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Abstract 

Early detection of neurofibromatosis type 1 (NF1) associated peripheral nerve sheath tumors 
(PNST) informs clinical decision-making, potentially averting deadly outcomes. Here, we 
describe a cell-free DNA (cfDNA) fragmentomic approach which distinguishes non-malignant, 
pre-malignant and malignant forms of NF1 PNST. Using plasma samples from a novel cohort of 
101 NF1 patients and 21 healthy controls, we validated that our previous cfDNA copy number 
alteration (CNA)-based approach identifies malignant peripheral nerve sheath tumor (MPNST) 
but cannot distinguish among benign and premalignant states. We therefore investigated the 
ability of fragment-based cfDNA features to differentiate NF1-associated tumors including 
binned genome-wide fragment length ratios, end motif analysis, and non-negative matrix 
factorization deconvolution of fragment lengths. Fragmentomic methods were able to 
differentiate pre-malignant states including atypical neurofibromas (AN). Fragmentomics also 
adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, 
which could have informed clinical management. Overall, this study pioneers the early detection 
of malignant and premalignant peripheral nerve sheath tumors in NF1 patients using plasma 
cfDNA fragmentomics. In addition to screening applications, this novel approach distinguishes 
atypical neurofibromas from benign plexiform neurofibromas and malignant peripheral nerve 
sheath tumors, enabling more precise clinical diagnosis and management.  
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Introduction:  

Neurofibromatosis type 1 (NF1) is the most common heritable cancer predisposition syndrome 
and is characterized by a spectrum of benign, pre-malignant, and malignant nerve sheath 
tumors. Approximately 50% of patients with NF1 develop benign plexiform neurofibromas (PN)1, 
typically present in infancy or early childhood2, with a subset of PN evolving into pre-malignant 
atypical neurofibromas (AN)3-5 and, ultimately, 8-15% of patients with NF1 developing 
cancerous malignant peripheral nerve sheath tumors (MPNST) during their lifetime6-8. MPNST 
account for the majority of NF1-associated mortality6,7 with a 5-year overall survival rate of only 
20%9. Genomic and histopathologic evidence suggests a model in which PN evolve to MPNST 
through an intermediary AN disease state3 with clinical evidence of AN lesions transforming 
directly into MPNST4. 

Diagnostically, however, differentiating between PN, AN, and MPNST remains clinically 
challenging as a result of insensitive clinical exams10,11, overlapping findings on imaging12, and 
tissue heterogeneity leading to sampling biases on tissue biopsy13. Biopsy also carries with it 
the risk of peripheral nerve injury14,15, further complicating the diagnostic workup. This is 
unfortunate as the therapeutic management of these entities is quite different, given their 
varying levels of malignant potential. PN are typically observed or treated with mitogen activated 
protein kinase/ extracellular signal regulated kinase kinase (MEK) inhibitors16,17; AN are typically 
surgically removed with narrow margins4,15,18,19; MPNST require more morbid wide margin 
resections to prevent recurrence19, yet are often metastatic at diagnosis20. 
 
We previously demonstrated that a liquid biopsy approach utilizing cell-free DNA (cfDNA) copy 
number alteration (CNA) analysis accurately distinguishes MPNST from benign PN, and that 
mean cfDNA fragment length is shorter in MPNST than in PN patients or healthy volunteers21. In 
the current study, we significantly extend these findings to demonstrate early cancer and pre-
cancer detection from plasma cfDNA by noninvasively distinguishing between premalignant 
tumor cell states. To achieve specificity for different premalignant states, we quantify several 
fragment-level cfDNA features including bin-wise analysis of short and long cfDNA fragment 
ratios, deconvolution of fragment end motif profiles, and deconvolution of fragment length 
profiles using non-negative matrix factorization (NMF). While each method provided 
complementary diagnostic data, NMF of fragment length profiles performed best at granularly 
distinguishing between malignant, pre-malignant and non-malignant states. Sophisticated 
fragmentomic analysis of cfDNA therefore has the potential to distinguish between non-cancer, 
pre-cancer, and cancer states and facilitate early cancer and pre-cancer screening for the most 
deadly malignancy associated with NF1. 
 

Results: 

Copy number alterations in cell-free DNA identify malignant peripheral nerve sheath 
tumors but do not differentiate pre-malignant states. 

In this study we sought to determine whether features of cfDNA could distinguish between 
benign (PN) and pre-malignant (AN) states in the cancer predisposition syndrome NF1. To 
address this question, we collected samples from a cohort of participants with MPNST (n = 35), 
treated MPNST with no evidence of disease (NED) (n = 15), MPNST on treatment (n = 10), PN 
(n = 69), or AN (n = 17), and healthy controls (n = 21) (Supplemental Tables 1-3). cfDNA from 
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these participants was prepared and sequenced under standardized conditions to allow for 
fragment length and end motif analysis (8 PCR cycles, 6x depth, see Methods).  

Previously, using a separate cohort, we demonstrated that in silico size-selected plasma cfDNA 
CNA can distinguish MPNST from PN or healthy states21. Our new participant cohort validates 
this finding comparing MPNST to PN (AUC = 0.73) and to healthy controls (AUC = 0.80). Tumor 
fraction also distinguished AN from MPNST (AUC = 0.75) (Figure 1 a-b). Additionally, the new 
cohort validated that healthy controls’ fragment length distributions differ from PN (D = 0.0241, p 
< 0.001 by two-sample Kolmogorov–Smirnov (KS) test) and MPNST (D = 0.0138, p < 0.001 by 
two-sample KS test) as well as PN from MPNST (D = 0.0368, p < 0.001 by two-sample KS test). 
Fragment length distribution was also found to differentiate AN from healthy controls (D =0.0072 
p < 0.001 by two-sample KS test), PN (D = 0. 0300, p < 0.001 by two-sample KS test), and 
MPNST (D = 0. 0.0115, p < 0.001 by two-sample KS test) (Figure 1c). However, CNA-derived 
tumor fraction could not accurately distinguish between non-malignant tumor states (PN vs. 
healthy, AUC = 0.64; AN vs. healthy, AUC = 0.60; PN vs. AN, AUC = 0.48).  

