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Abstract 1 

Background: Detecting and foreseeing pathogen dispersion is crucial in preventing widespread 2 

disease transmission. Human mobility is a critical issue in human transmission of infectious 3 

agents. Through a mobility data-driven approach, we determined municipalities in Brazil that 4 

could make up an advanced sentinel network, allowing for early detection of circulating 5 

pathogens and their associated transmission routes.  6 

Methods: We compiled a comprehensive dataset on intercity mobility spanning air, road, and 7 

waterway transport, and constructed a graph-based representation of Brazil’s mobility network. 8 

The Ford-Fulkerson algorithm, coupled with centrality measures, were employed to rank cities 9 

according to their suitability as sentinel hubs. 10 

Findings: Our results disentangle the complex transportation network of Brazil, with flights 11 

alone transporting 79·9 million (CI 58·3 to 10·1 million) passengers annually during 2017-22, 12 

seasonal peaks occurring in late spring and summer, and roadways with a maximum capacity of 13 

78·3 million passengers weekly. We ranked the 5,570 Brazilian cities to offer flexibility in 14 

prioritizing locations for early pathogen detection through clinical sample collection.  Our 15 

findings are validated by epidemiological and genetic data independently collected during the 16 

SARS-CoV-2 pandemic period. The mobility-based spread model defined here was able to 17 

recapitulate the actual dissemination patterns observed during the pandemic. By providing 18 

essential clues for effective pathogen surveillance, our results have the potential to inform public 19 

health policy and improve future pandemic response efforts. 20 

Interpretation: Our results unlock the potential of designing country-wide clinical sample 21 

collection networks using data-informed approaches, an innovative practice that can improve 22 

current surveillance systems. 23 

Funding: Rockefeller Foundation grant 2023-PPI-007 awarded to MB-N. 24 
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Research in context 

Evidence before this study 

We searched PubMed on Jun 1, 2023, without language or date restrictions, for the following 

query: ("mobility network*" OR "transport* network*" OR "sentinel network*" OR 

"surveillance network*") AND "model*" AND "surveillance". The 469 search results were 

systematically evaluated, and we identified seven original research studies that applied 

modeling-based approaches to inform the placement, design, or layout of surveillance/sentinel 

networks. Of these seven studies, four aimed at optimizing the layout of networks for the 

monitoring of influenza-like illnesses (ILI), while the others aimed at detecting problems 

arising from the use of medicines based on pharmacy surveillance; detecting the reporting of 

common acute conditions through a sentinel network of general practitioners; and optimizing 

the surveillance strategy for plant pests (S. noctilio). Most studies employed maximum 

coverage algorithms that aim to maximize the protected population. Only a single study 

incorporated mobility patterns to inform the planning of site placement. Studies that involved 

ILI sentinel networks were geographically restricted to two United States states (Iowa and 

Texas), and only one study performed a comprehensive whole of United States modeling. 

Added value of this study 

Despite the urgent need to improve the capacity and timeliness of clinical sample collection 

for public health surveillance, very few studies have tackled the design problem for optimal 

placement of these sampling sites, and even fewer have used large-scale mobility data to 

inform these design choices in an epidemiologically-relevant way. Our work contributes to 

this challenge by leveraging airline/roadway/fluvial mobility data for Brazil that, converted 

into a graph-based representation and using network metrics, allowed us to pinpoint an 

optimal layout strategy that could improve the current flu surveillance network of this country. 

Using data collected during the COVID-19 pandemic, we validated the transmission routes 

and pathways of SARS-CoV-2 spread, confirming that the mobility data-informed spread 

scenarios recapitulated the actual dissemination of the virus. 

Implications of all the available evidence 

Mobility data, coupled with network-centered approaches, can complement the identification 

of strategic locations for early pathogen detection and spread routes. 

