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ABSTRACT 

Objective: To investigate the demonstration in Large Language Models (LLMs) for clinical 

relation extraction. We focus on examining two types of adaptive demonstration: instruction 

adaptive prompting, and example adaptive prompting to understand their impacts and 

effectiveness. 

Materials and Methods: The study unfolds in two stages. Initially, we explored a range of 

demonstration components vital to LLMs’ clinical data extraction, such as task descriptions and 

examples, and tested their combinations. Subsequently, we introduced the Instruction-Example 

Adaptive Prompting (LEAP) Framework, a system that integrates two types of adaptive prompts: 

one preceding instruction and another before examples. This framework is designed to 

systematically explore both adaptive task description and adaptive examples within the 

demonstration. We evaluated LEAP framework’s performance on the DDI and BC5CDR chemical 

interaction datasets, applying it across LLMs such as Llama2-7b, Llama2-13b, and 

MedLLaMA_13B. 

Results: The study revealed that Instruction + Options + Examples and its expanded form 

substantially raised F1-scores over the standard Instruction + Options mode. LEAP framework 

excelled, especially with example adaptive prompting that outdid traditional instruction tuning 

across models. Notably, the MedLLAMA-13b model scored an impressive 95.13 F1 on the 

BC5CDR dataset with this method. Significant improvements were also seen in the DDI 2013 

dataset, confirming the method’s robustness in sophisticated data extraction. 

Conclusion: The LEAP framework presents a promising avenue for refining LLM training 

strategies, steering away from extensive finetuning towards more contextually rich and dynamic 

prompting methodologies. 
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INTRODUCTION 

Clinical relation extraction (RE), a natural language processing task, has emerged as a crucial 

task within healthcare informatics due to its significant role in deciphering drug interactions, side 

effects, and treatment outcomes [1]. The evolution of this field has been largely influenced by 

the advent of transformer-based models such as BERT, along with its specialized variants like 

BioBERT, BiolinkBERT, SciBERT, and PubmedBERT, which have established new 

performance benchmarks [2-6]. 

The rise of Generative Large Language Models (LLMs) has generated considerable interest in 

their application within clinical contexts, primarily due to their versatility and adaptability in 

processing complex medical data [7-14]. These models distinguish themselves from previous 

pre-trained models, such as BERT, by incorporating instructions into their input, providing 

explicit guidance for task completion, and generating expected responses. Typically, the input 

for generative LLMs consists of a task description followed by input data, often supplemented 

with examples to serve as demonstration. 

Current research on generative LLMs places a significant focus on manual instruction crafting or 

instruction tuning, aimed at enhancing the efficiency of LLMs across diverse NLP tasks [15-18]. 

More sophisticated techniques have emerged, such as the automated search methods developed 

by Prasad et al. [19] and Wei et al. [20], which identify optimal instructions or word choices for 

generative LLM instruction. 

Technological advancements like Chain-of-Thought (CoT) and in-context learning have 

significantly propelled the development of generative LLMs. The CoT methodology has 

particularly been a game-changer, encouraging LLMs to unfold complex reasoning step by step, 

which enhances their ability to handle multifaceted tasks. Several Studies [21-14] have 
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highlighted CoT’s effectiveness in promoting such detailed reasoning processes within 

generative LLMs. In a similar vein, in-context learning has also proven to be instrumental. By 

strategically providing LLMs with pertinent information, such as related entities [22,25,26] and 

illustrative examples [26,27], this approach improves models’ contextual understanding and their 

application of knowledge to RE. 

Additionally, emergence of retrieval based LLMs represents a cutting-edge and promising 

development in the field of generative LLMs for RE. This strategy gains its strength from 

synergizing with in-context learning, aiming to access and incorporate highly relevant 

supplementary resources, thereby enriching the model’s comprehension and analytical 

capabilities [27-29]. These studies illustrate the transformative impact of combining retrieval 

methodologies with generative LLMs, effectively enhancing their performance by providing 

them with a more nuanced and contextually rich knowledge base.  

Despite these advancements, challenges persist in crafting manual instruction or retrieval-based 

demonstrations. Developing high-quality instructions that capture intended behaviors is complex, 

and instruction datasets often lack size, diversity, and creativity [30]. While in previous study, 

when the manually crafted prompt meet its limit in transformer-based models, studies introduced 

a more dynamic method, soft prompt, which involves learning a prompt embedding matrix to 

dynamically adapt the PLMs [31-33].   

Building upon the concept of the soft prompt, our work introduces an Instruction-Example 

Adaptive Prompting Framework. This framework dynamically learns the embedding of 

instructions and examples to adapt the generative LLMs for clinical relation extraction. This 

study is driven by the goal of optimizing the use and application of demonstrations within LLMs 
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to fully exploit their capabilities in this complex domain. Our study is anchored on two primary 

contributions: 

1) Demonstration Diversity Operation: We designed various demonstration components and 

undertook a comprehensive analysis to ascertain their impact on enhancing LLM 

performance in clinical relation extraction tasks. This part of our research involves 

defining and experimenting with different configurations of demonstration elements to 

determine the most effective combinations of demonstration elements for relation 

extraction task. 

