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Abstract 13 

Background: Colorectal cancer (CRC) is a complex disease with monogenic, polygenic and environmental 14 

risk factors. Polygenic risk scores (PRS) are being developed to identify high polygenic risk individuals. 15 

Due to differences in genetic background, PRS distributions vary by ancestry, necessitating calibration.   16 

Methods: We compared four calibration methods using the All of Us Research Program Whole Genome 17 

Sequence data for a CRC PRS previously developed in participants of European and East Asian ancestry. 18 

The methods contrasted results from linear models with A) the entire data set or an ancestrally diverse 19 
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2 

training set AND B) covariates including principal components of ancestry or admixture. Calibration with 1 

the training set adjusted the variance in addition to the mean.   2 

Results: All methods performed similarly within ancestry with OR (95% C.I.) per s.d. change in PRS: 3 

African 1.5 (1.02, 2.08), Admixed American 2.2 (1.27, 3.85), European 1.6 (1.43, 1.89), and Middle 4 

Eastern 1.1 (0.71, 1.63). Using admixture and an ancestrally diverse training set provided distributions 5 

closest to standard Normal with accurate upper tail frequencies.  6 

Conclusion: Although the PRS is predictive of CRC risk for most ancestries, its performance varies by 7 

ancestry. Post-hoc calibration preserves the risk prediction within ancestries. Training a calibration 8 

model on ancestrally diverse participants to adjust both the mean and variance of the PRS, using 9 

admixture as covariates, created standard Normal  z-scores. These z-scores can be used to identify 10 

patients at high polygenic risk, and can be incorporated into comprehensive risk scores including other 11 

known risk factors, allowing for more precise risk estimates.  12 

  13 
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Introduction 1 

Colorectal cancer (CRC) is the third most common cancer in the United States (U.S.), and is associated 2 

with the second most deaths from cancer 
1
. CRC risk may be attributable to social determinants of 3 

health such as socioeconomic status, health care access, and food security, which are known to be 4 

associated with race 
2
. Individuals who self-report as Black or Native American/Alaskan Native have the 5 

highest lifetime risk for CRC as well as higher mortality rates 
1,3,4

. Additionally, risk for CRC is affected by 6 

other environmental factors such as diet, smoking and physical activity, as well as genetics 
5
. Although 7 

25% of CRC appear to be familial, only 20% of familial CRC is explained by variation at single genes 
6–8

.  8 

In aggregate, low risk SNPs across the genome also contribute to risk of CRC. Polygenic risk scores (PRS), 9 

which aggregate the effect of genetic variants across the genome, are currently being developed to aid 10 

in identifying individuals at higher genetic risk of developing CRC 
9,10

.   As these PRS have been shown to 11 

be independent of family history, they may provide orthogonal information when incorporated into a 12 

comprehensive score 
11

. Additionally, PRS have been shown to be more predictive at younger ages, 13 

making them useful for identifying patients who can benefit from increased or earlier screening, as 14 

current environmental risk prediction models are optimized for middle-aged patients  
12,13

. 15 

Development of PRS involves estimation of SNP effects, which are influenced by the genetic ancestry of 16 

the cohorts used to develop the PRS through linkage disequilibrium (LD) across the genome and minor 17 

allele frequency (MAF) at the SNPs
14

. The PRS for CRC used here (PGS catalog PGS003852)
15

, was 18 

developed with participants of European and East Asian ancestry, using Bayesian methods that estimate 19 

SNP effect sizes accounting for LD in both populations, while simultaneously estimating the number of 20 

causal SNPs given the heritability of CRC 
9,16

. When participants from multiple ancestries are included, 21 

this method helps delineate the collinearity of SNPs in LD and therefore improves identification of SNPs 22 
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that are associated with CRC risk in multiple ancestries, reporting a single estimated effect for each SNP 1 

17,18
.  2 

Even when more than one genetic ancestry is used to develop a multi-ancestry PRS, the distribution of 3 

the PRS will differ by genetic ancestry, as LD and MAF vary across genetic ancestries. Therefore, an 4 

individual’s PRS must be interpreted within the context of their unique genetic ancestry in order to 5 

estimate their PRS-specific predicted genetic risk. However, genetic ancestry is not strictly categorical, 6 

due to admixture, and can not be adequately determined by observable phenotypes in the clinic, such 7 

as skin color, hair type, or eye shape 
19,20

 . Several post-hoc mechanisms for calibrating the PRS for 8 

genetic ancestry in the clinic setting have been proposed 
21,22

. These include using linear models, based 9 

on a training data set of diverse populations, to adjust the mean PRS using principal components (PCs) 10 

of ancestry. Additionally, methods using training models have been adapted to adjust for both the 11 

expected mean and variance of the PRS. One benefit of these approaches is that patients do not need to 12 

be categorized within a genetic ancestry. Furthermore, these approaches can be applied to admixed 13 

individuals, who make up an increasing proportion of U.S. residents.  14 

We set out to determine which, if any, of these post-hoc PRS calibration methods is preferable in the 15 

context of this multi-ancestry CRC PRS, by analyzing data from the All of Us Research Program (AOU)
23,24

