clusters (Table 1). In addition, 

the majority of genome-wide significantly associated loci showed sub-genome-wide 

statistical evidence for association with multiple other immune cell types, originating 

predominantly from the same cell clusters (Supplementary Figure 5). However, a few index 

SNPs showed strong associations with several immune cell types that did not correlate with 

each other (r<0.1) suggesting pleiotropic effects: Specifically, the locus on chromosome 1q 

(rs113116201, MIR181A1HG/PTPRC) was associated with CD8+SM cells (cluster 6, p=1.24E-9) 

and with several independent (r<0.1) CD4+ and CD8+ T cell types, e.g., CD8+CM EM (cluster 

9, p=1.05E-15, inverse direction of effect compared to CD8+SM cells), and CD4+ naïve T cells 

(cluster 19, p=8.19E-13, same direction of effect compared to CD8+SM cells). Furthermore, 

rs11053803 (KLRC1 locus) was associated with NK mature NKG2A+ cells (cluster 3, p=4.05E-

14) but also showed an independent (r<0.1) inverse suggestive association with NK mature 

NKG2C+ cells (cluster 13; p=4.87E-6; Supplementary Figure 5). Association analyses 

conditioning on the most significant SNP in each of the genome-wide significantly associated 

loci yielded one potential second association signal in the locus on chromosome 12p 
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(KLRC1). Specifically, the minor allele (T) of rs7309785 (r
2
=0.05 with the index SNP 

rs12318583) showed an independent significant (FDR=0.01) increase in NK immature 

NKG2C+ cells (puncond=1.1E-10, pcond=2.2E-7). Comparisons of our data with recent immune 

cell GWAS
3,7–10

 revealed that seven of our 20 genome-wide significantly associated loci had 

been described at genome-wide significance previously, while 13 loci (FHIT, AC108142.1, 

RP11-3N13.2, ZFHX4, STMN2, TBATA, B3GAT1, RBFOX1, RNF213, RMC1, ST8SIA5, SLC52A3, 

ADRA1D) were novel (Figure 1, Table 1, Supplementary Table 1). The most significant novel 

signal was the SLC52A3 locus that was associated with naïve CD57+ CD8+ T cells (Table 1). 

Furthermore, comparisons with the GWAS Catalog (https://www.ebi.ac.uk/gwas/) 

implicated several of our index SNPs in a disease with immune system involvement (Table 1).  

Molecular quantitative trait locus effects and colocalization analysis 

None of the 24 index SNPs was a non-synonymous coding variant. Notably, rs12257092 

(associated with CD4+ memory stem T cells in total CD4+ T cells) was located in the 3’ UTR of 

FAS (encoding Fas cell surface death receptor)
38

 (Figure 3), which is a member of the TNF-

receptor superfamily and functionally active specifically in T cells (NCBI gene ID 355, 

https://www.ncbi.nlm.nih.gov/gene/). Intriguingly, this SNP showed FAS eQTL effects in 

CD4+ naïve T cells (Supplementary Table 8). The other index SNPs were either intergenic 

(n=10) or intronic (n=13) without any clear evidence for a location near a splice site (also see 

locus zoom plots in Supplementary Figure 6). Twenty-one index SNPs (i.e., all except 

rs185320614, rs13159713, rs4739631) were in strong LD (r
2
>0.6) with possibly regulatory 

variants (Supplementary Table 9). Next, we investigated the effects of the 24 index SNPs on 

gene expression (cis eQTLs) and other molecular phenotypes (cis molQTLs) using whole 

blood (n=31,684 samples) or relevant blood-based immune cell datasets (n=106 to 696 

samples) available in QTLbase. A total of 11 index SNPs (46%) represented one or more 
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significant (p<1.00E-5) molecular QTL in blood including eQTL (n=11 SNPs), pQTL (n=1), and 

mQTL (n=6), (Table 1, Supplementary Table 8). The eQTL results on the smaller immune-cell 

expression datasets did not reveal any additional compelling candidate genes beyond those 

nominated based on the blood eQTL data (Supplementary Table 8). Of all 11 SNPs showing 

cis eQTL effects in blood, the vast majority (n=9) were associated with expressional changes 

of more than one gene. For instance, rs10919543 on chromosome 1q23.3 was associated 

with expression levels of 14 genes, and rs58905133 on chromosome 2p22.1 with expression 

levels of four genes. For eight of the 11 SNPs (73%), the gene located nearest to the index 

SNP was also the gene highlighted by the eQTL results. The blood-based eQTL results 

revealed several immunological candidate genes: Apart from several genes from the FCGR 

and KLR gene clusters, these comprised HNRNPLL, FAS, B3GAT1, and SLC52A3 (Table 1). 