2) Development of LLM Instruction-Example Adaptive Prompting (LEAP) Framework: 

This framework is specifically designed to assess the impact of demonstration clarity on 

LLM performance. By focusing on the nuances of task descriptions and the integration of 

examples, the LEAP framework aims to provide deeper insights into how instructional 

design and in-context examples influences the accuracy and efficiency of LLMs in 

parsing and understanding complex clinical relations. 

To the best of our knowledge, LEAP framework is the first framework to implement adaptive 

prompt in demonstration of generative LLMs. Through these contributions, our study seeks to 

push the boundaries of current understanding and application of LLMs in clinical relation 

extraction, particularly in deciphering intricate chemical-chemical interactions. 

 

BACKGROUND 

Soft prompt 

In the realm of pre-trained language models (PLMs), fine-tuning (FT) has historically been the 

go-to method, which involves the updating of all model parameters for a specific task. However, 
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as the scale of models expands rapidly, alternative training strategies like prompting and prompt-

oriented fine-tuning have gained prominence [34]. Prompting entails freezing all parameters of a 

PLM and utilizing a natural language prompt to query the model [35]. In the concept of soft 

prompt tuning, only continuous prompts are adjusted. Pioneered by Liu et al. [31], Lester et al. 

[32], and by Liu et al. [33], this involves adding trainable continuous embeddings, also known as 

continuous prompts, to the input word embeddings sequence.  

Instruction tuning (InsT) 

A major challenge with generative LLMs is the mismatch between their training goals and user 

requirements [30].  To address this issue, InsT has become a crucial approach. InsT improves the 

capabilities and control of LLMs by training them with (DEMONSTRATION+INPUT 

SENTENCE, OUTPUT) pairs. The DEMONSTRATION here includes instruction and 

examples: Instruction refers to the user’s directive, these instructions act as a guiding framework, 

aligning the model’s outputs with the desired response criteria or specific domain knowledge, 

thereby giving users the ability to direct the model’s responses. While OUTPUT is the model’s 

ideal response adhering to this instruction. For instance, in a RE task, an Instruction might state, 

“You are an excellent linguist. The task is to predict relationship between the given head entity 

and tail entity within a given sentence, this relation which must be in (‘mechanism’, ‘effect’, 

‘advice’, ‘int’, ‘None’).” The examples within a demonstration typically include an input 

sentence paired with its desired output, illustrating the model’s target response. For example, 

“Input: In the sentence: Milk, milk products, and calcium-rich foods or drugs may impair the 

absorption of EMCYT. The relationship between calcium and EMCYT is?  Response: 

mechanism.” 
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METHODS 

Overview of methods. 

Our methodology is structured into two phases. In the initial phase, we concentrated on 

investigating various combinations of demonstration components, which is a fundamental step 

toward the phase II. This exploration aimed to identify the most effective arrangements of these 

demonstration components in guiding LLMs for clinical relation extraction tasks. The second 

phase involved the development and implementation of the LEAP framework. This framework 

was designed to facilitate a more dynamic interaction between the LLM and the demonstration, 

allowing for an adaptive approach to both the instructions and the examples provided to the LLM 

models. Through this method, we aimed to comprehensively assess and enhance the efficiency and 

accuracy of LLMs in clinical relation extraction. In the following sections, we will introduce the 
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dataset and task, phase I: Demonstration Diversity Operation, and phase II: Implement of LEAP 

framework, and Experiments and evaluation. 

 

Figure 1. Overview of Study. 

Datasets and task formulation 

DDI Extraction 2013 Corpus (DDI 2013): This dataset, introduced by Herrero-Zazo [36], is used 

for the drug-drug interaction task. The training dataset of DDI extraction consists of 714 texts (572 

from DrugBank and 142 MedLIne abstracts) and test dataset consists of 158 DrugBank Texts and 

and 33 MedLine abstracts. We implement a train/validation/test split of 543/181/181 files with 

those texts, respectively. 

BC5CDR: Introduced by Taboureau et al. [37], BC5CDR is a dataset curated for chemical-disease 

relation extraction tasks. It contains 1,500 documents evenly split into training, validation, and test 

sets, each consisting of 500 documents. 