Figure 1: Copy number alterations in cfDNA identify MPNST but cannot resolve 
premalignant tumor states. (A) Highest per-participant size-selected ichorCNA copy-number 
derived tumor fraction in each clinical state for initial (I) and validation (V) cohorts. (B) 
Significance of validation cohort tumor fraction compared to validation MPNST in leave-one-out 
Wilcoxon rank-sum tests, expressed as −log10 P values. (C) Fragment length densities for 
cfDNA in NF1 patients with PN, AN, and MPNST peripheral nerve sheath tumors. Colors 
represent the patient’s clinical diagnosis. AN, atypical neurofibroma; MPNST, malignant 
peripheral nerve sheath tumor; NED, no evidence of disease; NF1, neurofibromatosis type 1; 
PN, plexiform neurofibroma. 

Thus, our validation study confirmed the low diagnostic yield of CNA in cfDNA from participants 
with low CN-burden PN and AN, but also that these non-malignant tumor states generate 
distinct cfDNA fragment length profiles (Figure 1c). Therefore, we devised a strategy for 
comprehensive multi-method characterization of cfDNA fragments in cancer predisposition with 
the aim of distinguishing all tumor types using only cfDNA (Figure 2a). Building upon our 
previous findings using fragment size selections to enrich for malignant cfDNA templates, we 
extended this analysis to examine mapped short-to-long cfDNA fragment ratios, composition of 
the fragment’s end motifs, and NMF models of fragmentomic feature distributions (Figure 2b).  
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Figure 2. Fragmentomic features differentiate benign, pre-malignant and malignant 
peripheral nerve sheath tumors. (A) Study schema. Participants consisted of patients with 
imaging- and biopsy-proven MPNST or AN, established patients with PN, and healthy donors. 
Plasma was collected for fragmentomic analysis. AN and MPNST tissue DNA, when available, 
was clinically sequenced using the TSO 500 targeted oncology panel. cfDNA was extracted 
from plasma and underwent whole genome sequencing with fragmentomic profiles assessed by 
fragment end motifs, bin-wise fragmentomic profiles, and NMF fragment signatures.  Models for 
each feature type were trained on one-versus-one comparisons with resultant features input into 
a logistic regression with 10 repeats of 5-fold CV. Optimal thresholds were calculated from ROC 
curve analysis of models’ predicted scores using Youden’s J-statistic. Results were correlated 
with clinical diagnoses and outcomes. (B) Heatmap of fragmentomic features. Samples are 
grouped by diagnostic cohort (MPNST, AN, PN, healthy) with samples in each cohort ranked 
from highest to lowest copy number alteration-derived tumor fraction. Rows are grouped by 
fragmentomic feature type. AN, atypical neurofibroma; bp, base pair; cfDNA, cell-free DNA; CV, 
cross validation; MPNST, malignant peripheral nerve sheath tumor; NMF, non-negative matrix 
factorization; PN, plexiform neurofibroma; ROC, receiver operating characteristic; TSO 500, 
TruSight Oncology 500. 

Genome-wide bin-wise fragmentomics enhance detection of MPNST 

Tumor-derived circulating DNA fragments are known to be, on average, shorter than cfDNA 
from healthy tissues, and bin-wise fragment length ratio has previously been shown to detect a 
variety of cancers. Consistent with previous reports in other cancer types22,23, comparing the 
ratio of short (<150 bp) to long (>150 bp) cfDNA fragments in 5 Mb bins across the genome 
(Methods), we found substantial aberration in fragmentation profiles of pre-treatment MPNST 
compared to healthy controls or samples from patients on treatment (Figure 3a-b). Globally, 
fragmentation profiles of PN and AN resembled the healthy state and did not demonstrate the 
aberrations observed in pre-treatment MPNST. In pairwise comparisons of clinical states, bin-
wise fragmentomics differentiated MPNST with high accuracy versus AN, PN, and healthy 
states (Figure 3d). Unlike CNA-derived tumor fraction, fragment length ratio in bin-wise 
fragmentomics was able to distinguish healthy from PN states (tumor fraction AUC = 0.64, bin-
wise fragmentomics AUC = 0.87). Still, performance of bin-wise fragmentomics was low when 
comparing PN to AN (AUC = 0.59) or AN versus healthy (AUC = 0.45). This method did, 
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however, accurately distinguish AN from MPNST (AUC = 0.75; Figure 3a), suggesting this 
liquid biopsy fragmentomic approach could clinically distinguish between MPNST and its pre-
malignant precursor. For example, Subj189 underwent fine-needle biopsy of a tumor for new-
onset pain and distinct nodular appearance on MRI of a tumor. Biopsy was consistent with AN, 
not PN, with atypia and p16 loss on immunohistochemical (IHC) staining suggestive of a 
CDKN2A deletion. Bin-wise fragmentomic one-versus-one (OVO) scores from matched plasma 
(lib286) were in agreement and consistent with AN (PN-AN 0.74, threshold 0.45; healthy-AN 
0.77, threshold 0.63). The subject’s subsequent clinical course, however, was suspicious for 
comorbid MPNST with 26% growth over a year. Importantly, OVO for AN-MPNST was again 
consistent with AN, not MPNST (AN-MPNST 0.6, threshold 0.64) and ultimate total resection 
confirmed the diagnosis of AN without regions of malignant transformation (Figure 3c). This 
case highlights the potential for cfDNA fragmentomics to adjudicate clinically and 
radiographically equivocal neurofibromas on the malignant vs. pre-malignant spectrum, with 
important implications for making clinical decisions earlier, more confidently, and more 
precisely. 
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Figure 3. Bin-wise fragmentomic analysis reveals distinct profiles of healthy controls, 
PN, and MPNST. (A) Heatmap of principal component eigenvalues of fragmentation profile 
features differentiating AN from MPNST. The relative importance of the features is represented 
at the right (bin-wise short/long ratio changes) and top (chromosomal arm changes) of the 
heatmap. Red feature importance lines indicate features or principal components associated 
with MPNST, while blue feature importance lines are associated with AN. (B) Ratio of short to 
long fragments in 5 Mb bins across the genome in healthy volunteers and patients with PN, AN, 
pre-treatment MPNST, and patients receiving treatment for their MPNST. (C) Bin-wise 
fragmentomic scoring and every 3-month surveillance MRI tumor volumes for a patient with AN 
diagnosed by biopsy, suspicious for malignant transformation given the rate of growth. 
Fragmentomic scores for healthy versus AN (green circle), PN versus AN (purple circle), and 
AN versus MPNST (orange circle) along with discrimination thresholds (horizontal black lines) 
from a paired blood draw are on the left y-axis. Tumor volumes are on the right y-axis, with 26% 
growth over 1 year indicated. (D) One-versus-one ROC AUCs of logistic regressions with 10 
repeats of 5-fold cross validations performed over the bin-wise short/long ratio and 
chromosomal arm z-score data (Methods). Healthy and disease states included within each 
comparison are shown along x- and y-axes, with AUCs indicated both numerically and by heat 
level. AN, atypical neurofibroma; AUC, area under the curve; cfDNA, cell-free DNA; MPNST, 
malignant peripheral nerve sheath tumor; PCA, principal component analysis; PN, plexiform 
neurofibroma. 