  1 
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Background 1 

Detecting emerging pathogens with pandemic potential represents a significant challenge for 2 

health authorities and the scientific community, requiring a deep understanding of various 3 

factors, including ecological, evolutionary, climatic, and human behavior1–6. In particular, 4 

pinpointing specific locations suitable for early pathogen detection and functioning as critical 5 

hubs for spread is both critical and complex, and should be a critical feature in next-generation 6 

surveillance systems7. 7 

  8 

Increased human mobility has significantly boosted the risk of new pandemics6,8–10. Today's 9 

highly connected world is evidenced by the extensive global transportation network that summed 10 

over 38·9 million flights worldwide in 201911. Additionally, there were around 1·39 million 11 

interstate bus trips in 201912. Several studies have highlighted the impact of human movement on 12 

the spread of infectious diseases, now facilitated by the wealth of available data8–10. 13 

 14 

Established strategies for anticipating the emergence of a new pathogen involve monitoring 15 

clinical and epidemiological data while prioritizing sampling in areas with a high risk of 16 

spillover. However, persistent gaps exist in determining optimal study designs, data collection 17 

and sharing methods, and sampling intensity to reliably and timely detect signs of pathogen 18 

emergence6,13–15.  19 

 20 

Many countries have created sentinel networks for targeted disease surveillance, with great focus 21 

on influenza following the influenza A(H1N1) pandemic of 2009. In Brazil, a surveillance 22 

system for flu syndrome relying upon sentinel units was launched nationwide in 2000. 23 

Mandatory notification of severe acute respiratory syndrome for hospitalized and deceased cases 24 

was implemented in response to the 2009 pandemic. However, akin to many countries, 25 

significant challenges limit the representativity of this strategy, including inadequate geographic 26 

coverage of sentinel units and ad hoc positioning based on existing infrastructure, budget, or 27 

mere convenience16,17.  28 

  29 

This study aims to address the challenges of detecting and tracking the spread of infectious 30 

diseases at initial stages in a country with continental proportions. This objective is realized by 31 

leveraging mobility data and computational algorithms to identify optimal geographic placement 32 
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of sampling sites—essentially creating a sentinel network with a data-driven and 1 

epidemiologically relevant design. By doing so, pathogens known to constitute a threat to public 2 

health can be detected early on, and preemptive actions can be taken before widespread 3 

transmission occurs. The integration of mobility data into pandemic surveillance offers a fresh 4 

perspective on early warning systems, effectively incorporating epidemiological intelligence into 5 

the design and planning process.  6 

 7 

Results 8 

Spatio-temporal analysis of domestic air transportation 9 

We started by collecting and curating a large-scale dataset for Brazil's transportation network. 10 

From 2017 to 2022, 79·9 million passengers flew annually, representing an average of 39·3% of 11 

Brazil's population. Seasonal peaks in air traffic data occur in late spring and summer. During 12 

this period, October counted an average of 7·14 million passengers (8·9% of yearly average 13 

flights), 7·24 million passengers in November (9·1%), and 7.96 million in December (10·0%), 14 

with January reaching a maximum of 8·33 million passengers (10·4%). A non-seasonal peak of 15 

around 6·94 million passengers is observed in July, representing 8·7% of the yearly passenger 16 

flow. However, strict mobility measures impacted these counts in 2020 and 2021. In these years, 17 

48·7 and 31·1 million passengers flew, respectively, declines that impacted all 27 federative units 18 

of the country.  19 

 20 

Understanding the distribution and dynamics of air transportation infrastructure is crucial for 21 

evaluating the potential impact on the spread of infectious diseases, and municipalities with 22 

operational airports serve as key nodes in the nationwide transportation network. From 2017 to 23 

2023, Brazil averaged 159 such municipalities (out of 5570), with a clear upward trend in the 24 

number of municipalities with active flights despite the pandemic-induced decrease in passenger 25 

numbers. Most states had fewer than five municipalities with active airports (Supplementary 26 

Figure 1), with notable exceptions including Pará, the state holding the largest number of 27 

municipalities with active airports in 2023 (17 airports).  28 

 29 

The Southeastern region of Brazil is a major hub for air travel, hosting an average of 2·4 million 30 

incoming passengers (51·3% of all arrivals) and outbound travelers (52·2% of departing 31 

passengers) during the examined period. The South follows with 916833 (19·4%)/904268 32 
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(19·1%) incoming/departing passengers, respectively. Subsequently, the Central-West registered1 