Notably, for the latter four genes, eQTL effects of the index SNPs could also be observed in 

the (compared to the blood eQTL dataset) much smaller but more specific immune cell 

datasets that are comparable to the cell types for which the original genetic associations 

with the index SNP were observed (Supplementary Table 8).  

Next, for each of the immune cell loci associated with both immune cell distributions and 

gene expression in blood we investigated whether the genetic variants responsible for both 

phenotypes were distinct or shared. To this end, for 20 of the 50 genome-wide significant 

immune cell type GWAS signals (Table 1), we performed colocalization analyses on a total of 

47 genes (ranging from 1 to 14 genes per GWAS signal): These results yielded a posterior 

probability for a shared causal variant >80% (PP.H4>0.8) for half (10/20) of the GWAS 

signals. Four immune cell type GWAS signals showed evidence for colocalization with eQTL 

GWAS results for one gene each, while for the remaining six GWAS signals several 

colocalizations were observed (Table 1, Supplementary Table 5). Furthermore, we screened 
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the colocalization results for suggestive signals (PP.H4>0.6) and identified two additional 

findings with FAS (PP.H4=0.79) for rs12257092 and HNRNPLL (PP.H4=0.64) for rs58905133.  

Association analyses of age, cytomegalovirus status, sex, and smoking 

Linear regression analyses of the variables age, CMV status, sex, and smoking on the 92 

immune cell types showed a substantial number of significant (FDR=0.01) associations: 

Specifically, age group, CMV status, and sex were significantly associated with 41 immune 

cell types (originating from 15 clusters), 36 immune cell types (11 clusters), and 13 immune 

cell types (five clusters), respectively (Supplementary Table 10). Interestingly, smoking 

status was not found to show significant associations with any of the 92 analyzed 

phenotypes. Notably, CMV status was highly significantly associated (q-values <1.00E-14) 

with all CD4+ and CD8+ T cell subtypes in clusters 17 and 18 showing consistent (i.e. positive) 

directions of effect. Moreover, age was positively associated with the CD8+ memory cell 

subtypes in cluster 9 and with nearly all CD4+ T memory cells in cluster 10 and inversely 

associated with naïve, early and late differentiated CD8+ and CD4+ T cells in clusters 19 and 

20. For sex, most of the significant associations were observed with different subsets of 

CD8+ cells. 

Genetic overlap with autoimmune diseases and COVID-19 using PGS analyses 

Finally, we assessed whether genetic predisposition to five different autoimmune diseases 

and COVID-19 infection or long COVID manifests itself pre-disease by affecting the immune 

cell type composition of healthy adults. In these analyses, we observed 13 different 

significant associations showing permutation stability (pempirical<0.01) and passing FDR 

control at 1% for the T1D PRS: these predominately affected different subtypes of CD8+ cells 

with variances explained of 3-5% by the PRS (Table 2, Supplementary Table 11). Upon 

including only genome-wide significant T1D SNPs in the PRS, the vast majority (10/13) of the 
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PRS analyses remained nominally significant significant (p<0.05), and one was borderline 

significant (Supplementary Table 12). Furthermore, we observed significant associations 

with early-differentiated CD4+ T cells for the long COVID PRS (variances explained: 3-4%; 

Table 2, Supplementary Table 11). None of the other PRS on additional autoimmune disease 

or other COVID-19 phenotypes showed significant associations here, although a few yielded 

nominally significant results that did not pass FDR and/or permutation control 

(Supplementary Table 11). Finally, as expected, our height PRS analyses (negative control) 

did not show any significant results.  

 

Discussion 

We performed a wide-ranging multi-omics study on the impact and possible functional role 

that genetic variants play in determining immune cell type composition in blood. In addition, 

we found that genetic predispositions to T1D and long COVID may affect immune cell 

composition in blood prior to clinical onset of the disease.  

