1	Cardiovascular drugs approved for heart failure with reduced ejection fraction and/or	
2	post-myocardial infarction exert consistent effects in both populations: A meta-analysis	
3	and meta-regression of randomized controlled trials	
4		
5	Christopher Dasaro, BS; ¹ Alyson Haslam, PhD; ² Vinay Prasad, MD, MPH ²	
6	¹ Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA	
7	19140	
8	² Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th	
9	St, 2nd Fl, San Francisco, CA 94158	
10 11 12	^{1, 2} This author takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation	
13	Corresponding author:	
14	Christopher Dasaro, BS	
15		
16	Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA 19140	
17	Email: tum91199@temple.edu	
18		
19	Sources of Funding & Disclosures: Vinay Prasad's Disclosures. (Research funding) Arnold	
20	Ventures (Royalties) Johns Hopkins Press, Medscape, and MedPage (Honoraria) Grand	
21	Rounds/lectures from universities, medical centers, non-profits, and professional societies.	
22	(Consulting) UnitedHealthcare and OptumRX. (Other) Plenary Session podcast has Patreon	
23	backers, YouTube, and Substack. Alyson Haslam has no disclosures to report. Christopher	
24	Dasaro has no disclosures to report.	
25		

- 26 Key Terms: Heart failure with reduced ejection fraction; cardiovascular drug approvals; meta-
- 27 regression; evidence appraisal

1. 1 . .

. •

3

29 Abstract:

20

. . . 1

(TTT) C 11

тт

30	Background: Heart failure (HF) following an acute myocardial infarction (post-MI HF) has
31	been studied as an additional sub-type of HF to broaden the indications for HF drugs. Post-MI
32	HF and HFrEF are pathophysiologically similar and share pharmacotherapies. In this meta-
33	analysis, we examined the concordance between all-cause mortality data for drugs indicated for
34	HFrEF and post-MI HF. We used our analysis to calculate the projected all-cause mortality
35	hazard ratios (HRs) for the pending dapagliflozin (DAPA-MI) and empagliflozin (EMPACT-MI)
36	post-MI HF trials.

37 Methods: Using CenterWatch and UpToDate, we identified all FDA-approved drugs for NYHA 38 Class II to IV HFrEF. We searched each of these drugs on FDALabel and ClinicalTrials.gov to 39 identify their registration trials measuring all-cause mortality for HFrEF and, if available, in the 40 post-MI setting—including trials where participants displayed a left ventricular ejection fraction 41 of <40% ("post-MI HF"). For each of the included studies, we extracted the all-cause mortality 42 HRs, their 95% confidence intervals, and the control-group used. For all drugs studied in both 43 indications, we plotted the all-cause mortality HRs for HFrEF against those for post-MI (HF) and 44 calculated the linear regressions.

45 Results: This meta-regression pooled data from 29 completed trials underlying 20 drugs.
46 Two pending trials were also analyzed. Nine drugs (metoprolol, carvedilol, spironolactone,
47 eplerenone, sacubitril-valsartan, lisinopril, enalapril, valsartan, losartan) had all-cause
48 mortality data in both HFrEF and post-MI generally, with a linear coefficient of
49 determination of 0.93. Five of these drugs (carvedilol, eplerenone, sacubitril-valsartan,
50 valsartan, losartan) were studied in both HFrEF and non-acute post-MI HF, displaying a

51	linear coefficient of determination of 0.99. Using our model, we predict the all-cause
52	mortality HRs that will be observed in the EMPACT-MI and DAPA-MI trials will be 0.85
53	and 0.89, respectively.

- 54 Conclusions: In this meta-regression of registration trials for drugs studied in both HFrEF
- 55 and post-MI (HF), all-cause mortality effects were highly concordant. We also find
- 56 asymmetries in the assessment of HF drug indications, whereby drugs are seldom assessed
- 57 for an all-cause mortality benefit in both HFrEF and in post-MI HF. Future studies may
- 58 use these results to guide future HF RCT development.
- 59 Key Terms: Heart failure with reduced ejection fraction; cardiovascular drug approvals;
- 60 meta-regression; evidence appraisal

5

61 Introduction:

62	Heart Failure (HF) is a common clinical syndrome characterized by impaired cardiac		
63	output. HF can be characterized as having a preserved (HFpEF) or reduced (HFrEF) ejection		
64	fraction – with \leq 40% defining the latter. In addition to HFpEF and HFrEF, heart failure		
65	following acute myocardial infarction (post-MI HF) has been studied as an additional sub-type of		
66	HF to broaden the indications for a given pharmacotherapy. This sequela is characterized by left		
67	ventricular dysfunction following an acute MI.		
68	Myocardial infarctions are treated with several drugs-namely antiplatelet agents, beta		
69	blockers, statins, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers		
70	(ARBs), and mineralocorticoid receptor antagonists (MRAs) - with varied introduction of such		
71	therapies depending on the time since infarct ¹ . Both HFrEF and post-MI HF are similar in		
72	pathophysiology and share medical therapies, yet both occupy unique niches for which		
73	treatments can claim market-share and broaden their indications.		
74	We sought to examine the concordance of data supporting the use of select		
75	pharmacological therapies in HFrEF and post-MI HF. To do so, we aimed to characterize all of		
76	the regulatory trials underpinning the use of HFrEF agents in post-MI HF in terms of their all-		
77	cause mortality benefits (or lack thereof). In addition to clarifying the scope in which these drugs		
78	are indicated, our analysis provides grounds for preliminarily predicting outcomes in pending HF		
79	trials. In our case, we used this analysis to impute the projected all-cause mortality hazard ratios		
80	(HRs) for the pending dapagliflozin (DAPA-MI) ² and empagliflozin (EMPACT-MI) ³ post-MI		
81	HF trials. We later broadened this model to predict the all-cause mortality HRs for drugs with		
82	missing trials for either HFrEF or post-MI HF.		
0.0			