681116 (14·4%)/668255 (14·1%) incoming/departing passengers, the Northeast region had2 

483685 (10·2%)/473309 (10·0%) incoming/departing passengers, and the North region witnessed3 

227430 (4·8%)/222985 (4·7%) incoming/departing passengers (see Supplementary Figure 24 

and Supplementary Figure 3). 5 

 6 

Notably, the North and Northeast regions have limited direct connections with the Southern7 

region of Brazil and with each other. Air mobility between these regions may be facilitated by8 

the Southeast and Central-West regions (Supplementary Figure 3). Conversely, the Southern9 

region is primarily connected to the Southeast region, with a more fragile connection to the10 

Central-West region. Figure 1 visualizes the average passenger mobility in air transport,11 

highlighting the influence of states within these regions on the air network. 12 

 13 

14 

Figure 1 - Brazil's mobility patterns – airway, road, and waterways.  15 

A) Average passenger volume in the air mobility network from 2017 to 2023. The average16 

frequency of transport by waterways and roads are shown in panels B and C, respectively. Two-17 

letter state abbreviations are as follows: AC, Acre; AL, Alagoas; AP, Amapá; AM, Amazonas;18 

BA, Bahia; CE, Ceará; DF, Distrito Federal; ES, Espírito Santo; GO, Goiás; MA, Maranhão;19 

MT, Mato Grosso; MS, Mato Grosso do Sul; MG, Minas Gerais; PA, Pará; PB, Paraíba; PR,20 

Paraná; PE, Pernambuco; PI, Piauí; RJ, Rio de Janeiro; RN, Rio Grande do Norte; RS, Rio21 
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Grande do Sul; RO, Rondônia; RR, Roraima; SC, Santa Catarina; SP, São Paulo; SE, Sergipe; 1 

TO, Tocantins. 2 

 3 

Road and fluvial intercity mobility landscape 4 

We complemented the airline mobility data, which offers monthly totals of passengers flown, 5 

with an additional mobility layer that enables the estimation of road/fluvial flows between cities. 6 

According to the available data, the country exhibits a weekly mobility capacity of around 78·6 7 

million passengers using these transportation modes, representing 38·7% of the Brazilian 8 

population. 9 

 10 

Water transport constitutes only 258581 (0.3%) of passenger mobility capacity and is more 11 

common in the Northern region of Brazil. In the Amazon state, a substantial 71·4% of mobility 12 

capacity relies on river transportation, surpassing road transport. Moreover, this mode of 13 

transport forms robust connections, with 99·5% of the link between the states of Amazonas and 14 

Pará and 41·3% of the connection between Amazonas and Rondônia facilitated by river 15 

transport. Notably, there is a significant water transport connection between the states of Alagoas 16 

and Sergipe in Northeastern Brazil, accounting for 12·5% of connectivity. Fluvial transport is 17 

also a minority presence in other areas of Brazil, with connections amounting to less than 5%. A 18 

representation of passengers' mobility capacity for both roads and waterways in Brazil is shown 19 

in Figure 1. 20 

 21 

The regional influence on the road and fluvial network also differs from that of air transport. The 22 

Northeast region holds the largest share of mobility capacity for passengers at 40·2%, with the 23 

Southeast at 28·9%, South at 16·9%, Central-West at 7·6%, and North at 6·1% (Supplementary 24 

Figure 3).  25 

  26 

Similar to the air transportation network, the North and Northeast regions have limited direct 27 

connections with the Southern part of Brazil but have more significant connections among 28 

themselves (Supplementary Figure 3). The Southern region has a more distributed connection 29 

with the Southeast and Central-West regions, and the Central-West with the North and Northeast 30 

regions compared to the air mobility network (Supplementary Figure 3). 31 

 32 
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Estimating pathogen pathways and sentinel hubs for early pathogen detection 1 

The previously identified mobility patterns allow for the estimation of routes for the spread of 2 

infectious diseases by leveraging network metrics such as the betweenness index (BI) 3 