First, we completed genome-wide screenings on nearly 100 immune cell types where we 

validated the role of seven previously described loci and identified 13 novel loci that may 

impact the composition of immune cells in nearly 500 blood samples from immunologically 

healthy individuals. The most significant novel immune cell locus was SLC52A3 that was 

associated with naïve CD57+ CD8+ T cells and showed colocalization with SLC52A3 

expression. SLC52A3 encodes the “solute carrier family 52 member 3”, a riboflavin 

transporter protein that is strongly expressed in the intestine and plays a role in intestinal 

absorption of riboflavin (vitamin B2)
39

. Our GWAS now further supports a role of riboflavin in 

the distribution of naïve CD57+ CD8+ T cells in peripheral blood. Interestingly, the population 

of naïve CD57+ CD8+ T cells is only a very small subset of CD8+ cells (<1%) and has rarely 

been studied specifically. Thus, independent replication of this genome-wide significant 
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finding will be required. In addition, we established novel genetic associations of immune 

system candidate regulators such as TBATA with the CD4+/CD8+ T cell ratio and B3GAT1 

with CD4+ and CD8+ early-memory T cells in peripheral blood. TBATA encodes “thymus, 

brain and testes associated”, a ligand for class I human leukocyte antigen in the thymus
40,41

 

and B3GAT1 encodes “beta-1,3-glucoronyltransferase 1”, a key enzyme in the biogenesis of 

HNK-1 (CD57) glycans, which has also been described to restrict influenza virus infection
42

. 

Notably, our extensive post-GWAS fine-mapping efforts showed that the majority of loci 

(including SLC52A3, B3GAT1, FAS and HNRNPLL, but not TBATA) showed robust cis effects on 

gene expression in blood and/or in relevant blood immune cells suggesting regulatory 

mechanisms on gene expression. This was in line with colocalization analyses with these QTL 

data that supported the role of SLC52A3, B3GAT1, FAS and HNRNPLL as immunological 

candidate genes, which should be considered for future genetic and functional studies. 

Interestingly, the composition of immune cells appears to be governed by both common 

(MAF>5%) and infrequent (MAF 1-5%) genetic variants.  

In addition to considerably extending the list of candidate immune genes, our study also 

represents an important step forward in understanding the pathophysiological mechanisms 

underlying T1D and long COVID. This is based on the observation that the PRS of T1D 

predicts the proportion of CD8+ T cell subtypes in healthy adults. This is in line with previous 

reports that also suggest a central role of CD8+ cells in the onset of T1D (e.g., ref. 
43,44

). A 

second finding from this arm of the study was that early-differentiated CD4+ T cells are likely 

involved in predisposition to long COVID, which is in agreement with previous, functional 

data (e.g., ref. 
45,46

). Our novel results now show that the genetic predisposition to T1D and 

long COVID leads to different immune cell compositions of CD8+ and CD4+ T cells already in 

the pre-disease state. 
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The main strengths of our study are i) deep immune cell phenotyping, ii) a comparatively 

large sample size given the number of available immune cell phenotypes, iii) state-of-the-art 

computational analyses combining the main genomic findings with other omics 

(transcriptomics, epigenomics) domains. All of these led to the discovery of novel and 

immunologically plausible genetic associations between SLC52A3, B3GAT1, and TBATA and 

the distribution of immune cells in blood as well as genomic evidence supporting a central 

role of CD8+ T cells in the onset of T1D and of early-differentiated CD4+ T cells in long 

COVID. Despite these strengths, we note the following potential limitations of our work and 

results. First, while having examined a sample size of nearly 500 individuals in our GWAS, 

power was still limited to detect small effect sizes especially for infrequent SNPs. Thus, it is 

very likely that there remain many more genetic loci to be discovered with an impact on 

immune cell distributions in healthy adults once analyses on larger sample sizes are 

performed. Limited sample size may also be one of the reasons why we could replicate 

some, but not all, results for genetic loci described by previous GWAS on immune cell 

distributions. However, there are also other reasons for not replicating prior results such as 

(true) heterogeneity of effects across different populations, different sample ascertainment 

schemes and immune cell phenotyping protocols, different analysis designs, and type-1 

errors in previous studies. Furthermore, despite using established thresholds of multiple 

testing correction, some of the novel immune loci highlighted in our study may nonetheless 

represent chance findings. Second, to the best of our knowledge this is the first study to 

examine the genetic overlap between immune cell distributions in blood of healthy adults 

and predisposition for autoimmune diseases and COVID-19 phenotypes. Despite leading to 

biologically highly plausible results, these findings need to be validated in independent 

datasets. Third, it is well known that the lead SNPs emerging from GWAS are not necessarily 
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the variants exerting the molecular effects eliciting functional impacts. To this end, we used 

a range of state-of-the art fine-mapping strategies, including colocalization analyses, to 

pinpoint the functionally relevant gene(s) and potentially causal genetic variant(s). However, 

due to the large number of significant immune cell GWAS findings in this study and multiple 

