
Climate warming is expanding dengue burden in the Americas and

Asia

Marissa L. Childs∗1, Kelsey Lyberger∗2, Mallory Harris2, Marshall Burke3,4,5, and Erin A.
Mordecai2

1Center for the Environment, Harvard University, Cambridge, MA, USA
2Department of Biology, Stanford University, Stanford, CA, USA

3Global Environmental Policy, Stanford University, Stanford, CA, USA
4Center on Food Security and the Environment, Stanford University, Stanford, CA, USA

5National Bureau of Economic Research, Cambridge, MA, USA

January 8, 2024

Abstract Climate change poses significant threats to public health, with dengue representing1

a growing concern due to its high existing burden and sensitivity to climatic conditions. Yet, the2

quantitative impacts of temperature warming on dengue, both in the past and in the future, re-3

main poorly understood. In this study, we quantify how dengue responds to climatic fluctuations,4

and use this inferred temperature response to estimate the impacts of historical warming and5

forecast trends under future climate change scenarios. To estimate the causal impact of temper-6

ature on the spread of dengue in the Americas and Asia, we assembled a dataset encompassing7

nearly 1.5 million dengue incidence records from 21 countries. Our analysis revealed a nonlin-8

ear relationship between temperature and dengue incidence with the largest marginal effects at9

lower temperatures (around 15°C), peak incidence at 27.8°C (95% CI: 27.3 - 28.2°C), and subse-10

quent declines at higher temperatures. Our findings indicate that historical climate change has11

already increased dengue incidence 18% (12 - 25%) in the study region, and projections suggest12

a potential increase of 40% (17 - 76) to 57% (33 - 107%) by mid-century depending on the cli-13

mate scenario, with some areas seeing up to 200% increases. Notably, our models suggest that14

lower emissions scenarios would substantially reduce the warming-driven increase in dengue bur-15

den. Together, these insights contribute to the broader understanding of how long-term climate16

patterns influence dengue, providing a valuable foundation for public health planning and the de-17

velopment of strategies to mitigate future risks due to climate change.18

∗These authors contributed equally to this work.
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Introduction19

Anthropogenic climate change is a major health threat that is already causing significant mor-20

bidity, mortality, and economic loss through its effects on biological processes and ecological sys-21

tems1,2. Describing the causal relationship between climate and biological processes is necessary22

to anticipate and respond to health hazards and attribute harms to fossil fuel emissions as part23

of climate accountability and justice efforts3,4,5. Changing temperatures and increasingly fre-24

quent extreme weather events are generally expected to drive changes in the global burden and25

distribution of infectious diseases6. However, the implications of warming for vector-borne dis-26

eases remain particularly unclear and are often difficult to estimate compared to other climate-27

associated risks due to data sparsity and confounding by climate-independent factors7,8,9.28

By building from a biological understanding of the temperature sensitivity of ectothermic mosquito29

vectors, we can better understand the relationship between temperature and cases of vector-30

borne diseases that pose particularly significant health threats10. Prior experimental work has31

measured transmission-relevant mosquito traits (e.g., biting rate, survival, development time)32

across a temperature gradient and used these values to estimate relative R0, a measure of trans-33

mission intensity, as a function of temperature11,12. Across mosquito-borne diseases, we expect34

a nonlinear and unimodal relationship between temperature and transmission11,13. Dengue, vec-35

tored by Aedes aegypti and Aedes albopictus, is expected to present a growing risk with warming36

temperatures relative to other vector-borne diseases due to its particularly warm thermal opti-37

mum (29 and 26°C for the two mosquito vectors, respectively)14,15,16. However, relative trans-38

mission risk metrics cannot be translated directly into cases, morbidity, and mortality, the out-39

comes most relevant to quantifying health costs of climate change, because of complexities and40

nonlinearities of infectious disease dynamics and the potential for additional covariates to mod-41

ulate the relationship17,18. We therefore aim to directly estimate the quantitative relationship42

between cases and temperature in the field over space and time, while controlling for potentially43

confounding variation in other factors.44

In addition to considering temperature, studies to estimate drivers of disease burden may incor-45

porate several additional covariates including El Niño Southern Oscillation (ENSO), urban in-46

frastructure, age structure, human mobility, and immunity (based on past exposure)19,20,21,22,23,24.47

Several other covariates have been identified as important and potential confounders in existing48

analyses (e.g., vector control, serotype changes, and global trade and migration), but many of49

these variables are difficult to measure and report in a standardized manner19,25,26. The field of50

applied econometrics has developed a set of causal inference tools for quantifying causal effects51

of hypothesized drivers in complex systems where randomized-controlled trials are impractical or52

unethical (such as for estimating large-scale impacts of climate change). These tools, called panel53

regression, allow us to account for spatiotemporal variation in unmeasured covariates and focus54

on the relationship between anomalies in both temperature and dengue cases6. Further, because55

deviations in temperature from the average conditions in a given space and time are plausibly56

random, we can interpret our result as a causal estimate27.57

Previous work has addressed impacts of temperature on dengue transmission, but has not been58

able to conclusively quantify the relationship at a large scale. Statistical models have generally59

considered dengue across smaller geographic areas, either within a single geographic region (e.g.,60

a district, island, or city)28,23,29 or across multiple administrative subunits (e.g., municipalities or61
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districts) within a single country or province30,31,19. The relationship between weather and dis-62

ease may not be consistent globally. For example, a meta-analysis found that population density,63

precipitation, and prior disease burden (and resulting immunity) may modulate the reported cor-64

relation between dengue and temperature32, and urban infrastructure (particularly water supply)65

may alter the effects of precipitation and drought24. We therefore examine whether covariates66

like average dengue incidence, continent, health expenditure, and population density significantly67

moderate the relationship between dengue and temperature.68

After deriving a causal estimate of the relationship between dengue and temperature and deter-69

mining that it is robust across regions with endemic transmission in East Asia and Central and70