We deploy LLMs for the purpose of RE, with the goal of identifying the relationship between two 

designated entities within a given text context. The input for the LLM consists of a context labeled 

as 𝐶, incorporating a narrative passage p containing two entities, head entity/subject E1 and tail 

entity/object E2. The LLM’s role is to interpret the context and produce a descriptive relation r 
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that accurately reflects the connection between the entities. The output is expected to be a string 

or label that categorizes the relationship between E1 and E2, adhering to a pre-defined set of 

relationship categories. In cases where the entities’ relationship does not correspond to any 

predefined categories, the LLM should output “NULL” or an equivalent term. 

Demonstration diversity operation 

In this section, we delineate the constituent elements of demonstration and the various 

demonstration modes and examine their impact on the performance of LLMs in clinical RE tasks. 

The foundational structure of a demonstration here is composed of a task description and options. 

The task description explicates the nature of the task, setting the stage for the LLM’s operation. 

The options component enumerates all possible relations as defined by the corresponding dataset, 

which is represented in Figure 2. Furthermore, we have enriched the demonstration with additional 

components to enhance the RE process. A key addition is the inclusion of option descriptions, 

which serve to elucidate clinical entity relationships that may not be immediately apparent to the 

LLM. For instance, the relation type “int” within the DDI dataset could be perplexing for the LLM, 

as it refers a confirmed drug-drug interaction that, without further detail, remains ambiguous. 

Another crucial component is the inclusion of examples, which supply supplementary in-context 

information, thereby enhancing the LLM’s comprehension of the task at hand. The demonstration 

design also accounts for the potential influence of reasoning CoT methodologies, which further 

require the LLMs to provide extra explanation for the relation of entities. Subsequently, we 

constructed various prompt modes through diverse amalgamations of these instructional 

components, each designed to test and optimize the LLM’s performance in accurately extracting 

clinical relations. This systematic approach allowed us to measure the impact of different 
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instructional designs and set the stage for developing the LLM Instruction-Example Adaptive 

Prompting Framework (LEAP) in the subsequent phase of the study. 

 

Figure 2. Example of Demonstration Diversity Operation.  

Implement of Instruction-Example Adaptive Prompting (LEAP) Framework 

In the traditional instruction tuning shown in Figure 3a, the Instruction + Example demonstration 

and input sentence are fed into the LLM to generate the relation type between two entities in a 

sentence. The instructions and examples are consistently crafted in natural language. To enable 

demonstration dynamically to update the LLM and mitigate input limitations arising from 

lengthy examples, we introduce LEAP framework. LEAP is designed to enhance the generative 

LLM’s output by strategically integrating adaptive prompts into the input context. This approach 

assists the model in generating more precise relational outputs. 

Given the embedding of Instruction + Example demonstration  𝐸 = {𝐼!, … , 𝐼" , … , 𝑒!, … , 𝑒#} 

where  𝐼" denotes the token embedding for each token in the instruction, and  𝑒#  denotes the 
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token embedding for each token in the randomly sampled example from a valid dataset.   We 

crafted two distinct methods for integrating these adaptive prompts:  

1. Instruction Adaptive Tuning Method (Figure 3b): This method involves the insertion of 

soft vectors before the task description. The demonstration sequence embedding is 

represented 𝐸 = {𝑣!, … , 𝑣$ , … , 𝐼!, … , 𝐼" , … , 𝑒!, … , 𝑒#} where 𝑣$ denotes the soft prompt 

vectors, which is randomly initialized from the embedding layer 𝑀 of LLM and is 

learnable during the training process. 𝐼" denotes the token embedding for each token in 

the instruction.  𝑒# denotes the token embedding for each token in the randomly sampled 

example from valid dataset.  This configuration is designed to prime the LLM with 

additional task-relevant information before it processes the actual context. 

2. Example Adaptive Tuning Method (Figure 3c): The second method positions the soft 

vectors between the task description and the examples in the context embeddings.   The 

input sequence embedding is represented as:	𝐸 = {𝐼!, … , 𝐼" , 𝑣!, … , 𝑣$ , … , 𝑒!, … , 𝑒#}   

where 𝑣$ denotes the soft prompt vectors, which is randomly initialized from the 

embedding layer 𝑀 of LLM and is learnable during the training process. Here, the soft 

prompt vectors	𝑣$ serve as the traditional cue that aims to add additional example-

relevant information, and bridge the task description with the examples, potentially 

enhancing the LLM’s ability to generalize from the provided examples to new instances. 

The relation 𝑦 of entities pair in the input sentence is generated by the function  𝑝(𝑦|𝑥) =

𝑃(𝑦|𝑥, 𝐸) where 𝐸 is the embedding of demonstration, 𝑥 is the input sentence, and the text y is 

the desire output (relation types) for the input sentence x. 

The objective of LEAP framework is  ℒ = −∑ 𝑦%
$&! log(𝑦:) where y represents the true label. 

𝑦:	represents the generated text of LEAP.  
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Figure 3. Instruction tuning (a) and LLM Instruction-Example Adaptive Prompting (b, c).  