. 16 

The purpose of AOU is to collect survey, electronic health record (EHR), and genotype data on diverse 17 

participants who live in the U.S., for use in broad research and to help reduce inequities in healthcare in 18 

the U.S.. As this data set contains both ancestrally diverse and admixed participants, it is an ideal 19 

biobank to assess  post-hoc genetic ancestry calibration methods for use in the clinic.  20 
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Subjects and Methods 1 

Case/Control assignment 2 

We updated a previously developed CRC case/control algorithm (see online materials) to define CRC 3 

cases and controls. This algorithm was created using International Classification of Disease (ICD) 9 codes 4 

and Current Procedural Terminology (CPT) codes. The AOU dataset contains a rich database of ICD 9 and 5 

10 codes, CPT codes, and Logical Observation Identifiers Names and Codes (LOINC). As the completeness 6 

of this data varies among participants
25

 we attempted to widen our net by creating concept sets based 7 

on the original ICD 9 and CPT codes, incorporating the related ICD 10 codes and LOINC codes. Each 8 

concept set relates to a different table from the word files provided by the algorithm’s authors 9 

(Supplemental Tables S2-S10). The algorithm was developed to screen for CRC cases with potentially 10 

monogenic causes of CRC, and therefore excluded individuals with ulcerative colitis (UC) or Crohn's 11 

disease, two disorders associated with CRC. As we are interested in a polygenic component underlying 12 

CRC we did not exclude participants with UC or Crohn's disease. Additionally, we excluded all 13 

participants with a known monogenic (pathogenic or likely pathogenic variant in ClinVar) cause of CRC in 14 

any of AKT1, APC, AXIN2, BMPR1A, CDH1, CHEK2, CTNNA1, EPCAM, GALNT12, GREM1, MLH1, MSH2, 15 

MSH3, MSH6, MUTYH, NTHL1, PDGFRA, PIK3CA, PMS2, POLD1, POLE, PTEN, RPS20, SMAD4, STK11, or 16 

TP53
24

 (in press) .  17 

Potential cases included all participants that had at least one CRC diagnosis in their medical record 18 

(Supplemental table S2) but did not have a known pathogenic variant for CRC or a diagnosis for 19 

monogenic disorders with increased risk of CRC (Supplemental table S3). The cleaned set of cases was 20 

derived from potential cases using the following ordered algorithm:  21 

A. They had a surgical procedure related to CRC within a year of diagnosis (Supplemental Table S4)  22 
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B. If not (A), then they had chemotherapy or radiation (Supplemental Tables S5 and S6) within a 1 

year of CRC diagnosis and they did not have other types of cancers listed in the exclusion table  2 

(Supplemental Table S7)  3 

C. If not (A) or (B) and they had at least two CRC diagnosis codes within 2 years of each other and 4 

no other cancers listed in the exclusion table 5 

Potential controls were participants with no diagnosis codes for CRC or a monogenic disorder with 6 

increased risk of CRC, and no evidence of a pathogenic variant for CRC. Using guidance from the 7 

algorithm, the screened controls met either of the following criteria: 8 

A. They had at least one sigmoidoscopy or colonoscopy and no positive pathology report 9 

(Supplemental Table S8) 10 

B. They had at least two instances of a fecal immunochemical test (FIT) or a fecal occult blood test 11 

(FOBT) that were at least 5 years apart and never had a positive lab result from any of these 12 

tests (Supplemental Tables S9 and S10) 13 

All other participants that were not assigned case/control status, or who were not excluded by the 14 

algorithm, were left unassigned. Unassigned participants are included in the analysis except when 15 

statistical testing involves case and control status. Some analyses include age and sex. Age is defined as 16 

observational age: age at onset of cases, age at last screening for controls, and age at consent to AOU 17 

for the unassigned participants. In these analyses we further restricted analysis to participants who were 18 

older than the minimum observed age of onset of CRC, 19, as CRC rarely presents so early. Sex is defined 19 

as sex assigned at birth.  20 

Genetic Ancestry Clustering  21 

We calculated 32 genome-wide PCs of ancestry using an unrelated subset of reference global genomes 22 

from 1000 Genomes (1KG) and Human Genome Diversity Project (HGDP) (N = 4151)
26,27

. We then 23 
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projected the AOU participants onto the PC space. We used EIGMIX to estimate admixture in the AOU 1 

participants for the continental ancestry groups represented by the reference genomes: African (AFR), 2 

Admixed American/Latino (AMR), East Asian (EAS), European (EUR), Middle Eastern (MID) and South 3 

Asian (SAS)
28

. See supplemental methods for details on PC and admixture calculation. We then clustered 4 

the AOU participants into ancestry groups, using the estimated percent ancestries, in order to compare 5 

the performance of the PRS across continental ancestry groups. As the amount of genetic diversity 6 

among different racial and ethnic groups in the United States differs (Supplemental Figures S1 and S2)
28–

7 

30
, we used an 80% cutoff to cluster individuals into EAS, EUR and SAS clusters, and a 60% cutoff to 8 

cluster individuals into AFR, AMR and MID clusters. All other participants are referred to as Other (OTH). 9 

A subset of highly admixed participants from OTH, called ADM, contains participants with <50% 10 

estimated ancestry for all continental ancestries considered.    11 

PRS calculation 12 

Details of PRS calculation in AOU and the reference 1KG and HGDP data are given in the supplemental 13 

methods. In brief, we extracted genotype data from WGS using HAIL
31

 on the Spark cluster. After 14 

performing quality control, we calculated the sum of genotype effects for each participant using the R 15 

package bigSNPR v. 1.10.8 . The allele effects for each SNP were obtained from the corresponding 16 

author of PMID: 36789420 
9
 and can also be found in the PGS catalog (PGS003852).     17 