South America, we apply our model to attribute historical dengue burden to existing climate71

change–one of the first vector-borne disease climate attribution studies ever done–and to fore-72

cast how dengue burden may change by mid-century under different emissions scenarios5,33. The73

distribution of dengue is generally expected to expand while the burden increases under climate74

change, but prior studies have focused on more limited geographic regions26,34,35. By building75

from a nonlinear dengue-temperature relationship that is well-supported by previous mechanistic76

experimental work and leveraging a global dataset encompassing a large temperature gradient,77

we expect to find both increases in dengue in regions where temperature warms toward the ther-78

mal optimum and declines in warmer tropical regions where the thermal optimum for transmis-79

sion is exceeded36,37.80

Here, we assess the impact of temperature on dengue in the Americas and Asia. Specifically, we81

(i) capture the causal nonlinear relationship between temperature and dengue incidence, (ii) as-82

sess the impact of socioeconomic and environmental covariates on this relationship, and (iii) esti-83

mate the change in dengue incidence due to historical and future warming. To do so, we assem-84

bled a dataset of dengue incidence, climate, and covariates (Fig. 1). We then use future climate85

scenarios and our temperature-dengue response function to project future changes in incidence.86

Results87

Thermal sensitivity of dengue We find that dengue incidence responds nonlinearly to tem-88

perature, increasing up to a peak at 27.8°C(95% CI: 27.3 - 28.2) and declining at higher temper-89

atures (Fig. 2). This dengue - temperature response corresponds to a marginal effect of tempera-90

ture that is highest at low temperatures (15-20°C), declines to zero at 27.8 °C, and becomes neg-91

ative at higher temperatures. The general shape and nonlinearity of this relationship is consistent92

across a range of alternative model specifications, including higher degree polynomials, varied93

lags of temperature, alternative fixed effects and weightings, and removing Brazil, which makes94

up 74% of the spatial units in our dataset (Fig. 2, Fig. S4). These results are consistent with95

previous mechanistic models based on laboratory-derived mosquito thermal performance curves,96

which predicted maximum transmission at 29°C for Ae. aegypti and 26°C for Ae. albopictus 14.97

The impacts of temperature changes on dengue incidence are likely to be heterogeneous based98

on existing conditions, including serotype dynamics in the location, population immunity levels99

from previous exposure, availability of vector breeding habitat, the dominant vector species with100

Ae. aegypti having a slightly warmer temperature optimum, living conditions and exposure to101

vectors, and public health response. We focused on investigating whether the thermal sensitivity102
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of dengue incidence varied spatially over large continental regions, with country health expendi-103

ture, with population density, and with average dengue incidence. We found the largest varia-104

tion in thermal responses between continental regions, and smaller variations by health expendi-105

ture, population density, and existing dengue incidence (Fig. 3). For all responses, we see larger106

positive marginal effects at low temperatures, a decline to zero around 27-30 °C, and negative107

marginal effects at higher temperatures. The temperature responses differed slightly in the ex-108

act optimum temperature and the magnitude of the marginal impacts at low temperatures. The109

temperature response for Asia displayed a slightly higher optimum temperature than the Amer-110

icas, and smaller marginal impacts at low temperatures, although support in the lower temper-111

ature range was limited for Asia given the observed temperature distribution. For health expen-112

diture, we originally hypothesized that higher expenditure might enable countries to better limit113

transmission resulting in lower marginal effects of temperature, but instead found slightly larger114

impacts in higher health expenditure countries, although confidence intervals overlapped. For115

population density, we similarly see overlapping estimates among all terciles, although slightly116

higher median estimates for high population density follow by intermediate and low population117

density, consistent with higher transmission rates in high density areas. Finally, for dengue inci-118

dence, one possibility was that higher incidence locations might have more immunity and more119

health infrastructure for dealing with dengue transmission resulting in lower marginal impacts,120

while a competing hypothesis was that places with higher incidence might have more interactions121

between serotypes and thus more severe cases of dengue likely to be reported as well as the other122

environmental and socioeconomic condition conducive to transmission so more suitable tempera-123

ture would lead to larger marginal effects. Again we see overlapping confidence intervals between124

different terciles of dengue incidence, but some evidence supporting the second set of hypotheses.125

Historical and future impacts of climate change To quantify the impact of existing cli-126

mate change, we estimate the change in dengue incidence under observed temperatures for 1995-127

2014 compared to a counterfactual of global circulation models (GCMs) without anthropogenic128

forcing. We estimate that on average over the locations included in the study, 18% (95% CI: 12 -129

25%) of existing dengue incidence is due to anthropogenic climate change already (Fig. 4, Table130

S3). The estimates vary both within and between countries, with cooler areas in Bolivia, Peru,131