(Supplementary Text 2). In a nationwide ranking based on the BI, we identified 1391 cities 4 

with BI scores equal to or above the BI upper quartile. Using the Ford-Fulkerson algorithm, we 5 

derived 7746479 paths initiating from a node in each Brazilian city and concluding at each 6 

distinct city with a high BI score. This approach facilitated categorizing and ranking the primary 7 

routes for pathogen transmission, revealing strategic cities for close monitoring that could 8 

function as sentinel sampling sites in each state (see Data Availability section). 9 

 10 

Disentangling transmission routes from key Brazilian cities 11 

We next simulated the emergence of a pathogen initially seeded in four key cities: Manaus (the 12 

most populated city in the Amazon region with a population of 2·06 million), Recife (a tourist 13 

city in the Northeast with 1·48 million people), Rio de Janeiro and São Paulo, the two largest 14 

cities in the country with populations of 6·75 million and 12·3 million, respectively, jointly 15 

forming the Megalopolis of the Brazilian Southeast. Figure 2A shows the first-step cities in this 16 

analysis. Among all paths starting in Manaus and leading to the 1391 cities according to the BI 17 

score, 53·6% have São Paulo (city of São Paulo and neighboring municipality Campinas) as their 18 

initial destination. This indicates that São Paulo serves as the central primary transmission hub 19 

following an emergency in Manaus. Brasília in the Federal District (21·9%), cities in the state of 20 

Pará (10·2%), Rondônia (7·8%), Roraima (4·8%), Ceará (0·8%), and Pernambuco (0·5%) are the 21 

other most likely states to be affected by a spread emerging in Manaus. 22 

  23 

Recife and Rio de Janeiro exhibit a wider spread potential to other states, and São Paulo plays a 24 

crucial role in the subsequent spread from both Rio de Janeiro and Recife, representing 28·7% 25 

and 39·6%, respectively, of the first-step cities in the state of São Paulo. As shown in Figure 2B, 26 

further spread to the second step of the paths would already lead to extensive transmission across 27 

the country. 28 

 29 

 30 
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 1 

Figure 2 - The spread of a pathogen first detected in Manaus/AM, Recife/PE, Rio de 2 

Janeiro/RJ, and São Paulo/SP. 3 

The maps in the first row depict the initial propagation range for each path originating in the 4 

selected city (first-step cities). In the second row, the extension of these paths for second-step 5 

cities are shown. In both panels, yellow dots denote the origin, dark blue dots represent first-step 6 

cities, and light blue dots represent second-step cities. 7 

 8 

Ranking early warning detection hubs and state gateway cities 9 

Analyzing all pathways starting from cities in each state enables the creation of a ranking that 10 

assesses the likelihood of early pathogen detection capacity of each city. This ranking further 11 

facilitates the identification of cities according to their significance as mobility gateways to other 12 

states. Mobility gateways are defined as cities for which the first step in the most likely paths 13 

originating from them leads to cities in other states. Data for the states of Acre, Amazonas, and 14 

Rio de Janeiro are presented in Supplementary Table 1. 15 

 16 

According to the BI score, pre-selected cities in Acre are Rio Branco (the state capital), Cruzeiro 17 

do Sul, and Sena Madureira. In the event of a pathogen emergency in a city in Acre that goes 18 

undetected, Rio Branco and Cruzeiro do Sul emerge as the most probable cities for pathogen 19 

detection using the sentinel approach. Approximately 33·5% and 23·2% of paths starting in Acre 20 

use these cities as the first step, respectively. Figure 3 provides a visual representation of the 21 
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pathways from cities in Acre to the 1391 selected semi-hubs across the country. Moreover, the1 

list of gateway cities features Rio Branco and Sena Madureira as the key priority points for2 

mobility to other cities outside of Acre.  3 

4 

Figure 3 - Transmission routes for cities in the state of Acre, North Brazil. 5 

Groups 1, 2 and 3 represent cities in Acre, with Rio Branco, Cruzeiro do Sul and Sena Madureira6 

as their respective first-step cities. Group 4 comprises cities with the first step being a non-pre-7 

selected city according to the BI in Acre. Group 5 includes cities with their first step being cities8 

with high BI scores in other states. 9 

 10 

Similar to Acre, the priority ranking for early detection cities in the state of Amazonas could not11 

solely be determined by the BI score selection. In this region, the capital city Manaus, followed12 

by Tefé, emerge as the most likely candidates for early pathogen detection. These cities account13 

for 37·7% and 8·6%, respectively, of paths leading to them as the initial step. 14 