PRS Calibration 18 

We started with  three post-hoc calibration methods of the raw PRS (RAW) to account for ancestry: 19 

linear model to adjust for the first 5 PCs of ancestry in AOU (PC_μ), linear model to adjust for the 20 

estimated admixture percentages in AOU (AD_μ), and a previously published method which adjusts both 21 

mean and standard deviation (s.d.) as a function of PCs using a trained model on a reference dataset 22 

(PC.REF_μσ)
21,22

. This adjustment estimates the effects of the first 5 PCs of ancestry in the 1KG and 23 
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HGDP reference genomes on the mean PRS and its variance. Given these estimated effects, the raw PRS 1 

from AOU can be adjusted by both the expected PRS and its expected variance for each participant given 2 

their first 5 PCs of ancestry. We chose to use 5 PCs of ancestry to make comparisons fair with AD_μ 3 

which has 5 degrees of freedom due to the six global ancestries considered in this analysis.  We added in 4 

two more adjustments after observing the distribution of PC.REF_μσ.  We modified the method by using 5 

a random subset (N=4,151) of the unassigned participants from AOU, called AOU.REF, to derive the 6 

prediction model (PC.AOU_μσ). Additionally, we modified the method, using the same random sample, 7 

AOU.REF, and used the admixture estimates to create the prediction model rather than the first 5 PCs of 8 

ancestry (AD.AOU_μσ). The properties of the calibration methods are given in Table 3.  9 

We kept the patient reference sample size for AOU.REF the same as the global reference sample size 10 

(1KG and HGDP) so that we could make fair comparisons. As the AOU dataset is heavily weighted toward 11 

individuals of EUR ancestry, a simple random sample would also be heavily weighted in this way. 12 

Therefore, we attempted to randomly sample from the space of the first 5 PCs. First, we calculated the 13 

geometric median of the first five PCs. Second, we calculated the Euclidean distance to this median for 14 

each participant. We divided the distances into five equal ranges. We then randomly sampled an equal 15 

number of participants from each range, resulting in the following counts of unassigned participants 16 

from each ancestry cluster in the reference patient sample: 1108 AFR; 1459 AMR; 84 EAS; 820 EUR; 72 17 

MID; 577 OTH; 31 SAS.    18 

Comparing raw and calibrated PRSs 19 

We compared the raw PRS and the adjusted PRSs in several ways, for each ancestry cluster. First, we 20 

compared the overall mean and s.d., as this informs how well the adjusted score aligns with z-scores 21 

from a standard Normal distribution. Second, we compared the odds ratio (OR) for a single s.d. change 22 

in the score, with and without adjusting for age and sex, to determine if the PRS is associated with CRC 23 
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risk in each genetic ancestry cluster.  Third, we compared the log(OR) for each quintile compared to the 1 

middle quintile to determine if those at high risk (top quintile) can be differentiated from those at 2 

typical risk (middle quintile) as suggested in  
32

. Fourth, we compared the area under the receiver 3 

operating curve (AUC) which compares how well the scores can distinguish between cases and controls, 4 

overall. We used 500 bootstrap iterations, with replacement, to estimate the 95% confidence intervals 5 

(C.I.) for the AUC. We calculated both the unadjusted AUC and the AUC adjusted for age and sex. Finally, 6 

we compared the observed and expected upper 5, 7.5 and 10th percentiles, as these values could be 7 

used to identify patients at higher genetic risk for developing disease, relative to those of similar genetic 8 

ancestry. These patients could then be referred for increased or earlier screening for CRC. Observed 9 

percentiles were defined as the proportion of participants whose adjusted PRS was greater than the 10 

standard normal cutoffs (z=1.28, 1.44, or 1.64). In this case, RAW, PC_μ, and AD_μ were standardized 11 

using the variance from the entire data set. The C.I. for the percentiles was calculated using the R 12 

function binom.test().  13 

Results 14 

Case/Control Demographics and Ancestry 15 

We excluded 8 CRC affected participants who had penetrant Lynch syndrome or Familial Adenomatous 16 

Polyposis reported in their EHR and 455 participants with a known pathogenic or likely pathogenic 17 

variant for these monogenic disorders 
24

 (in press). There were 668 participants remaining with at least 18 

one CRC code in the EHR, 348 of whom were classified as cases by the algorithm (Table 1, Supplemental 19 

Tables S2 and S3). There were 97,588 participants who had no evidence for CRC. Of these 12,378 had 20 

been screened for CRC with negative results and were assigned as controls. Using the ancestry clustering 21 

rule, the majority of participants clustered with EUR ancestry (45%), followed by AFR (23%), OTH (16%), 22 
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AMR (9.5%), and MID (4.1)% with EAS and SAS making up < 3% of the sample (Table 1). As the sample 1 

size for EAS and SAS was small, we do not report statistical tests for these ancestries. 2 

The mean observed age of unassigned participants was about 10 years younger than that of the cases, 3 

overall (Table 2). The mean censored age of screened controls was similar to that of the cases, 4 

consistent with recommendations for screening in older patients. The observed age for both the cases 5 

and screened controls tended to be younger than their age at consent, indicating that most cases had 6 