QTL datasets available, we focused our analysis of gene expression data on statistically 

robust QTL effects in sufficiently sized samples (i.e., based on whole blood). This may have 

precluded the identification of more intricate molecular regulatory mechanisms on gene 

expression underlying the SNP-immune cell associations. Still, the colocalization analyses 

revealed several functionally meaningful findings such as FAS, BGAT1, and HNRNPLL. Finally, 

our dataset was comprised entirely of individuals of European-ancestry. Hence, we cannot 

make any inference on whether and which of the conclusions reached from our analyses are 

also applicable to individuals from other ethnic backgrounds.  

In conclusion, our comprehensive multi-omics study identified genome-wide significant 

associations between thirteen novel loci and distinct immune cell types in peripheral blood 

and implicates riboflavin in the distribution of naïve CD57+ CD8+ T cells. Several of these 

associations appear to be founded gene expression effects. Importantly, the present study is 

the first to describe an association of genetic predisposition to T1D and long COVID with 

immune cell distribution in the blood of healthy adults, indicating a central role of CD8+ cells 

in the onset of T1D and of early-differentiated CD4+ T cells in long COVID. In addition to 

advancing our understanding of immune system function, these findings provide disease 

surrogates on the level of blood immune responses.  
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Legends to Figures 

 

Figure 1. Overlap between immune cell loci identified by this study and by most recent 

genome-wide association studies in the field 

Legend. This Venn diagram displays all genetic loci and SNPs that were reported to show 

genome-wide significant association with immune cell types in this study and in relevant 

publications
3,7–10

. Association signals were generally assigned to the gene names used in the 

original publications; association signals within 1Mb were merged. For association signals 

assigned to more than one gene name, one gene name was selected for better legibility. 

 

Figure 2. Candy plot of genome-wide association results for 92 immune cell types in the 

Berlin Aging Study II  

Legend. This Manhattan-style “Candy plot” shows the genome-wide association results of all 

92 immune cell types quantified in 483 BASE-II participants. Clustered immune cell types 

(Supplementary Figure 3) are coded with the same color as indicated in the Figure. For an 

overview of the immune cell types in each cluster, see Supplementary Table 3 and 

Supplementary Figure 1. Gene names colored in blue represent novel loci, gene names in 

black represent previously described loci.  

 

Figure 3. Association results of HNRNPLL rs58905133, TBATA rs79059742, FAS rs12257092, 

B3GAT1 rs11822913 and SLC52A3 rs6077080  

Legend. This figure shows locus zoom plots and box and whisker plots for HNRNPLL (A), 

TBATA (B), FAS (C), B3GAT1 (D) and SLC52A3 (E) 
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Table 1. Genome-wide significant association results for immune cell types assessed in 483 BASE-II participants 

Immune cell type 
Location 

(GRCh37) 
SNP Alleles MAF Nearest gene (dist.) Dir. P Blood eQTL gene (p<1.00E-05) Coloc in blood PP.H4 (gene) 

Previous 

association 

NK 1:161,508,617 rs10919543 G/A 0.33 RP11-25K21.6 (intronic); HSPA6 (14,581) - 5.08E-11 multiple (FCGR gene locus) >0.99 (RP11-5K23.3) S
7
; L

3,8,10
; TA, T1D 

CD3-CD16+      - 1.22E-10 >0.99 (RP11-5K23.3)  

CD8+SM 1:197,997,953 rs4497244 * A/G 0.02 LHX9 (93,344) + 5.05E-11 none n.a. L
7,9

; MS 

CD8+LD 1:198,830,942 rs113116201 * C/T 0.02 MIR181A1HG (intronic); PTPRC (223,141) + 3.04E-23 none n.a. S
9
; L

7
; MS 

CD8+M_CD27+      - 2.40E-21  n.a.  

CD4+CM_EM      - 5.01E-21  n.a.  

CD8+ME      - 5.16E-18  n.a.  

CD4+LD_CD27+CD28+      + 1.31E-16  n.a.  