 15 

Amazonas has 66 cities, with 16 serving as gateways for transmission to other states. These16 

gateway cities can be sorted into two categories according to their BI: The first group,17 

comprising gateway cities with high BI exhibit a broader reach, allowing passenger flows toward18 

more distant states such as São Paulo, the Federal District, Ceará, Pernambuco, as well as19 

neighboring states like Rondônia, Roraima, and Pará. In contrast, gateway cities with low BI20 

10 

he 

for 

 

ira 

-

ies 

ot 

ed 

nt 

se 

p, 

rd 

as 

BI 



11 

scores (falling in the second group) primarily impact neighboring states, including Rondônia, 1 

Acre, Roraima, and Pará. 2 

 3 

In the case of Rio de Janeiro state, the data reveals a pattern where pre-selected cities according 4 

to the BI dominate as the top five candidates for early pathogen detection. The state capital, Rio 5 

de Janeiro city, represents a substantial portion, accounting for 40·4% of paths originating from 6 

these cities as the initial step. Following a similar analysis as that conducted for Amazonas, we 7 

observe that gateway cities in Rio de Janeiro, that satisfy our pre-selection criterion, contribute to 8 

a broader transmission spanning 19 states out of the 27. In contrast, gateway cities in Rio de 9 

Janeiro that are not pre-selected tend to have a more localized impact, reaching nearby states 10 

such as São Paulo, Espírito Santo, and Minas Gerais, as well as more distant states like Tocantins 11 

and Bahia. 12 

 13 

Validation with the initial entry period of SARS-CoV-2 in Brazil (February-April, 2020) 14 

During the early stage of the COVID-19 pandemic in Brazil, the first reported cases emerged in 15 

the cities of São Paulo and Rio de Janeiro on February 26, 2020 and March 5, 2020, respectively. 16 

In this period, a total of 44 and 13 cases of SARS-CoV-2 infection were reported in each city, 17 

respectively. Another 19 states had reported cases, although they did not exceed five cases and 18 

were mostly related to imported cases at that point. In Figure 4, we show the relationship 19 

between the proportion of cases in cities in the first, second, and third steps relative to the total 20 

number of reported cases in each state until April 1, 2020. 21 

 22 
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1 

Figure 4 - Epidemiological validation of pathogen transmission pathways. 2 

Spatial distribution of early-stage (up to April 1, 2020) cities affected by the spread of SARS-3 

CoV-2 originating in the cities of Rio de Janeiro and São Paulo. Brazilian states are colored4 

based on the proportion (%) of COVID-19 cases reported in cities in the first-, second-, and5 

third-steps relative to the total number of reported cases in each state. Lines depict the paths in6 

first step-cities, second-step cities, and third-step cities. 7 

 8 

Figure 4 evidences that the 83 first-step cities identified for Rio de Janeiro municipality9 

recapitulate the actual pattern of initial SARS-CoV-2 dissemination during the studied period,10 

with 66·0% of the cases reported in these cities. Most of these first-step cities locate along the11 

Brazilian shoreline (Figure 4). Then, in second-step cities the disease spread towards the North12 

and Mid-West regions, concentrating less connected cities that require additional intermediate13 

connections to be reached.  14 
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 1 

On the other hand, São Paulo, one of Latin America's largest cities, presents with a much higher 2 

transmission capacity across the country, with first-step cities distributed in more states 3 

compared to Rio de Janeiro (Figure 4). Similarly, 83·8% of cases were identified in first step 4 

cities. The states of Rondônia and Acre in the North and Paraíba and Rio Grande do Norte in the 5 

Northeast are the states with a lower proportion of cases in first-step cities on the paths of São 6 

Paulo, in agreement with the strength of connection between these states and the state of São 7 