6

84 Methods:

We systematically identified and characterized the trials supporting the approval of drugs indicated for HFrEF. First, we downloaded the UpToDate page detailing primary and secondary pharmacologic therapies for New York Heart Association (NYHA) functional classification II to IV HFrEF⁴. We also consulted CenterWatch⁵ for additional drugs labeled US Food and Drug Administration (FDA)-Approved for Heart Failure. All drugs included were confirmed to be approved by the US FDA.

91 From this list of US FDA-regulatory approvals for HF, we identified the registration 92 clinical trials supporting their use for HFrEF and, if indicated, in the post-MI setting. For each drug, we searched on the FDALabel database⁶ and its associated Structured Product Labeling 93 94 (SPL) document to determine the drug's specific indication(s) and clinical trial(s) underpinning 95 its approval. In instances where the SPL document failed to provide trial information (e.g trial 96 name, NCT number), we searched for the drug's registration trial on ClinicalTrials.gov using the 97 particular drug as the "intervention", and limited our search to randomized phase II, III, and IV 98 trials in the English language. When reviewing the resulting trials, articles were included in our 99 analysis only if all-cause mortality was a reported endpoint. We excluded articles that were 100 pooled or secondary analyses; were retracted or inaccessible; contained fewer than 1,000 101 participants; were done in specific disease sub-populations (e.g only those with diabetes mellitus 102 type 2); did not measure all-cause mortality, or only measured surrogate measures of morbidity 103 (e.g., brain natriuretic peptide [BNP] levels).

We also characterized all of the post-MI studies by maximum LVEF permitted and the time between MI-onset and randomization. Noting the time-since-MI allowed us to assess how soon after the MI that a drug was initiated. Characterizing trials in this way may be relevant

7

107 because the timing of LV dysfunction post-MI can logarithmically impact the risk of mortality⁷ 108 and thus could obscure a direct comparison of the post-MI all-cause mortality benefits between 109 drugs. A time-to-randomization of <3 days was considered the "acute" post-MI phase, and ≥3 110 days was considered the "non-acute" post-MI phase⁷. 111 For each of the included studies, we extracted the reported all-cause mortality HRs and 112 their associated 95% confidence intervals. Additionally, we noted whether the trial used an 113 active- or placebo-control; whether a trial existed for HFrEF, post-MI, or both; the number of 114 participants randomized; and the LVEF and time-to-randomization used as inclusion criteria in 115 any post-MI trials. For all drugs with both HFrEF and post-MI trials, we plotted the all-cause 116 mortality HRs against each other in an x-y plane and calculated a linear regression. The 117 confidence intervals, if available, for each condition are represented by the width and height of 118 the ellipse surrounding that drug. All analyses were conducted using *Python*⁸. 119 We calculated regression coefficients and plotted the linear correlation for all drugs 120 studied in HFrEF and post-MI– including both in the acute (time-to-randomization of <3 days) 121 and non-acute (\geq 3 days) post-MI phase. We later isolated the drugs studied in HFrEF and the 122 non-acute post-MI phase specifically, which incidentally isolated the post-MI trials where 123 participants displayed a LVEF of $\leq 40\%$ ("non-acute post-MI HF"). We also calculated and 124 plotted separate correlations for drugs studied in either placebo- or actively-controlled trials. 125 From the resulting regression equations, we were able to (1) calculate the projected all-126 cause mortality HRs for the pending DAPA-MI and EMPACT-MI trials; and (2) estimate the all-127 cause mortality HRs for drugs with data in only one of the two indications. Specifically, we used 128 this same model to impute the missing all-cause mortality metrics across multiple classes of 129 drugs with missing data reported: ACE Inhibitors, ARBs, beta blockers, and MRAs/other class.