Mexico, Brazil, and Colombia seeing 30-40% of existing dengue from climate change and warmer132

countries like Thailand and Cambodia having little impact from existing warming. These impacts133

equate to a large number of dengue cases and affected populations: while some of these cooler134

countries where a larger portion of existing dengue is due to climate change have relatively low135

current dengue burdens, other countries like Brazil, El Salvador, and Indonesia with intermediate136

average temperatures (22-26°C) have high current burdens of dengue and 10-30% of that existing137

burden is estimated to be due to climate change (Fig. 4).138

Future warming will also play a role in determining dengue incidence. On average in the study139

region, we predict a 57% (95% CI: 33 - 107%) increase in dengue incidence under SSP3-7.0. While140

some low elevation equatorial areas will warm beyond the peak temperature and are projected to141

see small declines in dengue incidence due to climate change, the majority of locations are pro-142

jected to see increases in dengue incidence under all climate scenarios (Fig. 5, Fig. S5). Some143

cooler regions of Mexico, Peru, Bolivia, and Brazil are predicted to see over 150% increases in144

dengue incidence due to climate change under all climate scenarios. Many of the largest cities in145

the Americas are located in these cooler regions where large increases in dengue are projected.146

Among the 21 countries included in the study, only one country (Cambodia) is projected to see147
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declines in dengue incidence under all three climate scenarios while 17 countries are projected to148

see increases under all scenarios. Despite the estimated increases in dengue in the majority of lo-149

cations even under the most optimistic (low emissions) scenario (SSP1-2.6, Fig. S5), we find that150

these increases would be on average 7% (95%CI: 1 - 20%) larger under the high emissions sce-151

nario (SSP3-7.0), with some countries seeing up to 30% greater increases in dengue incidence in152

SSP3-7.0 compared to SSP1-2.6 (Fig. 5b, Table S3). These estimates are largely similar when us-153

ing continent-specific temperature responses, which showed the greatest difference between tem-154

perature responses, with the largest differences in projected impacts in Asia where no countries155

are predicted to have see significant declines in dengue under future climate scenarios due to the156

slightly higher estimated temperature where dengue incidence peaks (Fig. S6).157

Discussion158

A wide range of existing literature documents that temperature affects dengue transmission32,14,18,38,159

but quantifying the exact nature of this relationship has been challenging due to the confounding160

effects of multiple other drivers19,24,26. Yet, understanding this relationship precisely is critical161

for projecting impacts under climate change to better anticipate future changes and design adap-162

tations to meet them. Here, we aim to comprehensively quantify the temperature-dependence of163

dengue transmission using human case data. We find clear nonlinear effects, consistent with the164

thermal biology of the vectors11. Increases in temperature have the largest marginal impact at165

low temperatures (15-20°C) and become negative at very high temperatures (¿27.8°C), allowing166

us to identify geographic regions where temperature change is likely to have the largest impact.167

Based on these marginal effects of temperature, we estimate that 18% of the current dengue bur-168

den in the study region is due to increases in temperature from existing climate change, and up169

to 40% of dengue incidence due to climate change in some cooler countries. Projecting forward,170

we expect the impacts of climate change to be even larger by the mid-century, with 40 - 57% in-171

creases in dengue incidence overall in the study region depending on the scenario. While dengue172

is expected to increase under all climate scenarios, climate mitigation still has large benefits, with173

estimated increases in incidence 7% smaller overall under the lowest emissions scenario, and some174

countries seeing 30% smaller increases.175

We project that most areas will see increases in dengue transmission due to climate change in176

contrast to malaria, which is projected to decline in sub-Saharan Africa by mid-century due to177

climate change-driven temperature increases39. These divergent impacts are consistent with the178

differences in thermal biology between malaria and dengue, with malaria predicted to have a179

cooler optimum temperature around 25°C compared to the 27.8°C optimum inferred here for180

dengue11. Relative to other health impacts of climate change, especially direct heat-related mor-181

tality, which is predicted to increase the most in already warm regions40, the impacts on dengue182

are projected to be largest in relatively cool regions while the hottest regions in our study are183

projected to see declines in dengue incidence due to climate change (Fig. 5). In fact, our study184

likely underestimates these future warming-driven dengue increases in cool areas as many such185

regions do not yet have consistent dengue transmission and/or reporting, and thus are not in-186

cluded in our dataset.187

While our results highlight the benefit of climate mitigation in reducing the projected increases188
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in dengue incidence, the projected increases under all scenarios suggest that climate adaptation189

will also be necessary even in the best case (Fig. 5). Moreover, the consistency of the estimated190

dengue-temperature relationship across places with both high health expenditures and high exist-191

ing dengue incidence (Fig. 3) suggests that even the locations most likely to have existing public192

health systems able to withstand the impacts of temperature are still strongly affected.193

Although this work presents the most globally comprehensive (spanning 21 countries), quanti-194

tative estimate of temperature impacts on dengue to date, our estimates are constrained by the195

set of locations with available sub-annual, sub-national dengue data, which are primarily located196

in tropical areas of the Americas and southeast Asia. The study omits both other tropical areas197

with endemic dengue (notably south Asia and sub-Saharan Africa, Fig. S1) and cooler temperate198

regions that do not have consistent dengue transmission. As a result of the latter, our estimates199

focus on the impact of temperature changes in intensification of dengue incidence rather than200

invasion of dengue into new regions. Taken together, this suggests that our estimated change201

in dengue case from climate change will be conservative due to the omitted dengue-endemic re-202

gions and the temperate regions where dengue transmission occurs sporadically and could expand203