CRC before entering the study and most screened controls were screened before entering the study.   7 

Overall, males made up 49% of the cases and 40% of the controls. This sex difference may reflect sex 8 

differences in seeking healthcare and/or enrolling in genetic research studies. For AMR, EUR and OTH, 9 

the sex ratio difference was ≤ 10 percentage points. The sex ratio differences were > 20 percentage 10 

points for AFR and MID. We do not report exact counts in order to comply with AOU publication rules 11 

for cell counts less than 20.  12 

PRS Distribution Comparison 13 

The distributions of RAW differed by ancestry in both their mean and s.d. (Table 4, Figure 1). The mean  14 

ranged between 0.05 (MID) and 0.4 (AFR) and the standard deviation (s.d.) ranged between 0.41 (AFR) 15 

and 0.47 (most ancestries). The PC_μ means were close to zero for all ancestries except MID and OTH. 16 

AD_μ resulted in means closer to zero, even for MID and OTH. It should be noted that when RAW, PC_μ 17 

and AD_μ are scaled to have a s.d. of 1, the scores are scaled (divided by the s.d.), so that the resulting 18 

scaled means are further from zero as the original s.d. is less than one. PC.REF_μσ resulted in non-zero 19 

means for EAS, EUR, MID and SAS, prompting us to develop PC.AOU_μσ and AD.AOU_μσ. PC.AOU_μσ 20 

performed similarly to PC_μ and the scaling of the variance results in means further from zero, as 21 

expected. AD.AOU_μσ performed similarly to AD_μ. Notably, both AD_μ and AD.AOU_μσ resulted in 22 

standard Normal distributions for the highly admixed ADM group.  However, AD.AOU_μσ had a non-23 
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zero mean for SAS, likely due to the small number of SAS participants in AOU.REF. Given that we are 1 

unable to perform statistical tests in the SAS cluster due to low sample size, we chose to continue with 2 

these calibrations and make comparisons between RAW, PC_μ, AD_μ, PC.AOU_μσ, and AD.AOU_μσ.  3 

PRS OR 4 

Results for the OR per 1 s.d. change in the PRS were similar across calibration methods, within genetic 5 

ancestries (Table 5). The OR estimate was highest for AMR (range 2.1-2.2), was statistically significant, 6 

and had wide confidence intervals. For EUR, the estimated OR ranged between 1.6 and 1.7, was 7 

statistically significant, and had narrow confidence intervals reflecting the large sample size. For OTH, 8 

the estimated OR ranged between 1.5 and 1.6 and was statistically significant. The estimated OR for AFR 9 

ranged between 1.4 and 1.5, and was not significant after adjusting for age and sex. As this lack of 10 

significance could be due to a sex imbalance among the cases and controls, we performed sex stratified 11 

analysis in AFR.  Sex stratified analysis in AFR resulted in similar estimated ORs and they were not 12 

statistically significant (data not shown).  The estimated OR for MID ranged between 1.05 and 1.12, and 13 

was not statistically significant in any model. Although the ORs indicate that an increase in PRS is 14 

associated with increased risk of CRC, statistical significance for the uppermost quintile compared to the 15 

middle is observed only in EUR, due to sample size (Figures 2-6). For AMR, there were no cases in the 16 

lowest quintile.  17 

PRS AUC 18 

The estimated AUC and its 95% C.I. are given in Table 6. Overall, these results are similar to those for the 19 

OR, as expected
33

. The estimated AUC is greater than 0.5 for all ancestries and all adjustments. 20 

However, the AUC is not statistically significantly different from 0.5 for both AFR for some calibrations 21 

and when adjusting for age and sex,  as well as for MID in all situations. The AUC is highest for AMR 22 

(0.68-0.72), with wide C.I.s. The AUC is similar for EUR and OTH (~0.64). EUR has the narrowest C.I. 23 
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reflecting the larger sample size. Adjusting the AUC for age and sex does not change the results for AMR, 1 

EUR or OTH.   2 

Observed Upper Percentiles 3 

We compared the observed upper 5, 7.5 and 10
th

 percentiles to their expected values for each PRS. 4 

(Figure 7).  The 95% C.I.s for RAW are below expected risks for AFR, AMR, MID, and OTH, and above 5 

expected risks for EUR. The 95% C.I.s for  PC_μ are below the estimated risks for AFR, AMR, MID, and 6 

OTH and above the estimated risks for EUR. The 95% C.I.s for PC.AOU_μσ covers the expected risks for 7 

AFR, covers the expected risk for AMR at the 5th percentile only, are below the expected risks for AMR 8 

(7.5, 10th percentiles), MID, and OTH, and above the estimated risks for EUR. The 95% C.I.s for AD_μ 9 

cover the expected risks for AMR and OTH, are below the expected risks for AFR and above the expected 10 

risks for EUR. The 95% C.I.s for AD.AOU_μσ contains the expected risks for AMR, EUR, and MID, and are 11 

just below the expected risks for AFR and OTH. In the highly admixed group, ADM, the 95% C.I.s  include 12 

the expected risks for only AD_μ and AD.AOU_μσ. We do not comment on the risk assessment for EAS 13 

and SAS due to the large C.I. in these clusters, reflecting their smaller sample sizes. 14 