CD4+M_CD28+      - 2.33E-16  n.a.  

CD4+ME_CD95+      - 4.44E-16  n.a.  

CD4+LD      + 9.72E-16  n.a.  

CD8+CM_EM      - 1.05E-15  n.a.  

CD4+ED      + 2.49E-14  n.a.  

CD8+ME_CD95+      - 5.54E-14  n.a.  

CD4+naïve      + 8.19E-13  n.a.  

CD8+M_CD28+      - 1.12E-10  n.a.  

CD8+LD_CD28+      + 2.90E-09  n.a.  

CD8+LD_CD27+CD28+      + 2.91E-08  n.a.  

CD4+LEM 1:198,922,068 rs116517602 * T/C 0.01 MIR181A1HG (intronic); PTPRC (223,141) - 8.80E-12 none n.a. 
S

9 
(r

2
=0.75); L

7
;  

MS 

CD8+CM_EM 2:38,887,964 rs58905133 G/A 0.36 GALM (5,087) + 3.58E-08 
HNRNPLL, DHX57, GALM, 

GEMIN6 
0.64 (HNRNPLL) S

7
 

CD14+CD15- 3:59,568,658 rs6809606 G/C 0.18 FHIT (166,378) - 4.78E-08 none n.a. none 

CD4+LEM 4:182,818,506 rs1878469 G/A 0.21 AC108142.1 (intronic); TENM3 (346,049) + 4.40E-08 none n.a. SM 

DC 5:36,132,082 rs34356513 C/T 0.02 LMBRD2 (intronic) + 9.62E-09 SKP2, IL7R, LMBRD2 <0.60 L
7
 

Tcells_NKG2C+ 5:36,668,382 rs13159713 C/G 0.24 SLC1A3 (intronic) + 1.39E-08 none n.a. L
7
 

CD4+LD 8:75,807,197 rs190088867 T/C 0.02 RP11-3N13.2 (intronic); PI15 (70,428) + 4.23E-08 none n.a. none 

CD4+CM_EM 8:77,731,834 rs117904683 C/G 0.03 ZFHX4 (intronic) - 2.59E-10 none n.a. none 
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CD4+ED      + 1.64E-09    

CD4+LD_CD27+CD28+      + 2.74E-09   

CD4+naïve      + 5.66E-09    

CD4+naïve 8:80,504,126 rs4739631 A/T 0.24 STMN2 (18,922) + 1.97E-08 HEY1 <0.60 none 

CD4+LD_CD27+CD28+      + 2.59E-08  <0.60  

CD4+ED      + 3.81E-08  <0.60  

CD4/CD8_ratio 10:72,549,706 rs79059742 C/T 0.02 TBATA (4,549) + 4.20E-08 none n.a. none 

CD4+SM 10:90,782,827 rs12257092 T/A 0.31 FAS (exonic) - 1.55E-10 
ACTA2, FAS, RP11-399O19.8, 

RP11-399O19.5 
0.90 (ACTA2), 0.79 (FAS) L

8
; IgA 

CD8+ME_CD57+ 11:134,271,645 rs11822913 A/T 0.11 B3GAT1 (intronic) - 1.10E-08 B3GAT1, RP11-627G23.1 
0.95 (B3GAT1), 0.95 (RP11-

627G23.1) 
none 

CD4+ME_CD57+      - 2.12E-08 
 

0.94 (B3GAT1), 0.94 (RP11-

627G23.1) 
 

CD4+CD28+ 12:5,947,989 rs77753585 A/G 0.05 ANO2 (intronic) - 2.25E-08 none n.a. L
7,10

 

NK_immature_NKG2C+ 12:10,579,084 rs12318583 * G/A 0.20 KLRC3 (intronic) - 1.73E-27 multiple (KLR gene locus) 0.92 (KLRC2), 0.98 (KLRK1) L
8
; BD,PS 

NK_mature_NKG2C+      - 1.39E-20 0.94 (KLRC2), 0.98 (KLRK1)  

Tcells_NKG2C+      - 2.68E-10 0.95 (KLRC2), 0.98 (KLRK1)  

NK_mature_NKG2A+ 12:10,599,662 rs11053803 * C/T 0.37 KLRC1 (intronic) + 4.05E-14 multiple (KLR gene locus) 
0.93 (KLRC1), 0.95 (KLRC3), 

0.97 (KLRF1) 