(including recently in California, Texas, and Florida, USA). Some of the excluded areas may be204

at or above the optimum temperature for dengue transmission and see declines in dengue inci-205

dence due to climate change, but the majority will see increases with future warming. In addition206

to focusing on endemic regions, our projections center on the effect of changes in monthly aver-207

age temperature rather than any of the myriad of other impacts expected with climate change,208

including altered precipitation patterns, changes in temperature variability, increased extreme209

weather events, and behavioral adaptation to climate change. Further, our temperature response210

is estimated from real dengue dynamics in the field, and in doing so, implicitly incorporates com-211

plexities like serotype dynamics, vector control, policy, and population growth and mobility. Our212

projections assume that these other factors will not change in a way that alters the estimated213

dengue-temperature response (i.e., in a way that is interactive with temperature). Finally, our214

projections focus solely on temperature’s impacts on dengue incidence, and the landscape of215

dengue transmission in the future will also be impacted by a range of other factors including216

urbanization, migration, the emergence of new serotypes, and/or potential medical advances in217

treating or preventing dengue in a way that could either reduce or exacerbate the future temper-218

ature effects.219

Our study contributes in several important ways to the growing body of literature attributing cli-220

mate impacts on health5. First, it makes quantitative predictions for how dengue burden will221

change under climate warming at the local, sub-national scale across a major swath of its en-222

demic range, which can be used to develop targeted public health planning and responses and223

compare the consequences of different emissions scenarios. Second, it is among the first studies224

to attribute changes in infectious disease to climate change—expanding on the attribution litera-225

ture centered on more direct effects such as heat waves, storms, and fires—providing a road map226

for future studies on other ecological and health impacts33,41,39. Third, this work provides a rare227

demonstration that theoretical models based on laboratory experiments can capture the ther-228

mal biology of complex infectious disease systems, reinforcing the idea that such models can be229

used to predict climate responses in places with limited existing data. Finally, attribution stud-230

ies like this one are increasingly used in litigation aimed at holding governments and fossil fuel231

companies financially accountable for negative societal effects of carbon emissions due to climate232

change.233
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Methods234

Dengue Case Data To obtain a comprehensive global dataset of dengue cases at the sub-235

annual and sub-national scale, we searched the Pan-American Health Organization (PAHO) and236

Project Tycho databases, Ministry of Health websites, and published literature. For Project Ty-237

cho, we selected “Dengue” for condition, “Month” as the interval type, and downloaded data for238

any country with >2 years of data at admin level 1 (state or province) or below. For all countries239

with endemic cases listed on the WHO website, we found their Ministry of Health (or equivalent)240

website and navigated to any relevant tabs or databases reporting health data. If we still could241

not locate relevant data, we searched the following on Google: “[country name] immunological242

bulletin OR dengue”. Additionally, we searched the literature using the same query for references243

to data sources; however, these were typically not publicly available. We found 25 datasets from244

21 countries that span an average of 11 years (Table S1). We excluded datasets that spanned less245

than 2 years and trimmed our data to the end of 2019 to avoid confounding effects of COVID-246

19. We aggregated weekly data to monthly as follows: if a week spanned two months we split the247

cases into months based on the number of days within that week that fell into each month. To248

obtain incidence from the raw case counts, population size was obtained by summing population249

count within each administrative boundary (see “Subnational boundaries”) in the midyear of the250

time series, using population counts from WorldPop42 on available on Google Earth Engine43. In251

total, our dataset consisted of roughly 1.5 million monthly observations of dengue incidence at252

the first or second administrative level.253

Subnational boundaries We matched the names of the subnational administrative units254

with those in shapefiles downloaded from the Humanitarian Data Exchange44 except for Tai-255

wan, which was downloaded separately45. Because case data in Costa Rica is reported for so-256

cioeconomic regions, which does not fall cleanly in administrative level 1 or 2, a shapefile of ad-257

ministrative boundaries within Costa Rica was manually modified to correspond to socioeco-258

nomic regions. We used the district (administrative level 3) shapefile and aggregated to six so-259

cioeconomic regions based on a mapping from canton (administrative level 2) to socioeconomic260

region46. Four districts (admin level 3) in socioeconomic regions different from the rest of their261

cantons are switched to the correct socioeconomic region.262

Historical temperature data To obtain downscaled daily temperature values with consistent263

performance across regions, we compared ERA5 daily climate reanalysis product47 to Global His-264

torical Climatology Network (GHCN) station observations in the countries included in this study.265

We found that ERA5 temperatures were on average downward biased relative to GHCN station266

observations, with large (up to 10°C) negative biases at high elevations (Fig. S7). To avoid this267

differential bias in the ERA5 product, we debias using WorldClim, a high resolution climatology268

product with monthly average temperature from 1970 - 200048:269

ẼRA5idmy = ERA5idmy − ERA5im +WorldClimim (1)

where ẼRA5idmy is the debiased daily temperature, ERA5idmy is observed ERA5 temperature in270

location i on day d in month m and year y, ERA5im is the month- and location- specific ERA5271
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climatology over 1970 - 2000 and WorldClimim is the WorldClim climatology over the same time272

period. We calculate ERA5im from monthly average temperature in ERA5 monthly products,273

and use ERA5idmy from the daily average temperature product available on Google Earth En-274

gine43. We find that this correction reduces the mean error between satellite-based temperature275

estimates and ground-based measurements from the GHCN, especially at higher elevation sites276

(Fig. S7). We calculate higher powers of debiased temperature data (ẼRA5idmy) for each day277

and grid cell before calculating administrative unit - month population-weighted averages us-278

ing the subnational boundaries described above and WorldPop population estimates42. We use279

the same population-weighted average approach to calculate monthly average precipitation from280