Discussion 15 

Regardless of the ancestry calibration, the PRS was statistically significantly associated with CRC status 16 

for EUR, AMR, and OTH, was borderline significant for AFR, and was not significant for MID. Additionally, 17 

the strength of the significant effects differed across ancestries. The estimated OR and AUC were 18 

highest for AMR, possibly due to the lack of cases in the lowest quintile of the PRS. In addition, the 19 

confidence interval for AMR was large, as the total sample size was small. The OR estimate was higher in 20 

EUR than in OTH, but they had similar AUC. The sex imbalance between cases and controls in AFR may 21 

contribute to the borderline significance observed in that cluster, but sex stratified analysis did not have 22 

enough power to confirm this, due to low sample size. 23 
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Power was sufficient in only the large EUR cluster to show that participants with PRS in the upper 1 

quintile were at higher risk of CRC than those at typical risk (the middle quintile). Observed differences 2 

in OR and their large C.I. comparing quintiles in other ancestries is due to the low number of cases 3 

within each quintile, and the overall smaller sample sizes within each quintile. Specifically, We did not 4 

observe an OR for the lowest quintile in AMR, as there were no cases with a PRS in that quintile.  5 

Although the predictiveness of the association between the PRS and risk is not affected by genetic 6 

ancestry calibration, within ancestral groups, the resulting distributions are affected, which can 7 

influence downstream clinical decisions or overall risk estimation when incorporating environmental 8 

and lifestyle factors. Adjusting for the first 5 PCs of ancestry resulted in non-zero means for some 9 

ancestries, whereas adjusting for admixture estimates resulted in means close to zero for all ancestries 10 

(except SAS). The difference from zero is exacerbated when scaling the scores to have a s.d. of 1, as the 11 

variance of the raw PRS is less than one. This happens because the scores are divided by the s.d. (which 12 

is less than one), resulting in an inflated mean distance from zero. The AD.AOU_μσ calibration method 13 

resulted in a standard Normal distribution for the highly admixed cohort, and was close to standard 14 

Normal for all other ancestries (except SAS). Finally, the upper tail frequencies were closely or accurately 15 

estimated by AD.AOU_μσ only.  16 

There are several limitations to this study. The sample sizes for EAS and SAS are too small to make any 17 

inferences about those genetic  clusters. Furthermore, the availability of EHR data, and therefore the 18 

number of cases and controls, may be associated with sex and self-identified race or ancestry 
25

. This 19 

may affect the power to detect associations in the AFR genetic cluster as well as when comparing the 20 

upper quintiles to the middle quintile for AFR, AMR, and OTH. Additionally, the estimated effect sizes 21 

observed in this study may be an underestimate as cases in AOU data may represent a healthier cohort 22 

than typical CRC cases due to survival bias. This is evidenced by the fact that the diagnosis of CRC 23 

occurred before entry into the study by a mean of 5 years with a maximum of 27 years. This 24 
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phenomenon of biobank participants being healthier than the population they represent has been 1 

observed previously 
34,35

.  2 

Another limitation is with the PRS, itself. Although the PRS is multi-ancestry, it was developed using 3 

participants from only two global populations: EUR and EAS. It has been shown that the applicability of 4 

PRS declines with further genetic ancestry distance from the population used to develop a PRS 
36

, which 5 

we observe here. Continued development of the PRS, incorporating samples from other ancestral 6 

populations should resolve the differences in predicted accuracy by genetic ancestry. As we used whole 7 

genome sequence data, observed differences in OR across ancestries cannot be attributed to 8 

uncertainty in imputation of genotypes, but rather are due to differences in MAF, LD with causal 9 

variation, and possible effect heterogeneity across ancestries. Interestingly, we observe the highest OR 10 

and AUC for AMR, which appears to cluster between EUR and EAS in PC1xPC2 space. However, this 11 

phenomenon has yet to be analyzed for PRS that are developed in more than one population, as in this 12 

study.  13 

Some methodological choices also limit the study. The global populations used to calculate the PCs of 14 

ancestry may be too general and not comprehensive. For example, we defined AFR ancestry as those 15 

that cluster with reference samples from East and West Africa, the Southwest U.S. and the Caribbean, 16 

which encompasses a large swath of diversity. Similarly, the reference samples that made up the MID 17 

cluster were limited to a small region that included samples from Druze, Moabite, Palestinian and 18 

Bedouin populations. We tried to accommodate these differences by allowing for more admixture 19 

among the AFR, AMR and MID clusters. Furthermore, the global ancestry references did not contain 20 

Pacific Islander or Native American samples, so we are unable to analyze the applicability of the PRS or 21 

the post-hoc calibration in these populations.  22 
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Another methodological choice was the size of the reference patient sample. We chose to limit the 1 

sample size to be the same as that in the global reference sample. However, a larger sample size for the 2 

patient reference may have resulted in improved training models for PC.AOU_μσ and AD.AOU_μσ for 3 

both the mean and variance corrections. Additionally, the sampling method could be further improved 4 

to ensure that the PC space is adequately sampled and the resulting patient reference sample 5 

represents the patient population of interest. Finally, the availability of millions of SNP genotypes for 6 

both PC projection and PRS calculation might be a barrier. However, the increased  availability of WGS 7 

and genotype imputation based on widely available SNP chips should relieve this issue. 8 