cfDNA fragment end motifs distinguish pre-malignant AN from benign PN and malignant 
MPNST. 

cfDNA fragment end motifs have been shown to reflect cfDNA processing and epigenomic 
profiles with relevance to cancer24-29. We therefore hypothesized that, in the setting of NF1 
MPNST, certain end motifs are enriched which could facilitate early cancer screening. Indeed, 
we found that the distribution of end motifs among NF1 associated clinical states was non-
random with preferential motifs enriched in one-versus-one comparisons (Figure 4a). Still, motif 
diversity score (MDS), an aggregate measure of motif distribution through normalized Shannon 
entropy, was not significantly different between clinical states (Figure 4b-c). Recently, Zhou et 
al.30 demonstrated that cfDNA fragment cleavage patterns could be quantified by non-negative 
matrix factorization of 4-mer end motifs into “founder” end motif profiles (F-profiles). We found 
that indeed, motifs contributed non-randomly to F-profiles (Supplemental Figure 1), F-profile 
contributions to cfDNA samples differed between clinical states (Figure 4d), and that specific F-
profiles were more accurate than individual motifs in differentiating clinical states. For example, 
comparing MPNST and AN, F-profile 2 (AUC 0.65) substantially outperformed the most 
predictive motif, AAAA (AUC 0.59). In differentiating PN versus AN, arguably the most difficult 
clinical distinction, both specific motif (AUC 0.69) and F-profile (AUC 0.70) performed well 
compared with the aggregate MDS (AUC 0.48) (Figure 4e). Both F-profile 5 and the ACCA 
motif also out-performed bin-wise fragmentomics (AUC 0.59) when classifying AN vs. PN, 
showcasing the power of high-resolution fragment end analysis to noninvasively distinguish 
between pre-malignant neurofibroma states. 
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Figure 4. cfDNA fragment end composition distinguishes pre-malignant from malignant 
nerve sheath tumors. (A) Specific 4-mer end motifs which best classify between clinical 
diagnosis pairs in one-versus-one comparisons; (p-values by Benjamini-Hochberg corrected t-
test). (B) End motif diversity scores (MDS) do not differentiate cohorts; (Kruskal Wallis H-
statistic p-value > 0.05), although (C) MDS in leave-one-out Wilcoxon rank-sum test against 
MPNST approach (PN, AN) or surpass (healthy) significance of p < 0.05. (D) Percent 
contribution of NMF-deconvolved end motif profiles (F-profiles) in each plasma cfDNA sample 
by clinical state (p-values by Tukey post-hoc test after Bonferroni-corrected ANOVA). (E) ROC 
curve comparing AN and plexiform using each fragment end method: best-performing individual 
end motif (ACCA; AUC = 0.69), motif diversity score (AUC = 0.52), and best distinguishing F-
profile (F-profile 5; AUC = 0.70); AN, atypical neurofibroma; cfDNA, cell-free DNA; F-profile, 
founder end motif profile; MPNST, malignant peripheral nerve sheath tumor; NMF, non-negative 
matrix factorization; PN, plexiform neurofibroma; ROC, receiver operating characteristic; TF, 
tumor fraction, * < 0.1; ** < 0.001; *** < 0.0001.    

NMF deconvolves global fragment lengths into disease state specific fragmentomic 
signatures. 

We previously published that plasma cfDNA samples from healthy, PN, and MPNST patients 
have distinct fragment length distributions with cfDNA from MPNST being shorter in size than 
cfDNA from PN or healthy donors21, which we validated in this new cohort (Figure 1c). Given 
that plasma cfDNA comes from an admixture of cells and tissues, we hypothesized that we 
could more granularly leverage fragment size distributions from each NF1 peripheral nerve 
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tumor state by applying unsupervised NMF. We therefore used NMF to deconvolve cfDNA 
fragment length distributions into underlying tumor versus normal fragment length signatures31. 
To accomplish this, computed cfDNA fragment length histograms from each sample were 
transformed into an aggregate input matrix of cfDNA fragment counts. The input matrix was 
considered the product of a signature matrix, representing preferred fragment lengths for each 
cfDNA source, and a weights matrix, representing the relative contribution of each cfDNA 
source to the total cfDNA admixture. Assuming two sources of cfDNA (healthy and malignant 
tissue), the inferred tumor-derived fragment length signature in plasma from MPNST was 
characteristic of previously described ctDNA with a global shift towards shorter fragment lengths 
and increased 10 bp periodicity (Figure 5a). To further ascertain whether the NMF-inferred 
malignant signature that we observed is derived from MPNST ctDNA, we directly compared it 
against ichorCNA tumor fractions. Indeed, in MPNST samples, tumor fractions in plasma 
measured by ichorCNA correlated strongly with NMF-inferred malignant signature weight (r = 
0.6, p = 0.002), suggesting that NMF is separating MPNST from background cfDNA sources.    
We next trained a logistic regression with ten repeats of fivefold cross-validation on NMF-
deconvoluted weights from healthy and MPNST patient plasma and tested whether higher 
numbers of components could improve classification (Supplemental Figure 4). A logistic 
regression model trained on the signature weights inferred from the 20-component NMF model 
was able to detect tumor signal in 6 MPNST plasma samples that fell below the tumor fraction 
detection threshold (MPNST-healthy threshold 0.0305), with 32 of 35 (91.4%) MPNST plasma 
samples detectable by the NMF deconvolution approach, compared to 26 of 35 (74.3%) using 
ichorCNA tumor fraction (Figure 5b). 