ERA5.281

Climate scenario temperature projections To estimate the change in dengue transmis-282

sion under future climate change, we use projected temperature from the Coupled Model In-283

tercomparison Project Phase 6 (CMIP6)49 under different scenarios. In keeping with recom-284

mendations from the latest IPCC report50 and Hausfather et al. 51 , we use SSP3-7.0 as a high285

baseline emissions scenario, and SSP2-4.5 and SSP1-2.6 as medium and low emissions scenar-286

ios, respectively. We also consider the historical-natural projections as our counterfactual for287

historical temperature absent anthropogenic forcing to understand how climate change has al-288

ready impacted dengue transmission. Of the 39 global climate models (GCMs) available from the289

CMIP6, we follow recent guidance on excluding “hot models” and limit to models with transient290

climate response (TCR) in the likely range (1.4 - 2.2°C)51 using existing TCR calculations for291

the GCMs52. We further limit to models that have monthly temperature available for projections292

for all three future climate scenarios specified above, resulting in 22 GCMs included in this anal-293

ysis. A full list of included models and scenarios can be found in Supplementary Table S2.294

Given known biases in average temperatures and unreliable daily temperature anomalies in GCMs53,54295

we use the delta change method55 to calculate temperature under future climate scenarios as fol-296

lows. We determine the estimated change in temperature from the current period to the mid 21st297

century as298

dTimgvs = T imgvs − T imygv0 (2)

for location i, month of the year m, model g, variant v and scenario s, where T imygvs is the av-299

erage of monthly temperatures within a specified period (2040 - 2059 for future scenarios, 1995300

- 2014 for the historical-natural scenario) and T imygv0 is the average from the historical scenario301

for 1995 - 2014. We match variants between scenarios for each GCM when calculating dT , de-302

faulting to the first variant available for all of the desired scenarios run for a GCM, or if no vari-303

ant is available for all scenarios, a single variant for future scenarios and a separate variant for304

the historical-natural scenario. Details on variants used for each GCM and scenario are in Sup-305

plementary Table S2.306

To calculate estimated temperature under different scenarios, we then add the estimated temper-307

ature change to debiased daily temperature data (ẼRA5idmy + dTimgvs), and then aggregate to308

monthly temperatures as described above. To compare scenarios, we use observed temperatures309

from 1995 - 2014 for all locations.310

Data extraction for moderators For each country, health expenditure per capita expressed311

in international dollars at purchasing power parity in 2010 was from WHO Global Health Expen-312
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diture Database was downloaded from World Bank Open Data56. For the Gini index and health313

expenditure, we selected the year that is the average of all time series midpoints (2010). If this314

was missing, we took health expenditure from the closest date. We calculated population density315

using total population from WorldPop42 (as described above) and diving by the area of the ad-316

ministrative unit. To estimate average dengue incidence at the administrative units, we calculate317

annual average dengue incidence in the our case data, and scale by the ratio between observed318

country-level average annual dengue incidence in the case data and country-level incidence es-319

timates (1990 - 2017) from the Global Burden of Diseases57 to account for potential differences320

in disease detection rates between countries while still allowing for variation in dengue incidence321

within countries.322

Estimating dengue-temperature responses To obtain an overall estimate of temperature323

dependence on dengue we used a panel regression. Our model takes the form324

log(denguei,c,m,y) = f(tempi,c,m,y) + precipi,c,m,y + µi + τc,y + σc,m + ϵi,c,m,y (3)

where i is unit, c is country, m is month, and y is year. This model includes an administrative325

unit fixed effect to control for differences between locations that are consistent over time, a country-326

year fixed effect to account for country-level patterns over time, and country-month fixed effect327

to remove seasonal patterns in dengue and temperature. The main specification included popu-328

lation weighting and used cubic polynomials of temperature with 1-3 months of lags, but we also329

considered functional forms with up to degree 5 and lags from 0 to 4 months. We also tested sen-330

sitivity of model estimates to including quadratic effects of precipitation rather than linear, no331

weighting of estimates, removing Brazil from the sample, fixed effects for country - month - year332

rather than country - month and country - year, and fixed effects for unit - month rather than333

country - month (Fig. S4). All models were run as Poisson regressions with the ‘fixest’ package334

in R58. For countries that had data from multiple sources, we removed any duplicate years from335

the earlier data source and treated each country-data source as a different “country” for the pur-336

pose of fixed effects to allow for potentially different reporting rates between data sources.337

To understand how this relationship varies spatially, we interacted the estimated temperature338

relationship with administrative unit-level covariates including continental region, health expen-339

diture, population density, average dengue incidence:340

log(denguei,c,m,y) = Ai,c × f(tempi,c,m,y) + precipi,c,m,y + µi + τc,y + σc,m + ϵi,c,m,y, (4)

where Ai,c is the covariate value for unit i in country c. For continent we divided into Asia and341

the Americas and for the remaining covariates, we split into terciles with health expenditure ter-342

ciles being defined at the country-level due to availability of health expenditure data, and popu-343

lation density and dengue incidence terciles defined at the administrative-units. We defined these344

terciles only accounting for administrative units that reported dengue during the study.345

We calculate confidence intervals on estimated temperature responses and marginal effects us-346

ing stratified bootstraps and analytic confidence intervals based on the Delta method. Stratified347

bootstraps were conducted using countries as the strata, and sampling administrative units with348

each country with replacement, then using the full time series for each sampled administrative349
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unit in the bootstrap sample. Bootstrapped confidence intervals were only slightly wider than an-350

alytic confidence intervals calculated with the delta method (Fig. S4, so alternative model specifi-351

cations and models with heterogeneous effects are shown with analytic confidence intervals, while352

main model estimates and continent-specific estimates used in projections are bootstrapped.353