S
8
 (r

2
=0.84), BD, 

PS 

CD4+LD_CD27+ 16:7,633,888 rs185320614 G/A 0.02 RBFOX1 (intronic) + 2.19E-08 none n.a. none 

CD4+LD_CD27+CD28+ 17:78,297,779 rs7225029 A/G 0.04 RNF213 (intronic) - 7.91E-09 ENDOV, CTD-2047H16.4 <0.60 none 

CD4+naïve      - 1.06E-08 <0.60  

CD4+ED      - 1.85E-08 <0.60  

CD4+ME 18:21,077,267 rs114460626 T/C 0.02 RMC1 (6,205) + 1.33E-09 RMC1, TMEM241, RIOK3, NPC1 <0.60 none 

CD4+LD      - 2.46E-08 <0.60  

MDSC4 18:44,249,216 rs75060966 A/G 0.03 ST8SIA5 (9,864) + 1.85E-08 none n.a. none 

CD8+naïve_CD57+ 20:738,983 rs6077080 T/C 0.34 SLC52A3 (1,740) + 4.13E-17 SLC52A3 >0.99 (SLC52A3) none 

CD3-CD16- 20:4,439,087 rs6116364 G/A 0.05 ADRA1D (209,428) + 4.25E-08 none n.a. none 

 

Legend. This table lists all independent index SNPs (r
2
<0.1, exceptions are marked with “*”) showing genome-wide significant (α=5.00E-8) association with immune cell types quantified in 483 

BASE-II participants. The full description of the immune cell phenotypes displayed (“Immune cell type”) can be found in Supplementary Table 3. Bold gene names indicate compelling candidate 

genes upon review of all available data. Please note that rs4497244, rs113116201 and rs116517602 as well as rs12318583 and rs11053803 (labeled with “*”) are not independent (r
2
 >0.3) from 

the other index SNPs in the same locus but represent the index SNPs for distinct immune cell phenotypes. dist.=distance (in bp) to the nearest gene using ANNOVAR
47

; alleles=minor/major allele; 

MAF=minor allele frequency; dir=direction of effect estimate for the minor allele; P=p-value; “Blood eQTL gene” lists all blood-based expression quantitative trait loci (eQTL)
25

 with p<1.00E-05; 
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note that for the immunological complex FCGR and KLR loci the entry ‘multiple’ is displayed due to the large range of possibly functional genes (Supplementary Table 8); Coloc=colocalization 

results of the blood eQTL
25

 and the BASE-II immune cell datasets with PP.H4>0.6; previous association=reported in previous GWAS on immune cells or and/or immunologically relevant diseases; 

S=same SNP as in this study or SNP in high LD (r
2
 >0.6) reported for immune cells, L=same locus (+/-1Mb window) reported for immune cells; a disease name is listed if the immune cell index SNPs 

or SNPs in LD (r2>0.6) are listed in the GWAS catalog for the specific disease. TA=takayasu arteritis, T1D=type 1 diabetes (age at diagnosis), MS=multiple sclerosis, IgA=Selective IgA deficiency, 

BD=Behcet's disease, PS=psoriasis, SM=severe malaria. 

 

 

Table 2. Significant results for polygenic risk score analyses of immune cell distributions based on type 1 diabetes and long COVID risk GWAS 

Trait N cases N controls N SNPs Cluster Short name N PRS-SNPs Threshold PRS R2 P Empirical p q value 

Long COVID 3,018 37,935 8,136,810 11 CD4+ED_CD27-CD28+ 15745 4.81E-02 0.0371 1.11E-04 2.80E-03 7.06E-03 

   17 CD4+ED_CD27-CD28- 15997 4.90E-02 0.0338 1.53E-04 3.40E-03 7.06E-03 

Type 1 diabetes 18,942 501,638 9,074,688 8 CD8+ME_CD57+ 22692 4.13E-02 0.0274 6.73E-04 8.90E-03 4.97E-03 