8

130 In accordance with 45 CFR §46.102(f), this study was not submitted for University of 131 California, San Francisco institutional review board approval because it involved publicly 132 available data and did not involve individual patient data. 133 Results 134 Our search yielded 22 drugs from UpToDate and 11 from CenterWatch (Table 1). Eight 135 drugs (sacubitril-valsartan, metoprolol, valsartan, dapagliflozin, empagliflozin, 136 isosorbide/hydralazine, vericiguat, and ivabradine) were featured in both sources. In total, we 137 found 23 unique drugs and 31 unique trials. Three drugs (ferric carboxymaltose, sotagliflozin, 138 and canagliflozin) had registration trials done in specific disease sub-populations (e.g. 139 exclusively those with iron-deficiency anemia or diabetes mellitus type 2), and were thus 140 excluded from our analysis. Eight drugs had all-cause mortality data available for HFrEF only; 141 three drugs had all-cause mortality data for post-MI only; and nine drugs (metoprolol, carvedilol, 142 spironolactone, eplerenone, sacubitril-valsartan, lisinopril, enalapril, valsartan, losartan) had all-143 cause mortality data for both conditions (Table 2). 144 In addition to whether each drug was studied in both HFrEF and post-MI, we 145 characterized the trials as having active-controls, placebo-controls, or a mix of the two. Of the 146 nine drugs with all-cause mortality data in both conditions, five drugs (metoprolol, carvedilol, 147 eplerenone, enalapril, and spironolactone) were studied against placebo in both indications. In 148 contrast, two drugs (sacubitril-valsartan and losartan) were compared against active controls in 149 both HFrEF and post-MI. Of note, only sacubitril-valsartan used two distinct active controls 150 (enalapril in HFrEF; ramipril in post-MI); losartan was studied against captopril in both 151 indications.

152	Two of the eight drugs (lisinopril and valsartan) had "mixed" active/placebo controls,
153	whereby only one trial was placebo-controlled while the other had an active control. Specifically,
154	lisinopril's registration trial for HFrEF compared high (32.5-35 mg/day)- vs low (2.5mg-5mg)-
155	dose lisinopril ⁹ , while its post-MI counterpart was placebo-controlled ¹⁰ . Valsartan, in contrast,
156	was compared against placebo in HFrEF ¹¹ and against captopril in post-MI HF ¹² .
157	Figure 1 shows the drugs' all-cause mortality data reported in the post-MI survival trials
158	as a function of those reported in HFrEF. The drugs are differentiated by control arm and have a
159	gray ellipse representing the 95% confidence interval along either axis. Of note, the confidence
160	intervals for metoprolol and enalapril were not provided in their registration trials for post-MI
161	(MIAMI ¹³ and CONSENSUS-II ¹⁴ , respectively) and thus do not have an ellipse. From this
162	unadjusted regression model, we calculated an R^2 of 0.87 and a correlation of 0.93.
163	We further analyzed the post-MI trials to further characterize them by time-since-
164	MI/time-to-randomization. We differentiated drugs that were studied in the acute post-MI phase
165	(<3 days) from those studied in the non-acute (\geq 3 days) post-MI phase. Figure 2 illustrates the
166	time-since-MI inclusion criteria, in days, for all of the post-MI trials included in our analysis that
167	reported such data. Four trials (GISSI-3, ALBATROSS ¹⁵ , CONSENSUS-II, and MIAMI)
168	studied their respective drug (lisinopril, spironolactone, enalapril, and metoprolol) only in the
169	acute post-MI phase. Past reports indicate that the development of HF more than 3 days post-MI
170	is associated with a 43% increase in mortality than when developed in the first 3 days ⁷ . Thus, we
171	re-analyzed the data in Figure 1 after removing these trials, resulting in an improvement in the
172	coefficient of determination (R^2 of 0.98, Figure 3). Excluding these trials also allowed us to
173	isolate all of the post-MI trials that only allowed LVEFs ≤40% ("post-MI HF") (Table S1).

10

174	Figure 4A and 4B splits drugs tested against placebo (in at least one of its trials) and
175	those tested against an active-control (in at least one of its trials). We found coefficients of
176	determination of 0.98 among the active-controlled trials and 1.00 in the placebo-controlled trials.
177	As EMPACT-MI and DAPA-MI are projected to be placebo-control trials, we imputed their all-
178	cause mortality benefits from the linear regression calculated in Figure 4A. This model
179	predicted all-cause mortality HRs of 0.89 and 0.85, for trials of DAPA-MI and EMPACT-MI,
180	respectively (Figure 4A).
181	Using the placebo-controlled linear regression modeled in Figure 4A, we repeated our
182	all-cause mortality predictions for all drugs that had missing all-cause mortality data in either
183	HFrEF or post-MI HF. We broke up this analysis by drug class and reported the HRs as cartesian
184	coordinates (Figure S1, panels A-D). Figure S1 shows the missing all-cause mortality metrics
185	across multiple classes of drugs with missing data reported: ACE Inhibitors (panel A), ARBs
186	(panel B), MRAs/other class (panel C), and beta blockers (panel D).
187	
188	Discussion:
189	We found among 23 unique drugs indicated for HF, only nine (39%) currently have trials
190	measuring all-cause mortality in both NYHA II-IV HFrEF and post-MI. When accounting for
191	drugs that were studied only in the acute phase following an MI and limited patients to a LVEF
192	of <40%, only five (22%) drugs measured all-cause mortality in both HFrEF and non-acute post-
193	MI HF. Of these five drugs, two were studied in placebo-controlled trials while three partially or
194	entirely used active-controls. Conversely, eight drugs (35%) had survival data for only HFrEF,

195 while three (13%) others had data only for post-MI HF. These data points to pervasive

11

asymmetries in the treatment of HF, whereby drugs are seldom assessed for an all-cause

197 mortality benefit in both HFrEF and in post-MI HF.