Attributing existing dengue burden and projecting future impacts Using the esti-354

mated temperature relationship f(tempi,c,m,y), we calculate the change in dengue incidence due355

to temperature changes as356

% change in dengues,i,c,m,y = exp(f(temp scenarios,i,c,m,y)− f(temp observedi,c,m,y))− 1, (5)

where s indexes the scenario of interest (SSP1-2.6, SSP2-4.5, SSP3-7.0, historical-natural forc-357

ing). We use debiased monthly ERA5 data for observed temperatures and monthly climate pro-358

jections (described above) for scenario temperatures. We estimate the percent change in dengue359

for the specified GCMs (22 for future scenarios, 10 for historical - natural forcing, see Table S2)360

using 50 of the bootstrapped estimated temperature response to incorporate uncertainty from361

both the model estimates and the climate scenarios. For each GCM and bootstrap, we calculate362

the average percent change in dengue over the 20 years of temperature data for each adminis-363

trative unit. To estimate administrative unit-specific effects, we then calculate medians and 95%364

confidence intervals over 1100 estimates from the GCMs and bootstraps. Similarly, to estimate365

country-level and overall effects, for each bootstrap and GCM we calculate a population-weighted366

average of the administrative unit averages, then calculate the median and 95% CI over the 1100367

estimates for each scenario. To compare the between two future climate scenarios (particularly368

between SSP1-2.6 and SSP3-7.), we use the scenario temperatures in equation 5 instead of ob-369

served temperatures. We project future impacts using both the main model bootstrapped esti-370

mates and the continent-specific estimates.371

Data availability Data is available upon request and code to replicate all results in the main372

text and supplementary materials will be made available at https://github.com/marissachilds/373

global-dengue-temperature.374
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Figure 1: Subnational data on dengue and temperature from 21 countries. Darker red
indicates warmer temperatures and darker blue indicates higher incidence of dengue. Insets show
four examples of epidemic dynamics in different countries.
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Figure 2: Effect of temperature on dengue. (a) Global nonlinear relationship between
dengue cases and temperature and (b) the slope of that relationship indicating the marginal
effect of temperature on dengue incidence. Main panel regression model fit in black with 95%
confidence interval in gray shading. Vertical lines in (a) indicate country mean temperatures,
with labels highlighting the coldest and warmest countries as well as the three highest popula-
tion countries in the sample: Bolivia (BOL), Mexico (MEX), Brazil (BRA), Indonesia (IDN), and
Cambodia (KHM). Thin gray lines in (b) represent variations on the main model using alterna-
tive specifications. Histogram in (b) shows the distribution of observed monthly temperatures.
Model estimates are restricted to the 1st to 99th percentiles of the observed temperature distri-
bution.
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Figure 3: Spatial heterogeneity in the dengue-temperature relationship. Marginal ef-
fect of temperature on dengue incidence by (a) continental region, (b) health expenditure tercile,
(c) population density tercile, and (d) dengue incidence tercile. Dengue incidence and population
density are subnational covariates, and continent and health expenditure are country-level covari-
ates. Lines are the mean estimates and shaded areas are 95% confidence intervals, with estimated
marginal effects trimmed to the 1st to 99th percentiles of the observed temperature distribution
for each tercile or continental region. Where relevant, confidence intervals were truncated for visi-
bility. Density plots show the distribution of monthly temperatures for each tercile or continental
region and inset maps depict the spatial units included in each tercile for the different covariates,
with colors matching those of the estimated marginal effects in each panel.
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Figure 4: Climate change has already contributed to increases in dengue.(a) Distribu-
tions show estimated median percent of the dengue burden that is attributable to anthropogenic
climate warming across administrative units within each country, estimated as the average %
change between observed and counterfactual climate from 1995-2014. Black tick marks indicate
individual unit median values, and colored points and bars show the median and 95% CI of the
population-weighted average estimate by country. Countries are ordered by current average tem-
peratures with warmer countries to the right. Only administrative units with reported dengue
are included in the distributions and country averages. Inset: marginal effect of temperature on
dengue from the main model specification, with country-average temperatures indicated with
vertical lines matching the colors in the main panel. (b) Climate change to date has already in-
creased dengue transmission. These impacts are largest in cooler countries where current inci-
dence is low, but impacts are also substantial in moderate temperature countries with high cur-
rent dengue burdens (e.g., Brazil, Honduras, El Salvador, and Nicaragua). Point colors (indicat-
ing temperature) are the same in (a) and (b) and point sizes in (b) indicate population size. Line
ranges are 95% CIs as in (a).
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Figure 5: Estimated impacts from climate change for 2040-2059 are widespread and
largest in more temperate regions, but few places will become too warm. (a) Most lo-
cations are expected to see an increase in dengue under climate change, with a small fraction of
locations seeing slight declines due to temperatures exceeding the current predicted optimal tem-
perature. Many of the areas where large increases are predicted (shown in dark red), especially
in the Americas, are areas with large cities and high population density. Black circles show cities
over 5M in population. Administrative units are colored by the median percent change in dengue
incidence under the high emissions scenario at mid-century (SSP3-7.0 in 2040-2059) compared
to current temperatures (1995-2014). (b) Across all future climate scenarios, dengue incidence is
predicted to increase for a majority of countries, with the largest increases in cold countries (left
panel), and these impacts are estimated to be up to 30% larger under the highest emissions sce-
narios compared to the lowest (right panel). Countries retain ordering by average temperature,
and country colors are consistent across all figures. Points show median estimates and lines show
95% CIs. Confidence intervals are truncated to 300% for visibility.
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[20] Xavier Rodó, Mercedes Pascual, Francisco J. Doblas-Reyes, Alexander Gershunov, Dáith́ı A.500