A comprehensive score which combines a calibrated multi-ancestry PRS with social determinants of 9 

health, and other known risk factors, is the ultimate goal for use in the clinic. We acknowledge that 10 

further development of the multi-ancestry PRS is necessary for equitable risk prediction across genetic 11 

ancestry. However, an improved raw PRS will still be associated with genetic ancestry due to LD and 12 

MAF differences across ancestries. We believe that a post-hoc genetic ancestry calibration based on the 13 

AD.AOU_μσ method will be most effective as it generates distributions closest to standard Normal for all 14 

genetic backgrounds, can be applied to any patient, and does not require the clinician to determine the 15 

patient’s ancestry.   16 

 17 
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Figures 17 

 18 

Figure 1: Each PRS by ancestry. A) RAW=original PRS. B) PC_μ=PRS adjusted by the first 5 PCs of ancestry 19 

in AOU. C) AD_μ=PRS adjusted by admixture estimates in AOU. D) PC.REF_μ.σ=PRS adjusted using a 20 

model trained on the first 5 PCs of ancestry in the 1KG and HGDP reference dataset. E) PC.AOU_μσ=PRS 21 
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adjusted using a model trained on the first 5 PCs of ancestry in the subset of unassigned AOU 1 

participants (AOU.REF). F)  AD.AOU_μσ=PRS adjusted using a model trained on admixture in AOU.REF. 2 

AFR=African, AMR=Admixed American, EAS=East Asian, EUR=European, MID=Middle Eastern, 3 

OTH=Other, SAS=South Asian.   4 

Figure 2: log(OR) by quintiles and calibration for African ancestry. A) RAW=raw PRS; B) PC_μ=raw PRS 5 

adjusted for first 5 PCs of ancestry; C) AD_μ=raw PRS adjusted for admixture; D) PC.AOU_μσ=raw PRS 6 

adjusted using a training model developed using a random subset of unscreened controls (AOU.REF) E) 7 

AD.AOU_μσ=raw PRS adjusted using a training model developed using AOU.REF and admixture 8 

estimates rather than PCs. 9 

Figure 3: log(OR) by quintiles and calibration for Admixed American ancestry. A) RAW=raw PRS; B) 10 

PC_μ=raw PRS adjusted for first 5 PCs of ancestry; C) AD_μ=raw PRS adjusted for admixture; D) 11 

PC.AOU_μσ=raw PRS adjusted using a training model developed a using random subset of unscreened 12 

controls (AOU.REF). E) AD.AOU_μσ=raw PRS adjusted using a training model developed using AOU.REF 13 

and admixture estimates rather than PCs. OR is not calculated in the lowest quintile as there were no 14 

cases with a PRS in this quintile.   15 

Figure 4: log(OR) by quintiles and calibration for European ancestry. RAW=raw PRS; PC_μ=raw PRS 16 

adjusted for first 5 PCs of ancestry; AD_μ=raw PRS adjusted for admixture; PC.AOU_μσ=raw PRS 17 

adjusted using a training model developed using a random subset of unscreened controls (AOU.REF). 18 

AD.AOU_μσ=raw PRS adjusted using a training model developed using AOU.REF and admixture 19 

estimates rather than PCs. 20 

Figure 5: log(OR) by quintiles and calibration for Middle Eastern ancestry. A) RAW=raw PRS; B) 21 

PC_μ=raw PRS adjusted for first 5 PCs of ancestry; C) AD_μ=raw PRS adjusted for admixture; D) 22 

PC.AOU_μσ=raw PRS adjusted using a training model developed using a random subset of unscreened 23 
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controls (AOU.REF). E) AD.AOU_μσ=raw PRS adjusted using a training model developed using AOU.REF 1 

and admixture estimates rather than PCs. 2 

Figure 6: log(OR) by quintiles and calibration for Other ancestry. A) RAW=raw PRS; B) PC_μ=raw PRS 3 

adjusted for first 5 PCs of ancestry; C) AD_μ=raw PRS adjusted for admixture; D) PC.AOU_μσ=raw PRS 4 

adjusted using a training model developed using random subset of unscreened controls (AOU.REF.) E) 5 

AD.AOU_μσ=raw PRS adjusted using a training model developed using AOU.REF and admixture 6 

estimates rather than PCs. 7 

Figure 7: Observed versus expected upper percentiles, by genetic ancestry and PRS. A) African B) 8 

Admixed American C) East Asian D) European E)Middle Eastern F) Other G) South Asian, and H) Highly 9 

Admixed (subset of Other). For each panel, solid colored line is observed upper 10th percentile. Dashed 10 

colored line is observed upper 7.5 percentile. Dotted colored line is observed upper 5th percentile. 95% 11 

C.I. are indicated with error bars. Horizontal black solid, dashed and dotted lines indicate the expected 12 

percentiles, respectively. RAW=raw PRS; PC_μ=raw PRS adjusted for first 5 PCs of ancestry; AD_μ=raw 13 

PRS adjusted for admixture; PC.AOU_μσ=raw PRS adjusted using a training model developed using a 14 

random subset of unscreened controls (AOU.REF). AD.AOU_μσ=raw PRS adjusted using a training model 15 

developed using AOU.REF and admixture estimates rather than PCs. 16 
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Tables 1 