Given the superior ability of fragmentomic NMF to detect MPNST from plasma, we extended 
this approach to the remaining disease state comparisons (Figure 5c). Our new approach 
granularly distinguished between healthy, pre-malignant and malignant disease states, including 
capably distinguishing between healthy and PN (AUC = 0.84), PN and AN (AUC = 0.75) and AN 
and MPNST (AUC = 0.77). These data suggest that NMF deconvolution applied to plasma 
cfDNA fragment length distributions can track disease progression across pre-malignant and 
malignant states in NF1, which would be clinically transformational for early cancer and pre-
cancer detection for patients with hereditary cancer predisposition syndromes.   

Figure 5. NMF decomposition of cfDNA fragment signatures distinguishes benign, pre-
malignant and malignant peripheral nerve sheath tumors. (A) Fragment length signatures 
inferred from two-component NMF decomposition of healthy and MPNST cfDNA samples 
(Methods). (B) Correlation between CNA-derived tumor fraction and NMF MPNST score. Circle 
colors denote samples correctly classified by NMF and tumor fraction (red), NMF only (blue), 
tumor fraction only (yellow), or misclassified by both NMF and tumor fraction (gray). The 
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thresholds for detecting MPNST by tumor fraction (healthy-MPNST 0.0305, Methods) and NMF 
(healthy-MPNST 0.5895, Methods) is denoted by horizontal and vertical dashed lines 
respectively. (C) ROC AUCs of logistic regression following 10 repeats of 5-fold cross-validation 
using one-versus-one plasma cfDNA NMF deconvolution scores as input. Healthy and disease 
states included within each comparison are shown along x- and y-axes, with AUCs indicated 
both numerically and by heat level. AN, atypical neurofibroma; AUC, area under the curve; 
cfDNA, cell-free DNA; CNA, copy number alteration; MPNST, malignant peripheral nerve sheath 
tumor; NMF, non-negative matrix factorization; PN, plexiform neurofibroma; ROC, receiver 
operating characteristic; TF, tumor fraction. 

cfDNA fragmentomics can adjudicate diagnostic challenges in patients with NF1  

Having established that cfDNA fragmentomic features reliably discriminate between peripheral 
nerve sheath tumor disease states, we next sought to investigate whether liquid biopsy cfDNA 
fragmentomics could outperform conventional invasive tissue biopsy in diagnostically 
challenging clinical cases. A major obstacle faced by current diagnostic modalities in the early 
detection setting is the significant tissue heterogeneity of peripheral nerve sheath tumors13. Not 
only are benign PNs histologically heterogenous32,33 but, in the setting of NF1, this is further 
complicated by the fact that MPNST and AN often arise from directly within PN lesions3,5 
resulting in interfacing tissues from multiple disease states.  

We thus hypothesized that liquid biopsy cfDNA fragmentomics could overcome the tissue 
heterogeneity issue that vexes solid tumor biopsy34,35. To test this, we applied cfDNA fragment 
length NMF to Subj011, who had a diagnostic discordance between tissue biopsy and tumor 
resection surgical pathology (Figure 6a). Specifically, this patient with an FDG-avid left scapular 
tumor had tumor tissue biopsy consistent with AN, which guided subsequent narrow-margin 
surgical resection. Unfortunately, surgical pathology of the resected tissue revealed high-grade 
MPNST (co-occurring with AN and PN) and the narrow surgical margins, guided by the earlier 
AN histological diagnosis, were deemed inadequate. To adjudicate these conflicting results, we 
performed plasma cfDNA fragment NMF at multiple timepoints, which consistently revealed 
MPNST at both the biopsy and surgery. Following surgery and around the time of adjuvant 
radiotherapy, fragmentomic liquid biopsy MPNST signal fell below the threshold, consistent with 
the patient’s no evidence of disease (NED) state at that time. The patient experienced a 
locoregional recurrence of MPNST five months later, potentially impacted by the previous 
choice for narrow-margin resection. We again detected MPNST with cfDNA fragment length 
NMF at the same timepoint in plasma. Even looking at the NED timepoint after surgery, 
Subj011’s modest reduction of fragmentomic NMF score was just below the threshold. 
Reassuringly, CNA-derived tumor fraction in plasma also had dynamic changes over Subj011’s 
clinical course (Figure 6a), however, liquid biopsy fragment-length NMF performed most 
consistently across all malignant, pre-malignant, and non-malignant disease states in this study 
relative to other CNA- and fragmentomic-based methodologies (Figure 6b).  
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Figure 6. cfDNA fragment length NMF adjudicates diagnostic challenges and granularly 
classifies across healthy and disease states. (A) NMF of cfDNA fragment lengths correctly 
classifies MPNST initially misclassified as AN by tissue biopsy. This patient had core needle 
biopsy of a PET-CT avid left scapular tumor. Histopathology of the needle biopsy was 
consistent with a pre-malignant AN. Given the morbid location and non-malignant pathology, the 
patient underwent a narrow margin resection of the tumor. By NMF, both pre-biopsy and pre-
resection plasma cfDNA was consistent with MPNST. Indeed, histopathology of the surgical 
resection tissue revealed foci of high-grade MPNST within interfacing AN and PN. Post-
resection plasma cfDNA showed moderately decreased NMF scores below the MPNST 
threshold. Due to inadequate oncologic margins the patient underwent radiation therapy. On 
day 117 post-resection, the patient was found to have radiographic evidence of MPNST at the 
edge of the radiation field consistent with locoregional recurrence. Corresponding plasma 
cfDNA NMF was again consistent with MPNST. CNA derived tumor fraction from cfDNA also 
identified MPNST at the first and last timepoints. MPNST detection cutoffs are indicated by 
dashed lines with closed circles above the line indicating liquid biopsy MPNST detection. (B) 
Comparison of CNA-based and fragmentomic cell-free DNA liquid biopsy methods’ ROC AUCs 
across all non-malignant, pre-malignant and malignant disease states. The inset legend 
indicates the utilized method. Data shown are 10 repeat 5-fold cross-validated. AN, atypical 
neurofibroma; cfDNA, cell-free DNA; L, left; MPNST, malignant peripheral nerve sheath tumor; 
NMF, non-negative matrix factorization; PN, plexiform neurofibroma; TF, tumor fraction; XRT, 
radiation therapy. 