Stone, Filippo Giorgi, Peter J. Hudson, James Kinter, Miquel-Àngel Rodŕıguez-Arias,501
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Table S1: Raw dengue data sources and information. MoH
= Ministry of Health

Country
Spatial

resolution

Number of
administrative

units

Original
temporal
resolution

Start date End date Data source

BOL Admin 1 9 weekly 12/1/13 12/31/19 PAHO
BRA Admin 2 5570 weekly 1/1/01 12/31/19 MoH DATASUS
COL Admin 2 1122 weekly 1/1/07 12/31/19 MoH SIVIGILA
CRI Admin 1 6 weekly 1/1/12 12/31/19 MoH
DOM Admin 2 32 weekly 1/1/07 12/31/18 MoH DIEPI
HND Admin 1 18 weekly 1/1/17 6/30/19 PAHO
IDN Admin 1 34 monthly 1/1/00 12/31/17 Tycho
KHM Admin 1 25 monthly 1/1/98 12/31/10 Tycho
LAO Admin 1 18 monthly 1/1/98 12/31/10 Tycho
LKA Admin 2 25 monthly 1/1/10 12/31/19 MoH Epidemiology Unit
LKA1 Admin 1 9 monthly 1/1/96 12/31/04 Tycho
MEX Admin 1 32 weekly 1/1/03 12/31/19 MoH
MYS Admin 1 16 monthly 1/1/93 12/31/10 Tycho
NIC Admin 1 17 monthly 1/1/00 12/31/04 Tycho
NIC Admin 1 17 weekly 1/1/04 12/31/19 PAHO
PAN Admin 1 13 weekly 1/1/18 12/31/19 PAHO
PER Admin 2 196 weekly 1/1/10 12/31/19 CDC Peru
PHL Admin 2 87 monthly 1/1/94 12/31/10 Tycho
SLV Admin 1 14 monthly 1/1/00 8/31/09 Tycho
THA Admin 1 77 monthly 1/1/93 12/31/10 Tycho
THA Admin 1 77 monthly 1/1/11 12/31/19 MoPH
TWN Admin 2 22 weekly 1/1/05 12/31/19 Taiwan NIDSS
VEN Admin 1 25 monthly 1/1/99 3/31/05 Tycho
VEN Admin 1 25 weekly 1/1/17 12/31/19 PAHO
VNM Admin 1 63 monthly 1/1/94 12/31/10 Tycho
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Table S2: GCM scenarios and variants included in projections.
GCM historical-natural future

1 ACCESS-CM2 r1i1p1f1 r1i1p1f1
2 ACCESS-ESM1-5 r1i1p1f1 r31i1p1f1
3 AWI-CM-1-1-MR r1i1p1f1
4 BCC-CSM2-MR r1i1p1f1 r1i1p1f1
5 CAMS-CSM1-0 r1i1p1f1
6 CESM2 r1i1p1f1 r4i1p1f1
7 CESM2-WACCM r1i1p1f1
8 CNRM-CM6-1 r1i1p1f2 r1i1p1f2
9 CNRM-ESM2-1 r1i1p1f2

10 FGOALS-f3-L r1i1p1f1
11 GFDL-ESM4 r1i1p1f1 r1i1p1f1
12 GISS-E2-1-G r1i1p1f2 r1i1p3f1
13 GISS-E2-1-H r1i1p1f2
14 IITM-ESM r1i1p1f1
15 KACE-1-0-G r1i1p1f1
16 MCM-UA-1-0 r1i1p1f2
17 MIROC-ES2L r1i1p1f2
18 MIROC6 r1i1p1f1 r1i1p1f1
19 MPI-ESM1-2-HR r1i1p1f1
20 MPI-ESM1-2-LR r1i1p1f1
21 MRI-ESM2-0 r1i1p1f1 r1i1p1f1
22 NorESM2-LM r1i1p1f1 r1i1p1f1
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Figure S1: Availability of dengue data in endemic areas. Shading indicates no subnational
subannual data was available for that country. Dengue cases are annual estimates (Zeng et al.
2021).

Table S3: Projected percent change in dengue incidence for countries under different climate sce-
narios. Numbers are median estimates followed by 95% CIs.