Table 1: Count (percent) by ancestry and case status. “Cleaned cases” refers to participants assigned 2 

case status according to the CRC phenotyping algorithm. “Screened controls” refers to participants 3 

assigned control status by the CRC phenotyping algorithm. “Unassigned” refers to participants who were 4 

not excluded from analysis  and were not assigned to case or control status by the CRC phenotype 5 

algorithm.  Ancestries are AFR=African, AMR=Admixed American, EAS=East Asian, EUR=European, 6 

MID=Middle Eastern, OTH=Other, SAS=South Asian. For AMR, EAS and SAS, only total counts are given 7 

as the number of cases was <20, to comply with AOU publication rules.   8 

Ancestry  Cleaned 

Cases 

Screened 

Controls 

Unassigned N(%) 

AFR 42 2012 20296 22350 (23) 

AMR    9360 (9.5) 

EAS    2065 (2.1) 

EUR 204 6625 37102 43931 (45) 

MID 23 821 3179 4023 (4.1) 

OTH 57 2085 13305 15447 (16) 

SAS    760 (0.8) 

All 348 12378 85210 97936 

 9 
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Table 2: Mean observed age (min, max) by ancestry within all cleaned cases (age of onset), screened 1 

controls (age of last negative screening) and unassigned participants (age of consent). AFR=African, 2 

AMR=Admixed American, EAS=East Asian, EUR=European, MID=Middle Eastern, OTH=Other, SAS=South 3 

Asian. Age diff = difference between age of consent and observed age. Distributions are not reported for 4 

AMR, EAS and SAS due to AOU publication rules for sample sizes < 20.  5 

Ancestry Cleaned cases Screened controls Unscreened 

controls 

AFR 57(41,83) 57(18,90) 48(18,104) 

EUR 62(26,89) 61(18,94) 54(18,103) 

MID 65(34,84) 64(18,96) 59(18,101) 

OTH 55(19,83) 58(18,88) 46(18,100) 

All 60(19,89) 60(18,96) 50(18,104) 

Age diff -5.2 (-27,2.5) -2.5 (-34, 3.7) 0 

 6 

 7 
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Table 3: Properties of the calibrations methods. The training data included either global reference 1 

samples (1KG and HGDP, N=4,151), all of All of Us participants (AOU, N=97,936) or a reference 2 

ancestrally diverse subset of AOU (AOU.REF, N=4,151). 1KG=1000 Genomes; HGDP=Human Genome 3 

Diversity Project;  PC=Principal component of ancestry.  4 

 5 

Method Training Data Ancestry Variables Variance Adjustment 

PC_μ AOU  PC1-PC5 overall variance 

AD_μ AOU Admixture estimates overall variance 

PC.REF_μσ 1KG and HGDP PC1-PC5 linear model on PC1-PC5 

PC.AOU_μσ AOU.REF PC1-PC5 linear model on PC1-PC5 

AD.AOU_μσ AOU.REF Admixture estimates linear model on Admixture 

estimates 
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Table 4: Mean (s.d.) of PRS by ancestry. AFR=African, AMR=Admixed American, EAS=East Asian, 1 

EUR=European, MID=Middle Eastern, OTH=Other, ADM = Highly Admixed subset of OTH, SAS=South 2 

Asian. RAW=raw PRS; PC_μ=raw PRS adjusted for first 5 PCs of ancestry; AD_μ=raw PRS adjusted for 3 

admixture; PC.REF_μσ=raw PRS adjusted using a training  model developed using 1KG and HGDP 4 

reference data. PC.AOU_μσ=raw PRS adjusted using a training model developed using a random subset 5 

of unscreened controls (AOU.REF). AD.AOU_μσ=raw PRS adjusted using a training model developed 6 

using AOU.REF and admixture estimates rather than PCs. 7 

ANC N RAW PC_μ AD_μ PC.REF_μσ PC.AOU_μσ AD.AOU_μσ 

AFR 22385 0.40(0.41) 0.01(0.41) 0.00(0.41) 0.01(1.01) 0.01(0.99) -0.01(0.99) 

AMR 9382 0.29(0.45) -0.01(0.45) 0.00(0.45) 0.01(1.01) -0.03(1.00) 0.00(1.01) 

EAS 2069 0.37(0.47) 0.00(0.47) 0.00(0.47) -0.1(1.03) -0.01(0.95) -0.02(0.95) 

EUR 44099 0.38(0.47) 0.04(0.47) 0.00(0.47) 0.28(0.99) 0.10(0.97) 0.01(1.00) 

MID 4056 0.05(0.47) -0.25(0.47) 0.03(0.47) -0.43(0.99) -0.53(0.97) 0.04(0.93) 

OTH 

ADM 

15505 

6421 

0.27(0.47) 

0.30 (0.46) 

-0.07(0.47) 

-0.05 (0.46) 

-0.01(0.46) 

0.0 (0.46) 

-0.03(1.01) -0.14(1.00) 

-0.11 (1.01) 

-0.03(0.99) 

0 (1) 

SAS 760 0.25(0.47) 0.18(0.47) 0.01(0.47) -0.17(1.01) 0.28(0.98) 0.14(1.05) 
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Table 5: Estimated OR (95% C.I.) per s.d. change in PRS, unadjusted (first row) and adjusted for age and 1 

sex (second row), by ancestry. AFR=African, AMR=Admixed American, EUR=European, MID=Middle 2 