    9 CD8+CM_EM 17170 2.69E-02 0.0299 3.18E-04 2.80E-03 3.25E-03 

    18 CD8+CD27+ 1014 2.00E-04 0.0390 4.33E-05 1.10E-03 9.95E-04 

    18 CD8+CD28+ 1196 3.00E-04 0.0368 6.89E-05 7.00E-04 1.06E-03 

    18 CD8+CD57+ 1988 8.50E-04 0.0361 6.31E-05 1.60E-03 1.06E-03 

    18 CD8+TEMRA 1014 2.00E-04 0.0329 2.11E-04 4.40E-03 2.72E-03 

    18 CD8+LEM_CD57+ 1014 2.00E-04 0.0324 2.37E-04 3.50E-03 2.72E-03 

    18 CD8+LEM 1112 2.50E-04 0.0306 3.69E-04 4.70E-03 3.39E-03 

    19 CD4+LD 26866 5.37E-02 0.0278 5.67E-04 7.30E-03 4.74E-03 

    20 CD8+ED 13679 1.91E-02 0.0492 2.87E-06 1.00E-04 2.10E-04 

    20 CD8+LD_CD27+CD28+ 13627 1.90E-02 0.0482 4.57E-06 1.00E-04 2.10E-04 

    20 CD8+naïve 13627 1.90E-02 0.0442 9.53E-06 2.00E-04 2.92E-04 

    20 CD8+LD 17170 2.69E-02 0.0271 7.02E-04 8.20E-03 4.97E-03 

Height n.a. 1,632,478 1,089,720 - - - - - - - - 

 

Legend. This table displays all significant results (q value<0.01) for the polygenic risk score (PRS) analyses of the immune cell distributions in BASE-II based on GWAS data for autoimmune disease 

risk and COVID-19 phenotypes. The GWAS on height was used as a negative control. The long COVID PRS listed here were based on GWAS summary statistics based on a strict case and control 

status (strict case definition = Long COVID after test-verified SARS-CoV2 infection, strict control definition = individuals that had SARS-CoV-2 but did not develop Long COVID)
34

. The type 1 diabetes 

GWAS was conducted by Chiou et al
30

. Statistical significance was determined based on an empirical α=0.01 following 10,000 permutations and an FDR-adjusted p value (FDR=0.01). N=number, N 

PRS-SNPs=number of SNPs included in the best-performing PRS, threshold=p value threshold of the summary statistics for inclusion of SNPs in the PRS, PRS R2=increase of variance explained of 

immune cell phenotype by inclusion of PRS. Empirical p=p value after 10,000 rounds of permutation (assessing robustness of the result). q value=FDR-adjusted p value. 
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This study

Patin (2018)

Aguirre-Gamboa (2016)

Lagou (2018)

CD27/LAG3/CD4/ANO

PTPRC

FCGR locus

FAS/ACTA2
KLR locus

ENTPD1-AS1

ACTL9 GAP6/TMEM8A
RMND5A/CD8A
SELL
LINC02532/CD24
HLA locus

HNRNPLL
SPEF2/IL7R/LMBRD2/SLC1A3

ADGRL2
LARP1B
RICTOR
COMMD10
SP4
STON2
IFN 𝜆𝜆 cluster

NFIA
NRXN1
PRKCI
NT5E
SLC18A1
SLC25A16
FTO

FHIT STMN2 RNF213        ADRA1D
AC108142.1 TBATA RMC1
RP11-3N13.2 B3GAT1 ST8SIA5
ZFHX4 RBFOX1 SLC52A3

GALNT10
MYO1G/ZMIZ2
AGBL1
PDE4A

S1PR1
ACOXL/BCL2L11
ENPP3
ALOX15

TNFRSF14 CR2/CD34 ARPP21/STAC      PLAC8/COQ2          C7orf50/GPR146     FAM53B           SH2B3 TVP23A/CIITA       CCR7/SMARCE1    CD40
CLIC4/RSRP1 LCT-AS1/CXCR4          XIRP1/CX3CR1    SLC35A4/CD14       SNX8                          HBB                  TNFSF13B               SNX29P2                MPO/TSPOAP1     ITGB2
RPAP2 BMPR2/FAM117B     LZTFL1/CCR2       DTNBP1/MYLIP      SPATA48/IKZF1         MS4A12           MIR4708/FUT8     ITGAM/ITGAX ERN1                      SHISA8
H2BC18 CD28/CTLA4 STAB1                   BACH2                     CDK6                          LINC02764      IGHD                       HYDIN                     IFI30
CD247 B3GNT7/NCL              LPP                       CCNC/PRDM13       DEFA10P                   CXCR5              CCDC32  DHX38                    LOC101928295
LAX1 CMTM6                       CD38                    CCDC162P               IL2RA/RBM17           LYZ                   BCL2A1                   SLFN13/SLFN12L   CD33

Orru (2020)
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