Discussion: 

To our knowledge, this study represents the most extensive collection of cfDNA data of NF1 
patients to date, offering unprecedented liquid biopsy insights into the disorder. Indeed, our 
study heralds a paradigm shift in the early detection of MPNST, a deadly form of sarcoma that 
escapes modern clinical and imaging surveillance in patients with the NF1 hereditary cancer 
predisposition syndrome. We differentiate NF1-associated PNSTs by generating fragment-
based features from cfDNA which allow us to granularly distinguish between non-malignant, 
pre-malignant, and frankly malignant forms of nerve sheath tumors. Our novel approach 
mitigates the diagnostic challenges posed by tissue heterogeneity and the concern for nerve 
injury with solid tumor biopsy of neurofibromas, and it offers a leap forward in personalized 
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patient management. We anticipate that these findings will catalyze the development of non-
invasive clinical assays, enabling earlier cancer detection, earlier intervention, and potentially 
improving the prognosis for NF1 patients at risk for MPNST. Evidenced by the recent 
description of the cfDNA fragmentome distinguishing patients with Li Fraumeni Syndrome (LFS) 
with or without cancer36, we anticipate the fragmentome as being a critical differentiating feature 
in multiple cancer predispositions. Our methodology, underscored here by the largest ever 
published cohort of NF1 patients profiled by cell-free DNA analysis, may therefore extend to 
other cancer predisposition syndromes characterized by pre-malignant tumors where early 
cancer detection is critical but remains elusive, often instead necessitating morbid prophylactic 
surgeries.  

The present study advances significantly upon our previously published work in which we 
showed that copy number alterations in shorter cell-free DNA fragments can be used to classify 
MPNST versus benign PN21. In that study, we found that copy number alterations alone from 
WGS cfDNA were not robust at distinguishing MPNST from plexiform neurofibroma, but 
restricting our copy number analysis to shorter fragment sizes yielded a strong classifier that 
could distinguish these two entities from one another with high accuracy. Here we validate this 
finding using a completely new multi-institutional cohort of patients, again showing that size-
selected cfDNA CNA analysis can distinguish MPNST from PN. This validation is a significant 
step forward in advancing an MPNST surveillance cfDNA assay into clinical care.  

However, including AN in our validation cohort demonstrates that CNA-based methods like the 
one we published in 202121 have limited performance in distinguishing benign PN from pre-
malignant AN. This is not surprising as published tumor sequencing data report few CNAs in 
both AN and PN relative to MPNST37. Still, the distinction between PN and AN has significant 
clinical implications, and it will be critical to distinguish these two entities from one another if we 
are to implement liquid biopsy screening in the future. Clinically, asymptomatic PNs are 
observed with surveillance, while ANs are removed with narrow-margin resection due to their 
elevated risk for progression to MPNST. MPNST lesions that are localized and amenable to 
surgery, in contrast, are removed with wide-margin resection to reduce the risk for locoregional 
relapse. Therefore, a meaningful screening assay would need to granularly distinguish between 
all of these entities, similar in principle to colon cancer screening which requires distinction 
between benign polyps, high-grade polyps, and frank malignancy to have maximal screening 
utility38. Our liquid biopsy work here takes us strongly in this direction with AN vs. PN ROC AUC 
of 0.75, and AN vs. MPNST AUC of 0.77 using cfDNA fragment length NMF deconvolution. 
Fragment length NMF methodology will need to be validated in held-out cohorts, and ultimately 
tested in a screening setting to fully ascertain clinical utility for detecting both pre-cancerous and 
cancerous lesions. 

In addition to cfDNA fragment length NMF deconvolution, we also performed bin-wise 
fragmentomic analysis using methodology similar to Cristiano et al. and Mathios et al.22,23 and 
end motif repertoire analyses across specific motifs, motif diversity levels, and NMF 
deconvolution (F-profiles)30. All of these fragmentomic methodologies demonstrate unique but 
overlapping utility in distinguishing between benign, pre-cancerous, and cancerous disease 
states (Figure 6b), and there may be future utility in integrating a multi-omic fragmentomic 
technology for detecting pre-cancer and cancer early in NF1 patients. We elected not to do this 
here given that doing so would require a larger training cohort with a comparably large-sized 
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validation cohort, a limitation given the rare nature of the hereditary cancer predisposition 
syndrome we studied. 