Eastern, OTH=Other. RAW=raw PRS; PC_μ=raw PRS adjusted for first 5 PCs of ancestry; AD_μ=raw PRS 3 

adjusted for admixture; PC.AOU_μσ=raw PRS adjusted using a training model developed using a random 4 

subset of unscreened controls (AOU.REF). AD.AOU_μσ=raw PRS adjusted using a training model 5 

developed using AOU.REF and admixture estimates rather than PCs. 6 

 7 

Ancestry RAW PC_μ PC.AOU_μσ AD_μ AD.AOU_μσ 

AFR 
1.5(1.02,2.08) 1.5(1.02,2.07) 1.4(1.01,1.93) 1.4(1.01,2.04) 1.4(1.01,1.91) 

1.4(0.99,2.02) 1.4(0.99,2.02) 1.4(0.99,1.88) 1.4(0.98,1.99) 1.4(0.98,1.87) 

AMR 

 

2.2(1.27,3.85) 2.2(1.26,3.80) 2.2(1.26,3.72) 2.2(1.29,3.84) 2.2(1.28,3.72) 

2.2(1.24,3.75) 2.1(1.23,3.70) 2.1(1.23,3.61) 2.2(1.26,3.74) 2.1(1.25,3.63) 

EUR 

 

1.6(1.43,1.89) 1.6(1.43,1.88) 1.7(1.46,1.95) 1.6(1.43,1.87) 1.7(1.45,1.92) 

1.7(1.44,1.90) 1.7(1.44,1.90) 1.7(1.47,1.96) 1.6(1.44,1.88) 1.7(1.46,1.93) 

MID 

 

1.1(0.71,1.63) 1.1(0.72,1.63) 1.1(0.7,1.67) 1.1(0.74,1.67) 1.1(0.71,1.77) 

1.1(0.7,1.60) 1.1(0.7,1.59) 1.1(0.68,1.63) 1.1(0.72,1.63) 1.1(0.69,1.73) 

OTH 

 

1.5(1.17,1.98) 1.5(1.16,1.97) 1.5(1.17,1.99) 1.5(1.16,1.97) 1.5(1.17,2) 

1.5(1.18,2.01) 1.5(1.17,2.00) 1.6(1.18,2.02) 1.5(1.18,2) 1.5(1.18,2.04) 

 8 
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Table 6: Estimated AUC and 95% C.I. for each PRS, by ancestry, comparing cleaned cases to screened 1 

controls. For each PRS, the first row contains results for the unadjusted AUC and the second row 2 

contains results for the AUC adjusted for age and sex. Although the theoretical  lower bound for the C.I. 3 

is 0.5, we include the actual lower value from the bootstrap estimation. AFR=African, AMR=Admixed 4 

American, EUR=European, MID=Middle Eastern, OTH=Other. RAW=raw PRS; PC_μ=raw PRS adjusted for 5 

first 5 PCs of ancestry; AD_μ=raw PRS adjusted for admixture; PC.AOU_μσ=raw PRS adjusted using a 6 

training model developed using a random subset of unscreened controls (AOU.REF). AD.AOU_μσ=raw 7 

PRS adjusted using a training model developed using AOU.REF and admixture estimates rather than PCs. 8 

Ancestry RAW PC_μ PC.AOU_μσ AD_μ AD.AOU_μσ 

 AFR 
0.6 (0.51, 0.67) 0.6 (0.51, 0.67) 0.6 (0.51, 0.67) 0.6 (0.50, 0.67) 0.6 (0.50, 0.67) 

0.6 (0.50, 0.69) 0.6 (0.49, 0.68) 0.6 (0.50, 0.69) 0.6 (0.50, 0.69) 0.6 (0.50, 0.69) 

 AMR 
0.7 (0.60, 0.83) 0.7 (0.60, 0.83) 0.7 (0.60, 0.82) 0.7 (0.61, 0.83) 0.7 (0.61, 0.83) 

0.7 (0.58, 0.80) 0.7 (0.57, 0.80) 0.7 (0.57, 0.80) 0.7 (0.58, 0.80) 0.7 (0.59, 0.81) 

 EUR 
0.6 (0.59, 0.67) 0.6 (0.59, 0.67) 0.6 (0.59, 0.67) 0.6 (0.59, 0.67) 0.6 (0.59, 0.67) 

0.6 (0.59, 0.68) 0.6 (0.59, 0.68) 0.6 (0.59, 0.68) 0.6 (0.59, 0.67) 0.6 (0.59, 0.68) 

 MID 
0.5 (0.40, 0.67) 0.5 (0.40, 0.67) 0.5 (0.40, 0.67) 0.5 (0.41, 0.67) 0.5 (0.41, 0.67) 

0.5 (0.39, 0.70) 0.5 (0.39, 0.70) 0.5 (0.38, 0.69) 0.6 (0.40, 0.71) 0.6 (0.40, 0.71) 

 OTH 
0.6 (0.56, 0.70) 0.6 (0.56, 0.70) 0.6 (0.56, 0.70) 0.6 (0.56, 0.70) 0.6 (0.56, 0.70) 

0.7 (0.58, 0.71) 0.6 (0.57, 0.71) 0.6 (0.56, 0.70) 0.6 (0.58, 0.71) 0.6 (0.58, 0.71) 
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