198 Using the model in Figure 4A, we calculated the expected all-cause mortality HRs for the

199 pending dapagliflozin and empagliflozin post-MI trials. Per the published protocols, the

200 EMPACT-MI and DAPA-MI are placebo-controlled trials. We estimate the HR in these ongoing

trials to be 0.85 and 0.89, respectively.

202 Similarly, we used this strategy to extrapolate the all-cause mortality HRs for 12 (52%) 203 drugs missing either HFrEF or post-MI HF data (Figure S1A-D). We grouped this analysis by 204 drug class: ACE inhibitors, ARBs, beta blockers, and MRAs/other classes. The ACE inhibitor 205 class had the most "missing" data, with this analysis filling in all-cause mortality gaps for four 206 drugs. This is because the efficacies of three ACE inhibitors-captopril, trandolapril, and ramipril-were studied in three placebo-controlled post-MI HF trials (SAVE (1992)¹⁶, TRACE 207 (1995)¹⁷, and AIRE (1993)¹⁸, respectively), but not in HFrEF. The extrapolation of all-cause 208 209 mortality data in post-MI HF to HFrEF (though in the absence of confidence intervals) shows 210 plausible all-cause mortality benefits for these drugs. A possible reason for such strong benefits could be that most patients in these studies were treated with fibrinolytic therapy or no 211 212 reperfusion; data in patients who underwent percutaneous coronary intervention (PCI) post-MI are limited¹⁹. 213

Though excluded from the subsequent post-MI analysis shown in Figure 3, the ALBATROSS trial technically did not study the addition of spironolactone vs. placebo. Instead, its intervention was the addition of an MRA regimen of potassium canrenoate bolus followed by 6 months of oral spironolactone. As a result, direct comparisons between this trial and RALES²⁰ (HFrEF trial) are difficult to make. Furthermore, the confidence intervals reported for all-cause

12

mortality in ALBATROSS were uncharacteristically large in our figure. This could be because the all-cause death analysis was done in a non-pre-specified exploratory fashion. If done at an early time point in the study, this could explain the large confidence intervals and could lead to type I errors.

223 Figure 3 suggests that sacubitril-valsartan is the only drug that reportedly provides an allcause mortality benefit in HFrEF, but not post-MI HF. Prior work²¹ has noted that sacubitril-224 225 valsartan was studied in a fairly unique [A + B] vs. C design ([sacubitril + valsartan] vs. enalapril) – a format that continued in its post-MI study PARADISE-MI²² ([sacubitril + 226 227 valsartan] vs. ramipril). Taken together, that the survival trials for sacubitril-valsartan are unique in both design and outcomes may suggest the need for further trials³². Possible trial designs-one 228 229 that adopts an [A + B] vs. placebo or [A + B] vs. B design-already exist for sacubitril-valsartan in HFpEF²⁴ and in an analysis of NYHA IV HFrEF²⁵. Notably, the former study was negative for 230 231 both combined heart failure hospitalizations/cardiovascular mortality and all-cause mortality, and 232 the latter was negative for both primary and secondary endpoints (none of which were all-cause 233 or cause-specific mortality). 234 Figure 1 suggests that lisinopril shows similarly unique results-demonstrating an all-

cause mortality benefit in post-MI but not HFrEF; however, its registration trial for HFrEF,
ATLAS, reports a combined all-cause morbidity-mortality benefit in HFrEF. This comparison is
further complicated by the fact that ATLAS compared two doses of lisinopril, whereas sacubitrilvalsartan was compared against ramipril. Additionally, as Figure 3 excludes lisinopril's post-MI
trial (GISSI-3), sacubitril-valsartan appears truly unique among non-acute post-MI HF trials in
demonstrating an asymmetric all-cause mortality benefit. Figure 2 shows that the inclusion
criteria for PARADISE-MI allowed for participants whose MI was between 0.5 and 7 days prior

13

to randomization. This trial therefore did allow for some acutely post-MI participants; however,
the distribution of time-to-randomization was not reported.

244

245 Strengths/Limitations

The major strength of this study is that this is the first comprehensive analysis of all drugs

247 indicated for heart failure of its kind, and highlights numerous gaps in our understanding of these

248 drugs' benefits and studied indications. We relied on two data sources (UpToDate and

249 CenterWatch) to generate a comprehensive list of FDA regulatory approvals for heart failure.

250 There are four limitations to our study. (1) Our search criteria encompass only trials that

251 measured all-cause mortality as a primary or secondary endpoint. This can be considered a

252 limitation in situations where other metrics of morbidity or mortality are assessed, but not all-

253 cause mortality. Additionally, given the diversity of trial designs studied here, a direct head-to-

head comparison between any two drugs can be muddled by the nuances within any given trial-

e.g, the presence or absence of a run-in period, the dose of each drug used, etc.