In clinical vignettes, we also showcased the ability of our approach to distinguish AN from 
MPNST, a clinical conundrum within our standard-of-care with challenging consequences. For 
example, one of our patients had evidence of AN on tumor tissue biopsy, and therefore had a 
narrow margin resection which revealed MPNST. The patient then developed locoregional 
relapse shortly thereafter, perhaps related to inadequate surgical margins. Our plasma cfDNA 
fragmentomics approach, however, consistently detected MPNST in plasma both at the time of 
biopsy, the time of surgical resection, and at the time of tumor relapse months later. 

Leveraging fragmentomic features in cfDNA not only enabled classification of low-mutational 
burden PN and AN but also improved the performance for detection of MPNST. Indeed, cfDNA 
fragmentomics improved the accuracy of MPNST detection relative to copy number-based 
tumor fraction, with NMF correctly identifying six of nine MPNST samples that were 
misclassified by our previously published21 copy number-based approach (Figure 5b). On the 
other end of the spectrum, all of the fragmentomic approaches we employed here were able to 
distinguish plasma from healthy volunteers from patients with benign PN, a distinction which 
was not possible with our previously published genome-wide copy number-based approach. 
This has clinical meaning as it could enable us to detect the arc of pre-malignancy at its earliest 
inception point, and furthermore, could facilitate liquid biopsy approaches for tracking PN 
burden, which is especially important in patients with symptomatic PN on MEK inhibitors17 and 
could reduce the volume of costly and somewhat impractical whole body MRI studies. 

Beyond optimizing clinical assay performance, generating a diverse fragmentomic feature set 
may itself provide insights into the biology of NF1. For instance, prevalence of end motifs in 
cfDNA reflect site-specific cutting preferences of DNases, resulting in F-profiles associated to 
specific DNase enzymes30. We observe patterns of motif enrichment in our F-profiles consistent 
with known DNase associations, such as enrichment of CCNN motifs in F-profile 6, a pattern 
associated with DNASE1L3 cutting (Supplemental Figure 1). In another example, we observe 
significantly longer fragment lengths in PN than MPNST. In other conditions, increased DNA 
methylation has been correlated with reduced nucleosome accessibility and subsequently 
impaired nuclease cutting during DNA fragmentation resulting in longer fragments24. MPNST, 
but not AN or PN, are characterized by mutations in PRC2 complex genes EED and SUZ1237,39-

41, and loss of PRC2 function lifts transcription repression by reducing H3 lysine 27 (H3K27) 
methylation42. Therefore, longer PN fragments are consistent with intact PRC2 and increased 
methylation relative to MPNST. However, PN fragments in our study were also significantly 
longer than fragments from AN (D = 0. 0300, p < 0.001 by two-sample KS test) or healthy 
controls (D = 0.0241, p< 0.001 by two-sample KS test). This finding presents the intriguing 
possibility that global methylation is increased in PN tumors, a question not yet studied in the 
NF1 literature. With such fragmentomic-derived biological inferences, we look forward to a 
synergistic acceleration in our understanding of NF1 tumor progression as tissue informs cfDNA 
findings and cfDNA findings inform tissue biology.  

Despite the paradigm-shifting nature of our study, it has key limitations, one of which is that it 
was not a prospective screening study. Ultimately, to demonstrate that our methods have 
clinical utility for screening and detection of MPNST and its pre-malignant precursors, a 
prospective, appropriately powered study will ultimately need to be performed. Another limitation 
is the lack of serial timepoints from each individual patient, correlated with clinical and imaging 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.01.18.24301053doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301053


findings. We show clinical vignette examples for some cases where serial plasma was available, 
however, a broader set might have allowed us to further showcase potential clinical utility 
including minimal residual disease detection after surgical resection of MPNST. Finally, 
advanced imaging modalities are also being tested in this space12,43-46, yet we were unable to 
seamlessly integrate our liquid biopsy findings with imaging across the cohort due to 
heterogeneity of the standard-of-care diagnostic modalities employed. It will be important to test 
our methodology in a clinical trial setting with consistent diagnostic imaging in order to 
practically integrate these analytical modalities in the future. 

Methods: 
Healthy controls for plasma collection 

After obtaining written consent, healthy donor blood samples were obtained at a single time 
point from appropriately consented donors at the NIH Department of Transfusion medicine (NIH 
protocol NCT00001846, NIH Intramural IRB identifier 99-CC-0168) and WUSTL Clinical 
Translational Research Unit (WUSTL protocol NCT04354064, Washington University in St. 
Louis (WUSTL) School of Medicine Human Research Protection Office IRB identifiers 
201903142 and 201203042). Plasma samples were collected from a total of 21 healthy 
volunteers (Supplemental Table 1). Eligibility for healthy controls included age greater than 18 
years old and no known history of neoplastic or hematological disorders. Protocols are available 
on ClinicalTrials.gov. 

NF1 patients for plasma collection and clinical classification 

This study used blood samples prospectively collected from NF1 patients with PN, AN, and 
MPNST tumors with the aim of distinguishing these different tumor types by plasma cfDNA 
analysis (Figure 1, Figure 2). Patients from the NCI and WUSTL with clinically and 
radiographically diagnosed PN or pathology-proven AN and MPNST were enrolled onto this 
multi-institutional cross-sectional study with written informed consent (NCI protocol 
NCT01109394, NIH Intramural IRB identifier 10C0086; NCI protocol NCT00924196, NIH 
Intramural IRB identifier 08C0079; WUSTL protocol NCT04354064, Washington University in 
St. Louis School of Medicine Human Research Protection Office IRB identifiers 201903142 and 
201203042) between 2016 and 2023. Additionally, pre-treatment samples from clinical trial 
SARC031 were included in analysis (NCT03433183); no on-treatment samples from SARC031 
were considered. NF1 status was determined clinically by consensus criteria47. A total of 69 PN, 
17 AN, 35 untreated MPNST (minimum of 30 days washout from previous treatments), 10 
MPNST on treatment and 15 resected MPNST with NED peripheral blood samples were 
collected (Supplemental Tables 1-3). AN and MPNST are designated by histological 
diagnoses; digital pathology from AN specimens were additionally reviewed by two external 
sarcoma pathologists using consensus criteria (Supplemental Figure 2)48. Atypical 
neurofibromatosis neoplasm with unknown biological potential (ANNUBP) were grouped with 
AN for analyses. Samples were considered NED by histopathological assessment and long-
term event free survival; NED patients had mean follow-up of 485 days (IQR: 406 to 706 days). 
All patients underwent clinical management and follow-up per the standard-of-care. When 
available, serial blood samples were collected for vignettes (Figure 3, Figure 6) at clinically 
indicated patient assessments. Tissue biopsies and resections were only performed if clinically 
indicated and research analyses were only done if sufficient materials remained post-clinical 
evaluation. Tissue genomic profiling was performed by CLIA certified molecular laboratories 
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using the TruSight Oncology 500 (TSO500; Illumina, San Diego, California) when clinically 
indicated (Supplemental Figure 2). All samples were collected with informed consent for 
research and IRB approval in accordance with the Declaration of Helsinki. Protocols are 
available on ClinicalTrials.gov.  