Paulo. Finally, the following steps (2nd and 3rd cities) show a pattern consistent with the observed 8 

spatial spread (Figure 4). 9 

 10 

Validation with the initial entry period of the Gamma (P.1) variant in Amazonas (January-11 

March, 2021) 12 

SARS-CoV-2 sequencing data produced during the entry of the Gamma (P.1) variant of concern, 13 

which emerged in December, 2020 in the Amazonas state18, was also used to validate the 14 

sentinel approach. By January 6, 2021, a total of 133 cases were detected in Manaus, with a few 15 

sporadic cases detected in other locations (fewer than 13). Table 1 highlights that most cases 16 

concentrated in cities at the first step of paths originating from Manaus during the period before 17 

February 1, 2021. As the Gamma variant further spread, a larger proportion of cases emerged in 18 

cities at the second step. Confirming the data shown for the initial entry of SARS-CoV-2 in 19 

Brazil, this additional, real-world result on the spatial distribution of this variant is consistent 20 

with the mobility patterns illustrated in Figure 2. 21 

  22 

Table 1 - Case distribution in paths originating from Manaus during the early-stage 23 

dissemination of the Gamma (P.1) variant in Brazil. 24 

Period Total detected 

Gamma cases 

N. of cases 

detected in 1st 

step cities (% 

of total 

detected 

cases) 

N. of cases 

detected in 2nd 

step cities (% 

of total 

detected cases) 

N. of cases 

detected in 

3rd step 

cities (% of 

total 

detected 

cases) 

N. of cases 

detected in 

other cities (% 

of total 

detected cases) 
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before 

January 

16,2021 

307 224 (73%) 49 (16%) 6 (2%) 28 (9%) 

before 

February 1, 

2021 

583 305 (52%) 187 (32%) 26 (4%) 65 (11%) 

before March 

1, 2021 

2208 603 (27%) 1075 (49%) 172 (8%) 358 (16%) 

 1 

 2 

Discussion 3 

Human mobility is recognized to have a chief role in the management of outbreaks, evidenced by 4 

the travel restrictions enacted during COVID-198,19, and during the 2009 H1N1 pandemic9. Here, 5 

we unveiled the extensive mobility landscapes of one of the world's largest countries, Brazil, 6 

encompassing air, road, and water transportation routes. Key regions and transport modes 7 

significantly contributing to Brazil’s inter-city connectivity were identified. Our analysis delves 8 

into the historical dynamics of air transport availability in Brazilian cities, highlighting seasonal 9 

variations and examining the impact of the COVID-19 pandemic on air travel. This temporal 10 

variation serves as a valuable lens to comprehend the influence of pathogen spillovers and 11 

spread, aligning with findings in various studies that have used mobility data to assess the spatial 12 

dissemination of diseases8–10,20.  13 

 14 

In particular, we pursued a ranking strategy leading to a data-informed ordering of cities that 15 

could make up a sentinel network for clinical sample collection, enhancing the design of Brazil’s 16 

currently used flu syndrome surveillance system. Likewise, other works have attempted to 17 

address this problem, notably that of Cheng et al., who formulated this as a multi-objective 18 

numeric optimization task, enabling simulation scenarios to be compared and providing a 19 

framework for optimal site placement17. However, no real-world application of that approach 20 

was attempted. Others have used real-world data to adapt local influenza sentinel networks by 21 

relying on the concept of maximally covered population, in which the number and location of 22 

sentinel sites were chosen to elicit a configuration that maximizes the targeted population16,21. 23 
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However, the catalytic power of human mobility on disease spread was not considered in these 1 

works. 2 

 3 

On the other hand, the construction of a mobility-driven metapopulation model covering 35 4 

states in the United States has been reported22. However, despite common overarching goals, our 5 

work presents several methodological differences. While the mobility dataset used by Pei et al. 6 

focuses on commuting (i.e., journey to work) behavior within and between neighboring counties, 7 

we were able to collect a national dataset of transportation patterns covering air/road/fluvial 8 

transportation modes. Most importantly, our approach is pathogen-agnostic (i.e., no assumptions 9 

around the characteristics of an emerging disease, such as transmission rates, are made, other 10 

than that its spread is directly influenced by human flow), while mathematical models such as 11 