(2) Our search criteria yielded nine drugs in our initial analysis and five drugs in the
subsequent analysis. Given the limited number of drugs available for analysis, the true strength
of the linear relationship established in our regression model may be tenuous or uncertain; future
trials may provide more data points to modulate the relationship.

(3) Though our analysis of post-MI trials focused on the times-to-randomization and
LVEF, there were other sub-analyses that could have been done for this set of trials. Many trials
report sub-analyses divided by location of myocardial infarct (e.g anterior, anterolateral) or the
presence/absence of ST-elevations on electrocardiogram. As another example, the SAVE and
AIRE trials-though both post-MI HF trials-differed in whether the patients were in symptomatic

14

265	HF despite both trials including only patients with an ejection fraction of <40%. These groupings
266	are certainly additional opportunities for further characterizing post-MI trials that could provide
267	insight into contexts for which particular drugs are more or less efficacious.
268	(4) This analysis was restricted to only registration survival data and included no long-
269	term follow-up metrics of morbidity or mortality. Thus, any long-term reports that further guided
270	or modulated the use of any drugs listed here-for example, a follow-up analysis reporting all-
271	cause mortality benefit despite the registration trial not reporting such-is not accounted for in
272	this analysis. Similarly, our extrapolation of incomplete data assumes a linear relationship
273	between HFrEF and post-MI HF and did not allow us to impute confidence intervals for any HR
274	predictions.
275	
276	Conclusion
277	Our study provides important insights into the current asymmetries in assessing the
278	
	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure
279	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure have been studied in both HFrEF and post-MI HF. Our imputation of all-cause mortality metrics
279 280	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure have been studied in both HFrEF and post-MI HF. Our imputation of all-cause mortality metrics for dapagliflozin, empagliflozin, and other drugs may provide insight into future directions for
279 280 281	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure have been studied in both HFrEF and post-MI HF. Our imputation of all-cause mortality metrics for dapagliflozin, empagliflozin, and other drugs may provide insight into future directions for clinical trials of currently approved heart failure drugs. We predict that the trials DAPA-MI and
 279 280 281 282 	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure have been studied in both HFrEF and post-MI HF. Our imputation of all-cause mortality metrics for dapagliflozin, empagliflozin, and other drugs may provide insight into future directions for clinical trials of currently approved heart failure drugs. We predict that the trials DAPA-MI and EMPACT-MI will report HRs of 0.89 and 0.85, respectively. As these two studies come to
 279 280 281 282 283 	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure have been studied in both HFrEF and post-MI HF. Our imputation of all-cause mortality metrics for dapagliflozin, empagliflozin, and other drugs may provide insight into future directions for clinical trials of currently approved heart failure drugs. We predict that the trials DAPA-MI and EMPACT-MI will report HRs of 0.89 and 0.85, respectively. As these two studies come to completion in the summer of 2023, our modeling will be further modulated and possibly
 279 280 281 282 283 284 	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure have been studied in both HFrEF and post-MI HF. Our imputation of all-cause mortality metrics for dapagliflozin, empagliflozin, and other drugs may provide insight into future directions for clinical trials of currently approved heart failure drugs. We predict that the trials DAPA-MI and EMPACT-MI will report HRs of 0.89 and 0.85, respectively. As these two studies come to completion in the summer of 2023, our modeling will be further modulated and possibly substantiated. Older therapies that lack randomized trials may also be tested by non-conflicted
 279 280 281 282 283 284 285 	indications for heart failure drugs. We found that only five of 23 drugs indicated for heart failure have been studied in both HFrEF and post-MI HF. Our imputation of all-cause mortality metrics for dapagliflozin, empagliflozin, and other drugs may provide insight into future directions for clinical trials of currently approved heart failure drugs. We predict that the trials DAPA-MI and EMPACT-MI will report HRs of 0.89 and 0.85, respectively. As these two studies come to completion in the summer of 2023, our modeling will be further modulated and possibly substantiated. Older therapies that lack randomized trials may also be tested by non-conflicted bodies, including the VA or National Institutes of Health.

- <u>Contributors:</u> VP conceptualized study design; CD reviewed the literature; CD curated data; VP
 and AH reviewed and confirmed abstracted data; CD wrote the first draft of the manuscript and
 all authors reviewed and revised subsequent and finalized draft of the manuscript
- 292
- 293 Sources of Funding & Disclosures: Vinay Prasad's Disclosures. (Research funding) Arnold
- 294 Ventures (Royalties) Johns Hopkins Press, Medscape, and MedPage (Honoraria) Grand
- 295 Rounds/lectures from universities, medical centers, non-profits, and professional societies.
- 296 (Consulting) UnitedHealthcare and OptumRX. (Other) Plenary Session podcast has Patreon
- 297 backers, YouTube, and Substack. Alyson Haslam has no disclosures to report. Christopher
- 298 Dasaro has no disclosures to report.