Plasma cfDNA isolation, library construction and sequencing  

To isolate cfDNA, purified plasma was thawed and cfDNA was extracted from 2 to 8 mL of 
plasma using the QIAamp Circulating Nucleic Acid kit (Qiagen, Hilden, Germany). Extracted 
DNA concentration was measured using the Qubit dsDNA High-Sensitivity Assay kit (Thermo-
Fisher, Waltham, Massachusetts), and cfDNA concentration and quality were assessed using a 
Bioanalyzer (Agilent Technologies, Santa Clara, California). Isolated cfDNA was stored at –20oC 
until library preparation. cfDNA sequencing libraries were constructed from 10 to 60 ng of 
isolated DNA using the Kapa HyperPrep kit (Roche, Basel, Switzerland) and xGen UDI-UMI 
Adapters (IDT, Coralville, Iowa). All libraries were generated with 8 PCR cycles. Libraries were 
sequenced using 150 bp paired-end reads on a NovaSeq S4 (lllumina, San Diego, California).     

Copy number-based tumor fraction analysis from cfDNA WGS 

In total, 167 cfDNA libraries were sequenced for use in this study (Supplemental Table 1). 
cfDNA whole genome sequencing (WGS) libraries were aligned to GrCh38.p13, deduplicated 
and filtered for standard black-listed regions49. Libraries were retained for analysis only if they 
had >80% mapped bases, <0.3% error rate, >85% unique reads, and >75% Q30 bases. One 
hundred sixty seven libraries met these criteria and were included in downstream analysis. An 
additional 110 libraries from Szymanski, et al. 2021 were included to inform the size-selected 
CNA-based tumor fraction held-out validation data shown in Figure 1a.  

We also performed a technical downsampling analysis using 10 plasma samples from patients 
with histologically confirmed MPNST that underwent cfDNA WGS to a target depth of 25x. One 
sample failed quality control (<85% unique reads), therefore, 9 subjects were used for this 
analysis. Each subject’s 25x WGS sequencing data were aligned, deduplicated and filtered as 
described above. Resulting bam files were then downsampled to a normalized depth of 25x 
using sub-sample seed values 0-4 in samtools v1.1750, resulting in 5 replicates per sample. 
Downsampling was repeated using seed values 0-4 to target coverages of 15x, 10x, 6x, 3x, 1x, 
0.6x, 0.3x and 0.1x. Size-selected CNA-based tumor fractions were then calculated as 
described in Szymanski et al.21 at each down sampled depth and compared per-subject to the 
matched size-selected tumor fraction at 25x for (1) absolute deviation of mean tumor fraction 
from the baseline mean level and (2) statistical difference between mean tumor fraction at 
downsampled depth versus at 25x as assessed by Welch’s T-test (Supplemental Figure 3). 

Size-selected tumor fraction analysis by CNA was performed as previously described21. Briefly, 
WGS reads were re-aligned to hg19 and enriched for ctDNA fragments by in silico size selection 
of fragment lengths between 90 and 150 bp. GC content and mappability bias correction, depth-
based local copy number estimates, and copy number-based estimation of tumor fraction were 
then performed using the ichorCNA tool (Broad v.0.2.0)51.  

Bin-wise fragmentomic analysis from cfDNA WGS 

To assess differences in short (100-150bp) to long (151-220 bp) cfDNA fragment length ratios 
across the genome, the GRCh38 reference genome was first divided into non-overlapping 5 Mb 
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bins, excluding bins with average GC content <0.3 or average mappability <0.9. Similar to 
previously described methods22,52,53, fragment-level GC correction was performed by 
normalizing to a target GC distribution, by assigning fragments to 1 of 100 discrete GC strata 
between 0 and 1 representing each fragment’s GC content. The target distribution was set as 
the median GC content of the 21 healthy donor plasma samples. Profiles of GC-adjusted short-
to-long cfDNA ratios were also normalized across samples to account for differences in library 
size. Dimensionality of the short-to-long ratio features was reduced by performing a principal 
component analysis within each training set and keeping only the components necessary to 
explain 90% of the variance between OVO disease states. Z-scores for non-acrocentric 
autosomal chromosomal arms were also computed from GC-adjusted residuals for short and 
long fragments by performing locally weighted scatterplot smoothing (LOESS regression), and 
center-scaling these counts by the mean and standard deviation from corresponding 
chromosomal arms in healthy controls22,23,53. Principal components accounting for 90% of 
variance and arm-level z-scores were then input into logistic regressions, along with bin-wise 
short-to-long cfDNA ratio features, for final model selection. Relative importance of individual 
genomic-bins and chromosomal arms in differentiating AN from MPNST were graphically 
represented by heatmap of principal component coefficients and eigenvalues (Figure 3a). 
Short-to-long cfDNA fragment ratios were visualized by cohort (healthy, PN, AN, MPNST, 
MPNST on treatment) using per-sample normalized and GC-adjusted short-to-long cfDNA ratios 
mapped to bins’ genomic coordinates (Figure 3b). 