SIR and extensions thereof22 rely on several premises, changes of which can greatly impact the 12 

results of these models. Predicting the exact location and time of emergence of a new pathogen is 13 

a challenging task. Pathogens can appear unnoticed even in unusual places and remain 14 

undetected for an extended period of time before triggering a major outbreak (as with Zika virus, 15 

or the different SARS-CoV-2 variants). Our results consider every Brazilian city as a potential 16 

site for a spillover and provide guidance on how to respond when a new pathogen emerges.  17 

  18 

The primary pathogen transmission routes originating at each Brazilian city were identified by 19 

applying the Ford-Fulkerson algorithm to Brazilian large-scale mobility data. Additionally, we 20 

disclosed strategic cities for early pathogen detection and recognized gateway cities in each state, 21 

offering insights into potential widespread transmission. Our results pointed to distinct patterns 22 

in Brazil’s Central-West and Southeastern regions of Brazil, where economically prosperous 23 

cities are elemental in facilitating mobility among the Northern, Southern, and Northeastern 24 

regions. The well-established infrastructure for human mobility in these regions, marked by 25 

airport expansion and modernization efforts, emphasizes the urgency of a strategic early 26 

detection plan in this context. Such an approach is particularly crucial to mitigate the spread of 27 

diseases in less affluent Northern and Northeastern areas, where early detection strategies must 28 

account for the scarcity of infrastructure for pandemic surveillance, laboratory, and sampling in 29 

these regions, compared to the South/Southeast.  30 

  31 
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State capitals should not be the sole focus when determining hub cities for primary sampling. 1 

Cities within a state may require an intermediate hub for maximal disease spread, and some 2 

cities, with direct and robust connections, may function independently from capitals, influencing 3 

mobility to other locations. Finally, ranking gateway cities for further mobility provides valuable 4 

insights for planning early detection and containment strategies at the state level. Our results 5 

strongly agree with epidemiological and genomic data collected during the entry of the gamma 6 

(P.1) variant in North Brazil, evidencing the utility of mobility-based sentinel surveillance 7 

placement in this continental-sized country23–25. 8 

  9 

This study has limitations: The limited availability of more up-to-date mobility data on roads and 10 

waterways, estimated only up to 2016. The collected mobility data does not encompass private 11 

transport, and inter-city mobility for cities sharing common borders is either underestimated or 12 

poorly recorded. One potential strategy to mitigate this limitation is to treat these border cities as 13 

a collective unit when planning the deployment of early-alert and pathogen detection systems. 14 

Despite these challenges, our work offers valuable insights that can serve as a catalyst for future 15 

improvements in mobility data collection methodologies. 16 

  17 

Beyond the current scope lies the potential inclusion of variables influencing the selection of 18 

cities as hubs for early pathogen detection. Factors such as local health priorities and resources, 19 

characteristics favoring the emergence of specific pathogens, the availability of comprehensive 20 

health services covering all age groups, significant locations where workers have direct contact 21 

with animals, and others could be integrated with our ranking list. This integration could enhance 22 

the deployment of sentinel locations for early detection and improve predictions of transmission 23 

routes. 24 

 25 

Material and Methods 26 

Data sources 27 

We collected and curated large-scale mobility data from different administrative sources to 28 

enable a comprehensive understanding of inter-city mobility via air, road, and river networks. 29 

For validation of the findings, we used epidemiological and genetic circulation data of SARS-30 

CoV-2 within Brazilian municipalities during the Gamma (P.1) period. 31 

 32 
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Mobility data 1 

Inter-city mobility data covering the Brazilian territory was collected from the Brazilian Institute 2 

of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística - IBGE) for both road 3 

and river networks; air transport data was obtained from the National Civil Aviation Agency 4 