299

301	Refer	ences:		
302	1.	1. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients		
303		With Chronic Coronary Disease: A Report of the American Heart Association/American		
304		College of Cardiology Joint Committee on Clinical Practice Guidelines Journal of the		
305		American College of Cardiology. Accessed August 3, 2023.		
306	5 <u>https://www.jacc.org/doi/10.1016/j.jacc.2023.04.003#sectitle0045</u>			
307	2.	AstraZeneca. A Registry-Based, Randomised, Double-Blind, Placebo-Controlled		
308	Cardiovascular Outcomes Trial to Evaluate the Effect of Dapagliflozin on			
309	9 Cardiometabolic Outcomes in Patients Without Diabetes With Acute Myocardial			
310		Infarction at Increased Risk for Subsequent Development of Heart Failure.		
311		clinicaltrials.gov; 2023. Accessed July 21, 2023.		
312		https://clinicaltrials.gov/study/NCT04564742		
313	3.	Boehringer Ingelheim. EMPACT-MI: A Streamlined, Multicentre, Randomised, Parallel		
314		Group, Double-Blind Placebo-Controlled Superiority Trial to Evaluate the Effect of		
315		EMPAgliflozin on Hospitalisation for Heart Failure and Mortality in Patients With		
316		ACuTe Myocardial Infarction. clinicaltrials.gov; 2023. Accessed July 21, 2023.		
317		https://clinicaltrials.gov/study/NCT04509674		
318	4.	Primary pharmacologic therapy for heart failure with reduced ejection fraction -		
319		UpToDate. Accessed July 23, 2023. https://www.uptodate.com/contents/primary-		
320		pharmacologic-therapy-for-heart-failure-with-reduced-ejection-		
321		fraction?search=heart%20failure%20reduced%20ejection%20fraction&source=search_re		
322		sult&selectedTitle=2~150&usage_type=default&display_rank=2#H860014988		
323	5.	Heart Failure FDA Approved Drugs CenterWatch. Accessed August 3, 2023.		
324	https://www.centerwatch.com/directories/1067-fda-approved-drugs/topic/388-heart-			
325	failure			
326	6.	FDALabel. Accessed August 3, 2023. https://nctr-crs.fda.gov/fdalabel/ui/search		
327	7.	Jenča D, Melenovský V, Stehlik J, et al. Heart failure after myocardial infarction:		
328		incidence and predictors. ESC Heart Fail. 2021;8(1):222-237. doi:10.1002/ehf2.13144		
329	8.	Kluyver, T. et al., 2016. Jupyter Notebooks – a publishing format for reproducible		
330		computational workflows. In F. Loizides & B. Schmidt, eds. Positioning and Power in		
331	0	Academic Publishing: Players, Agents and Agendas. pp. 87–90.		
333	9.	doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and		
334		mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999;100(23):2312-		
335	10	<u>2318. doi:10.1161/01.cir.100.23.2312</u>		
336	10	. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-		
331		week mortality and ventricular function after acute myocardial infarction. Gruppo		

338	Italiano per lo Studio della Sopravvivenza nell'infarto Miocardico. Lancet.		
339	1994;343(8906):1115-1122.		
340	11. Cohn JN, Tognoni G. A Randomized Trial of the Angiotensin-Receptor Blocker		
341	Valsartan in Chronic Heart Failure. New England Journal of Medicine.		
342	2001;345(23):1667-1675. doi:10.1056/NEJMoa010713		
343	12. Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, Captopril, or Both in		
344	Myocardial Infarction Complicated by Heart Failure, Left Ventricular Dysfunction, or		
345	Both. New England Journal of Medicine. 2003;349(20):1893-1906.		
346	doi: <u>10.1056/NEJMoa032292</u>		
347	13. Mortality. American Journal of Cardiology. 1985;56(14):G15-G22. doi:10.1016/0002-		
348	<u>9149(85)90691-5</u>		
349	14. Swedberg K, Held P, Kjekshus J, Rasmussen K, Rydén L, Wedel H. Effects of the Early		
350	Administration of Enalapril on Mortality in Patients with Acute Myocardial Infarction.		
351	New England Journal of Medicine. 1992;327(10):678-684.		
352	doi:10.1056/NEJM199209033271002		
353	15. Beygui F, Cayla G, Roule V, et al. Early Aldosterone Blockade in Acute Myocardial		
354	Infarction. Journal of the American College of Cardiology. 2016;67(16):1917-1927.		
355	doi: <u>10.1016/j.jacc.2016.02.033</u>		
356	16. Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of Captopril on Mortality and		
357	Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction.		
358	New England Journal of Medicine. 1992;327(10):669-677.		
359	doi:10.1056/NEJM199209033271001		
360	17. Køber L, Torp-Pedersen C, Carlsen JE, et al. A Clinical Trial of the Angiotensin-		
361	Converting-Enzyme Inhibitor Trandolapril in Patients with Left Ventricular Dysfunction		
362	after Myocardial Infarction. New England Journal of Medicine. 1995;333(25):1670-		
363	1676. doi: <u>10.1056/NEJM199512213332503</u>		
364	18. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction		
365	with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE)		
366	Study Investigators. Lancet. 1993;342(8875):821-828.		
367	19. Angiotensin converting enzyme inhibitors and receptor blockers in acute myocardial		
368	infarction: Clinical trials - UpToDate. Accessed July 23, 2023.		
369	https://www.uptodate.com/contents/angiotensin-converting-enzyme-inhibitors-and-		
370	receptor-blockers-in-acute-myocardial-infarction-clinical-trials#H2		