cfDNA end motif analysis 

For cfDNA sequencing read pairs with perfect alignment with the GRCh38 reference genome, 
end motif analysis was performed on the four terminal nucleotides of the 5’ (forward) end of 
each read. Motif diversity score (MDS), which is based on Shannon entropy, was then 
calculated to measure end motif diversity on a scale from 0 to 1, as described by Jiang, et al. 
202054. Four-mer end motif frequencies were also deconvolved through non-negative matrix 
factorization into “founder” end motif profiles (F-profiles) using the method described by Zhou, et 
al. 202330. Briefly, a matrix of cfDNA samples and end motif frequencies was subjected to NMF 
analysis using the Python library sklearn (v.1.3.2) decomposition module. The percentage 
contribution of each F-profile in each sample was determined by non-negative least squares 
regression utilizing the scipy.optimize.nnls (v.1.11.3) function in Python. 

NMF deconvolution of fragment length profiles 

Fragment lengths, extracted from bam files using Picard (v4.0.1.2), and filtered to remove 
lengths outside the 30-700 range, were structured into a counts matrix with samples as rows 
and fragment lengths as columns. This counts matrix was then normalized to create a frequency 
matrix by normalizing rows such that they summed to one. We then used the Python sklearn 
library (v.1.3.2) decomposition module incorporating up to 20 components, with random 
initialization, multiplicative updates, and Kullback-Leibler beta divergence. The resultant 
component weights were used to train logistic regression models as described in the following 
section.This method was first tested on a two-component model with the assumption that the 
overall cfDNA profile is an admixture of underlying tumor and non-tumor sources. One of the 
components was observed to have a left-shifted peak and increased 10 bp periodicity which 
have been previously described as distinguishing features of tumor-derived cfDNA, and was 
therefore assumed to be representative of the tumor source (Figure 5a). This assumption was 
tested by correlating both the percent contribution of the tumor source component as well as the 
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logistic regression classifier score (Figure 5b) with the tumor fraction obtained from ichorCNA. 
The percent contribution of the tumor source component was computed as the weight of the 
tumor source component divided by the sum of all component weights. The optimal number of 
components for classification, based on the area under the ROC curve of the respective logistic 
regression classifiers, was selected for each pairwise comparison between disease states and 
ranged from between 18 and 20 (components: healthy-PN: 19, healthy-AN: 19, healthy-
MPNST:20, PN-AN:19, PN-MPNST:18, AN-MPNST:20; Supplemental Figure 4). 

Logistic regression model development and implementation 

Logistic regression models from the Python sklearn library (v1.3.2) were used to analyze each 
set of cfDNA fragmentomic features with ten repeats of 5-fold cross-validation. The 
sklearn.model_select.RepeatedStratifiedKFold class was used to preserve class ratios across 
training folds. All models were separately applied to each cfDNA fragmentomic feature type in 
pair-wise comparisons between non-malignant, pre-malignant and malignant disease states. 
Inputs to the logistic regression models were (a) principal components of fragment ratio bins 
responsible for 90% of overall variance and arm-level z-scores for bin-wise fragmentomics, (b) 
percent contribution of F-profile 4, and (c) weights of the components derived from fragment 
length NMF deconvolution. Hyperparameters were optimized for regularization penalty (lambda) 
via grid search using sklearn.model_selection.GridSearchCV. Model coefficients from every 
iteration of cross-validation were saved to verify model consistency and stability. Predicted 
sample scores were then computed for each pair-wise comparison across non-malignant, pre-
malignant and malignant disease states for each fragment feature type using the median score 
from the test-fold of each cross-validation repeat. ROC analysis was then used to quantify each 
model’s discriminative power by AUC, with the optimal threshold selected by Youden’s index. 
Training and cross-validation sets included healthy (n = 21), MPNST pre-treatment (n = 35), AN 
(n =17) and PN (n = 69) plasma cfDNA samples. MPNST on-treatment (n = 10) and treated 
MPNST with NED (n = 15) cfDNA samples were held out from model training but were 
subsequently analyzed using the trained models (Supplemental Table 3).  Compiled sample 
scores for bin-wise short/long fragment ratios, chromosomal arm-level z-scores, 4mer end motif 
diversity scores, and fragment length NMF scores were represented by heatmap (Figure 2b) 
using ComplexHeatmap (v.2.14.0) with supervised clustering using diagnostic cohort (MPNST, 
AN, PN, healthy) and with samples in each cohort ranked from highest copy number alteration 
derived tumor fraction to lowest. 

Power and statistical analysis 
Using CNA and fragment size, we previously developed a specific and sensitive classifier for 
MPNST versus PN using a cohort of only 14 MPNST patients21. Therefore, assuming a large 
effect size and using Cohen’s d = 0.5 and 0.8 with an α = 0.05 and power = 0.90, we project that 
the sample size needed to detect differences between disease states would be n = 10 samples 
per group (groups= healthy controls, PN, AN, MPNST). Our category group sizes met or 
exceeded this estimate for all comparisons (Supplemental Table 3). When testing associations 
between plasma tumor fraction or fragmentomic features and clinical status (Figures 1-6), the 
distributions of feature scores for each clinical status were compared by Kruskal–Wallis H test 
with pairwise comparisons by Dunn test. Statistical analyses were performed using R v.4.2.2 or 
Prism 10 (GraphPad Software). 

Supplemental Tables: 
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Supplemental Table 1. Participant characteristics 

Supplemental Table 2. MPNST patient characteristics 

Supplemental Table 3. Details of all sequencing libraries in this study 

Supplemental Figures: 

Supplemental Figure 1. 4-mer end motifs across F-profiles 

Supplemental Figure 2. Attributes of atypical neurofibroma samples 

Supplemental Figure 3. Diminishing improvements in accuracy with deeper sequencing 

Supplemental Figure 4. Number of NMF components vs AUC 
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