(Agência Nacional de Aviação Civil - ANAC)26,27.  5 

 6 

The IBGE database provides the weekly frequency of transport capacity between city pairs, 7 

estimated for 2016. The ANAC database contains extensive historical information on regular and 8 

non-regular public air transport services operated by domestic and foreign companies, as well as 9 

private flights, in Brazil from 2000 onwards. We used data covering the period of 2017-2023 10 

regarding the number of passengers on domestic flights to allow portraying the air mobility 11 

landscape in the country prior to (i.e., 2017-2019), during (i.e., 2020-2021) and after the 12 

COVID-19 pandemic period (i.e., 2022-2023). 13 

 14 

To align the IBGE and ANAC databases, we used the IBGE's data collection methodology to 15 

convert monthly passenger numbers in ANAC into weekly counts27,28. In Supplementary Text 1 16 

the steps for normalization of these data sources are presented. 17 

 18 

Validation of the analytical framework using SARS-CoV-2 transmission data 19 

The analytical model was validated two-fold using data captured during the COVID-19 20 

pandemic period. First, we collected data from confirmed COVID-19 cases for each Brazilian 21 

municipality until May 1, 2020, comprehending the early stage of SARS-CoV-2 entry and spread 22 

in the country. The data is openly available and provided by the Brazilian Ministry of Health29. 23 

  24 

This validation using real-world data during the beginning of the spread aimed to confirm 25 

whether the mobility-based spread routes, as determined in our simulations, would recapitulate 26 

the actual spread pathways that took place in the initial course of COVID-19 transmission 27 

between February 26 and March 12, 2020, before community transmission was declared in the 28 

country (March 13, 2020)20. Thereafter, transmission rates of the disease were altered due to 29 

non-pharmaceutical interventions likely affecting the spread patterns. Then, we evaluated the 30 

proportion of cities that reported a case in paths obtained using the Ford-Fulkerson algorithm 31 

(described below) until April 1, 2020. 32 
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  1 

In a second, independent validation approach, we leveraged SARS-CoV-2 genomic data to 2 

examine the rises and spreading patterns in COVID-19 cases following the Gamma (P.1) variant 3 

emergence in Manaus (North region), which according to existing literature originated in that 4 

region23–25. We considered three entry/spread periods: 1) from January 6 to January 16, 2021; 2) 5 

until February 1, 2021; and 3) until March 1, 2021. Combined, these validation strategies aimed 6 

to verify whether the analytical framework employed would recapitulate the geographic spread 7 

of a newly-emerged pathogen or a sub-variant for which the affected population would be largely 8 

immunologically naïve. 9 

 10 

Construction of the mobility network and estimation of transport flows  11 

The intercity mobility data was used to build a mobility network defined by the graph G = (V, 12 

E). Here, � � ���, ��, . . . , ��� represents a set of n nodes, where each node �� �  � 13 

corresponds to a city. Additionally, 
 � ���, ��, . . . , ��� represents a set of m edges, where 14 

each edge �� � � holds the frequency of mobility between a pair of cities as an associated 15 

weight. The Ford-Fulkerson method computes the maximum flow that can be sent from a 16 

designated source node to a designated sink node through a network of interconnected nodes and 17 

directed edges30. Supplementary Figure 4 outlines the steps involved in the iterative 18 

computation of the Ford-Fulkerson algorithm. 19 

  20 

This mobility network, coupled with the Ford-Fulkerson method to estimate flows, were used to 21 

infer the most suitable locations for early detection and to track the most likely trajectory of a 22 

(newly) emerged pathogen in Brazilian cities. Due to the computational complexity of this task, 23 

requiring the evaluation of over 31 million combinations of paths between each pair of cities, we 24 

selected a subset of cities based on their network centrality. The Betweenness Index (BI), a 25 

global centrality measure, was used as the selection criterion. The cities with BI exceeding the 26 

third quartile were sought as destinations for our calculated routes starting in each of the 5570 27 

Brazilian cities. The BI is defined as  28 

������ 	

�������


���

 

  29 
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where g represents the number of geodesic paths (shortest paths) between two nodes in the 1 

network, and ������ represents the geodesics containing the node ��  , with � � � � � 31. We 2 

also compared the BI to the proximity index, a secondary centrality metric that is highly 3 

correlated with the BI (Supplementary Text 2). 4 

 5 
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