371	20. Pitt B, Zannad F, Remme WJ, et al. The Effect of Spironolactone on Morbidity and
372	Mortality in Patients with Severe Heart Failure. New England Journal of Medicine.
373	1999;341(10):709-717. doi:10.1056/NEJM199909023411001
374	21. Ahn R, Prasad V. Do Limitations in the Design of PARADIGM-HF Justify the Slow
375	Real World Uptake of Sacubitril/Valsartan (Entresto)? Cardiovasc Drugs Ther.
376	2018;32(6):633-635. doi: <u>10.1007/s10557-018-6830-x</u>
377	22. Pfeffer MA, Claggett B, Lewis EF, et al. Angiotensin Receptor–Neprilysin Inhibition in
378	Acute Myocardial Infarction. N Engl J Med. 2021;385(20):1845-1855.
379	doi: <u>10.1056/NEJMoa2104508</u>
380	23. Haslam A, Prasad V. Confirmatory Trials for Drugs Approved on a Single Trial.
381	doi:10.1161/CIRCOUTCOMES.119.005494
382	24. Pieske B, Wachter R, Shah SJ, et al. Effect of Sacubitril/Valsartan vs Standard Medical
383	Therapies on Plasma NT-proBNP Concentration and Submaximal Exercise Capacity in
384	Patients With Heart Failure and Preserved Ejection Fraction: The PARALLAX
385	Randomized Clinical Trial. JAMA. 2021;326(19):1919-1929.
386	doi: <u>10.1001/jama.2021.18463</u>
387	25. Mann DL, Givertz MM, Vader JM, et al. Effect of Treatment With Sacubitril/Valsartan
388	in Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized
389	Clinical Trial. JAMA Cardiology. 2022;7(1):17-25. doi:10.1001/jamacardio.2021.4567
390	

-

19

391 Tables & Figures:

392 393

93	Table 1: Drugs included from UpToDate ^A and CenterWatch ^B		
	Sacubitril-valsartan ^{AB}	Carvedilol ^A	
	Enalapril ^A	Bisoprolol ^A	
	Lisinopril ^A	Spironolactone ^A	
	Captopril ^A	Eplerenone ^A	
	Trandolapril ^A	Dapagliflozin ^{AB}	
	Ramipril ^A	Empagliflozin ^{AB}	
	Losartan ^A	Isosorbide/hydralazine ^{AB}	
	Candesartan ^A	Vericiguat ^{AB}	
	Valsartan ^{AB}	Ivabradine ^{AB}	
	Metoprolol ^{AB}	Digoxin ^A	

394

Table 2: Drug and trial characteristics for all HFrEF/post-MI therapies included in analysis

		Number (+pending**)
Γ	Number of included drugs from UpToDate and CenterWatch	20
	Drugs with all-cause mortality data in either HFrEF or post-MI HF	20
	Total number of trials included in analysis	29 (2)
	Drugs with all-cause mortality data for HFrEF, only	9 (2)
	Drugs with all-cause mortality data for post-MI, only	3
	Drugs with all-cause mortality data for both HFrEF and post-MI	9 (2)
	Drugs with all-cause mortality data for both HFrEF and non-acute post-MI HF	5 (2)
	Drugs with all-cause mortality data for both HFrEF and post-MI HF; active-controls	2
	Drugs with all-cause mortality data for both HFrEF and post-MI HF; placebo-controls	4 (2)
	Drugs with all-cause mortality data for both HFrEf and post-MI-HF, "mixed" active/placebo-controls	2
396 397	**Two trials, DAPA-MI and EMPACT-MI, are projected to be completed in June 2023 August 2023, respectively	and

398

400

405 406

401 Figure 1: All-cause mortality data for drugs indicated for both HFrEF and post-MI.

402 Drugs were labeled as being studied against placebo-controls, active-controls, or a combination
 403 ("mixed"). The height and width of the gray ellipses indicate the reported 95% confidence
 404 interval along either onio

404 interval along either axis.

All-Cause Mortality HRs for HFrEF vs Post-MI

21

407 Figure 2: Time between onset of MI and randomization, reported in days, in post-MI trials.

22

- 410 Figure 3: All-cause mortality data for drugs indicated for both HFrEF and non-acute (>3
- 411 days) post-MI heart failure.