country

current
vs

no anthropogenic
forcing

current
vs

SSP3-7.0

current
vs

SSP2-4.5

current
vs

SSP1-2.6

SSP1-2.6
vs

SSP3-7.0

overall -18.2% (-25.5- -12.1%) 57.3% (33.3-107.1%) 54.2% (27.6-98.3%) 39.9% (16.8-76%) 7.3% (0.9-19.6%)
BOL -37.6% (-55.2- -24.6%) 178.5% (80.9-917.8%) 151.2% (69.1-754.4%) 104.7% (41.5-461.5%) 29.7% (3.8-80.7%)
PER -39.3% (-50.3- -30.3%) 187.7% (88.5-389.3%) 162.8% (75-363.7%) 109.6% (48.2-306.1%) 27.9% (0.6-64.6%)
MEX -31.1% (-40.6- -5.9%) 139.7% (84.2-354.5%) 132.4% (66.9-280.3%) 93.5% (35.2-232.5%) 22.6% (-3.5-56.3%)
COL -29.2% (-43.3- -17.4%) 131% (58.5-305%) 111.4% (48.5-264.6%) 75.9% (31.1-181.4%) 19.5% (2.6-48%)
CRI -32.4% (-42.8- -24.3%) 108.5% (40-212.3%) 95.7% (50.8-189.8%) 74.3% (23.8-146.9%) 20.6% (1.3-32.9%)
TWN -14.6% (-21.6-0.7%) 91.1% (39.1-171%) 89% (27.5-162.1%) 70.1% (13.9-134.7%) 11.4% (-10.1-34.6%)
BRA -32.4% (-49- -19%) 91.8% (44.8-138.8%) 81.4% (23.7-150.6%) 56.8% (27.6-105.9%) 15% (4.1-42.6%)
HND -30.3% (-41.5- -18.1%) 81.7% (40.9-151.8%) 68.8% (31.9-129.5%) 54% (17-100.6%) 16.2% (5.3-27.9%)
SLV -34.6% (-53.2- -21.5%) 65.3% (30.5-105.6%) 56.7% (21.4-94.6%) 42.9% (12.8-74.9%) 15.5% (5.4-33.7%)
LAO -6.7% (-22.6-2.9%) 41.1% (5.1-80.2%) 45.1% (9.3-75.9%) 40.7% (11.5-95.7%) -2.1% (-12.6-21.1%)
NIC -23.3% (-34.5- -14.3%) 43.7% (25.6-69.2%) 39.9% (20.7-62.8%) 30.5% (12.2-52%) 8.6% (1.9-17.9%)
VEN -18.3% (-27.5- -10.3%) 37.3% (22.3-60.9%) 34.8% (21.6-58.9%) 27.8% (12.3-48.9%) 4% (-1.2-12%)
VNM 0.9% (-9.5-9.3%) 30.3% (1.6-59.9%) 40.2% (5.1-71.7%) 38.5% (6.1-67.8%) -4.1% (-11.9-15%)
DOM -15.5% (-23.9- -7.2%) 22.9% (12.2-37.6%) 22% (12.4-37.9%) 18.4% (8-32.3%) 2.9% (-1.4-9.1%)
IDN -15.2% (-22.3- -9.1%) 18.1% (9-30.1%) 17.2% (8.7-28.3%) 14.7% (7.6-26.1%) 2.6% (-0.9-6.6%)
PAN -12.1% (-18.5- -7%) 9.9% (0.1-19.9%) 9.7% (0.4-18.5%) 8.6% (1.9-17.7%) 0.6% (-3.4-4.3%)
LKA -9% (-18- -4.8%) 8.4% (0.3-18.2%) 8% (0.4-17.3%) 6.9% (0.9-15.5%) -0.2% (-3-3.1%)
PHL -7.1% (-12.4- -2.7%) 2.8% (-7.3-11.7%) 3.2% (-5.6-11.1%) 3.2% (-3.9-9.6%) -0.9% (-5.8-2.6%)
MYS -8.6% (-15.2- -3.1%) 0.7% (-11.6-9.4%) 1.2% (-9-9.2%) 1.9% (-6.4-7.9%) -1.4% (-6.2-1.6%)
THA -0.2% (-6.3-6.3%) -9.1% (-24.6-0.3%) -8.3% (-21.3-1.4%) -5.6% (-18.9-2.9%) -5.3% (-13.8-5.2%)
KHM 1.8% (-3.7-9.9%) -16.8% (-35- -3.4%) -16% (-33.9- -6%) -12.2% (-28.1- -2.5%) -6.5% (-15.4-4.5%)
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Figure S2: Heatmap of logged monthly dengue incidence and temperature for subna-
tional administrative units. Months with no data are indicated in white while months with
no cases are indicated in black. Countries are indicated on the left by their three-letter codes and
horizontal lines separate spatial units in different countries. Vertical dashed lines separate years.
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Figure S3: Epidemic dynamics of dengue in each of 21 countries. Monthly time series of
dengue incidence by country.
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Figure S4: Sensitivity of results to modelling choices. (a) Comparison of 95% confidence
intervals produced through bootstrapping (gray shaded region) to those produced through an
analytic approach (red shaded region). Individual bootstraps are shown in gray lines. (b) The
marginal response of dengue to temperature under model variations.

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.24301015doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.08.24301015
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S5: Maps of impacts of current and future climate warming. (a) Projected
change in dengue under climate scenarios SPP1-2.6 and SPP2-4.5 from 2040-2059. (b) Estimated
change in dengue due to current warming (1995-2014) estimated from observed temperatures rel-
ative to a model with no anthropogenic forcing.
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Figure S6: Projections with continent-speficic temperature responses (a) Projected
change in dengue incidence under climate scenario SSP3-7.0 from 2040-2059 based on continent-
specific temperature responses. Inset figure shows continent-specific temperature responses for
the Americas (green) and Asia (purple) as well as main specification (black) for comparison, (b)
Comparison between country average projected changes with the main model (horizontal axis)
and continent-specific model (vertical axis)for different future scenarios. Points are median esti-
mates and line segments indicate 95% CIs. Black diagonal line indicates 1-1. Colors match coun-
try colors in Fig. 5.
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Figure S7: ERA5 temperature is debiased using WorldClim. ERA5 temperature is shown
against GHCN weather station data. The ERA5 temperature bias, especially prevalent at high
elevations, is reduced using monthly WoldClim climatology. Each point is a station-day with
points colored by station elevation. High elevation is defined as stations above 1500 meters. Grey
points are missing elevation information in the GHCN data set and are included in the low eleva-
tion category. R2 from a linear regression of ERA5 temperature on GHCN station temperature,
mean error (ME), and root mean squared error (RMSE) are shown in each panel.
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