All-Cause Mortality HRs for HFrEF vs Non-Acute Post-MI HF

- 414 Figure 4A: Placebo-controlled HF drugs with EMPACT-MI (empagliflozin) and DAPA-MI
- 415 (dapagliflozin) HR predictions of 0.85 and 0.89, respectively.
- 416

24

Figure 4B: Active-controlled drugs indicated for HFrEF and post-MI HF 420

All-Cause Mortality HRs for HFrEF vs Non-Acute Post-MI HF

423 Figure S1A-D: Predicted all-cause mortality metrics for 12 drugs that were missing either

- 424 **HFrEF or post-MI HF data.** The linear regression to which they were fitted is the same as the
- 425 placebo-controlled regression. These drugs are broken up by class with all-cause mortality
- 426 metrics given as cartesian coordinates (HFrEF, post-MI HF); * indicates predicted value from
- regression: A) ACE inhibitors: trandolapril (0.66*, 0.78); captopril (0.70*, 0.81); ramipril (0.75*, 0.84); lisinopril (0.92, 0.88*). B) ARBs: candesartan (0.88, 0.92*). C) MRAs and other classes:
- 428 0.84); lisinopril (0.92, 0.88*). B) ARBs: candesartan (0.88, 0.92*). C) MRAs and other classes:
 429 isosorbide/hydralazine (0.61, 0.75*); spironolactone (0.70, 0.81*); ivabradine (0.90, 0.93*);
- 430 vericiguat (0.95, 0.96*); digoxin (0.99, 0.98*). **D**) Beta blockers: metoprolol (0.66, 0.78*);
- 431 bisoprolol (0.66, 0.78*).

433 434

435	
436	Table S1: Characteristics of post-MI trials

Post-MI Trial	LVEF (%)	Participants Randomized	Intervention vs Control	All-Cause Mortality HR/RR (95% CI)
MIAMI (1985)	N/a	5,778	Metoprolol vs Placebo	0.64 (N/a)
SAVE (1992)	<40%	2,231	Captopril vs Placebo	0.81 (0.68-0.97)
CONSENSUS-II	N/a	6,090	Enalapril vs Placebo	0.92 (N/a)
AIRE (1993)	<40%	2,006	Ramipril vs Placebo	0.84 (0.75-0.95)
GISSI-3 (1994)	N/a	19,394	Lisinopril vs Placebo	0.88 (0.79-0.99)
TRACE (1995)	<35%	1,749	Trandolapril vs Placebo	0.78 (0.67-0.91)
CAPRICORN (2001)	<40%	1,959	Carvedilol vs Placebo	0.77 (0.60-0.98)
OPTIMAAL (2002)	<35%	5,477	Losartan vs Captopril	1.13 (0.99-1.28)
VALIANT (2003)	<35%	9,818	Valsartan vs Captopril	1.00 (0.90-1.10)
EPHESUS (2003)	<40%	6,642	Eplerenone vs Placebo	0.85 (0.75-0.86)
ALBATROSS (2016)	50%**	1,616	MRA regimen vs Std of Care	0.65 (0.30-1.38)
PARADISE-MI (2021)	<40%	5,211	Sacubitril-valsartan vs Ramipril	0.88 (0.73-1.05)
DAPA-MI (2023)	<40%	4,017	Dapagliflozin vs Placebo	TBA
EMPACT-MI (2023)	<45%	6,522	Empagliflozin vs Placebo	TBA
437 ** The reporte	d LVEF ran	ge was 45-60%; tl	he average in both arms was 50%	

438 Table S2: Charact	Table S2: Characteristics of HFrEF trials					
HFrEF Trial	# Randomized	Intervention vs Control	All-Cause Mortality HR/RR (95% CI)			
SOLVD (1991)	2,549	Enalapril vs. placebo	0.84 (0.74-0.95)			
DIG (1997)	6,800	Digoxin vs placebo	0.99 (0.91-1.07)			
ATLAS (1999)	3,164	High vs low dose lisinopril	0.92 (0.82-1.03)			
CIBIS II (1999)	2,647	Bisoprolol vs placebo	0.66 (0.54-0.81)			
MERIT-HF (1999)	3,991	Metoprolol vs placebo	0.66 (0.53-0.81)			
RALES (1999)	1,663	Spironolactone vs placebo	0.70 (0.69-0.81)			
ELITE II (2000)	3,152	Losartan vs captopril	1.13 (0.97-1.35)			
COPERNICUS (2001)	2,289	Carvedilol vs placebo	0.65 (0.52-0.81)			
Val-HeFT (2001)	2,289	Valsartan vs placebo	1.02 (0.88-1.18)			
A-Heft (2004)	1,050	Isosorbide/hydralazine vs placebo	0.61 (N/a)*			
CHARM (2004)	4,576	Candesartan vs placebo	0.88 (0.79-0.97)			
SHIFT (2010)	6,558	Ivabradine vs placebo	0.90 (0.80-1.02)			
EMPHASIS-HF (2011)	2,737	Eplerenone vs placebo	0.76 (0.62-0.93)			
PARADIGM-HF	8,399	Sacubitril-valsartan vs enalapril	0.84 (0.76-0.93)			
DAPA-HF (2019)	4,744	Dapagliflozin vs placebo	0.83 (0.71-0.97)			
EMPEROR-Reduced (2020)	3,730	Empagliflozin vs placebo	0.76 (0.62-0.93)			
VICTORIA (2020)	2,526	Vericiguat vs placebo	0.95 (0.85-1.07)			
439		-				