 

Experiments and evaluation 

During our research, we engaged with a suite of sophisticated LLMs. Noteworthy among these is 

Llama 2 [38], an innovative open-source language model from Meta AI acclaimed for its 

distinguished performance across numerous benchmarks, encompassing reasoning, coding, 

language mastery, and information retrieval tasks. We incorporated two models from the Llama 

2 in our study: the Llama2-7b with 7 billion parameters, and the more expansive Llama2-13b 

with 13 billion parameters. We also employed MedLLaMA_13B [39], a specialized version of 

the Llama2-13b tailored with a Medical Corpus to enhance its medical query response 

capabilities. 

Moreover, we included OpenAI’s GPT3.5 Turbo (hereafter referred to as GPT3.5) and GPT4 in 

our arsenal, both being LLMs celebrated for their remarkable language understanding and 

generation abilities.  

In particular, we leveraged Llama2-7b [38], MedLLaMA_13B [39], GPT3.5, and GPT4 for the 

Demonstration Diversity Operation and selected Llama2-7b, Llama2-13b, and MedLLaMA_13B 

for Instruction-Example Adaptive Prompting. These models are at the forefront of language 

model architecture and are especially appropriate for the intricate task of relation extraction. 
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In evaluating the effectiveness of our LEAP framework, we benchmarked against a number of 

formidable baselines, including: 

1) The BERT Family: A series of BERT variants, namely PubmedBERT [2], BioBERT [3], 

SciBERT [5], and BiolinkBert [6], were assessed for their performance on the datasets 

used in our research.  

2) The Llama 2 Family: This includes the aforementioned Llama 2 models and the 

MedLLaMA_13B [39], which have demonstrated superior performance across various 

benchmarks. We applied instruction tuning to the Instruction + Example demonstration 

mode, without incorporating additional soft vectors. The approach is depicted in Figure 

3a. 

3) OpenAI's GPT Models: The GPT3.5 and GPT4 served as baselines, noted for their 

comprehensive language processing capabilities. 

For the tuning of LEAP, we experimented with the insertion of 5 to 20 soft tokens and tested 

learning rates of 1e-4 and 1e-5. Training was conducted with batch sizes ranging from 1 to 4. 

Our chosen evaluation metric was the micro-averaged F1 score, which provides a harmonic 

mean of precision and recall. 

 

RESULTS  

The comparative analysis presented in Figure 4 delineates the performance differentials across 

various demonstration modes. The experiment’s performance metrics highlighted the superior 

efficacy of certain demonstration modes. Specifically, the Instruction + Options + examples and 

Instruction + Options + options description+ examples mode led to a notable increase in F1-

scores across most models when compared to the baseline Instruction + Options mode. In the 
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BC5CDR dataset, incorporating examples or options descriptions proved beneficial, with the 

mode Instruction + options + options description + example particularly standing out in the 

Llama2-13b model, achieving an impressive F1 score of 0.5070. Adding only examples was 

generally more advantageous than just adding the options description across all the models. For 

instance, the Llama2-7b model saw an F1 score increase to 0.353 from 0.073 with the addition of 

examples, while adding the options description increase to 0.215. Similarly, In the DDI 2013 

dataset, the inclusion of examples consistently improved performance across the models, while 

the addition of options description had a more variable impact. Specifically, the instruction + 

options + example mode excelled in the Medllama_13B model, boosting the F1 score to an 

impressive 0.359. For larger models such as GPT3.5 and GPT4 in BC5CDR and DDI 2013, there 

was a noticeable trend where the more information provided, the better the models performed. 

The instruction + options + example + options explanation mode was best for GPT4, which 

achieved a peak F1 score of 0.770 in BC5CDR and 0.760 in DDI 2013, underscoring its ability 

to utilize detailed prompts effectively.  

The Chain-of-Thought prompt mode exhibits varied effectiveness, with its impact differing 

significantly across models and datasets. For example, in the BC5CDR dataset, this 

demonstration mode did not lead to performance improvements for Llama2-7b and GPT3.5, 

where the F1 scores remained relatively low at 0.0020 and 0.3900, respectively. However, 

MedLLaMA_13B showed a substantial boost with a 50% increase in the F1 score when using 

the Chain-of-Thought mode, suggesting that this model may be better at processing and 

benefiting from the step-by-step reasoning this prompt structure provides. In the DDI 2013 

dataset, the results were similarly mixed. The Chain-of-Thought prompts led to minimal changes 

for Llama2-7b and Llama2-13b, with F1 scores of 0.014 and 0.006, respectively, which does not 
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represent a clear advantage over other prompt types. Yet, for MedLLaMA_13B, the Chain-of-

Thought prompt resulted in an improvement, with an F1 score of 0.065, although this was not as 

high as the increase seen with the examples-only prompts. 

 

Figure 4. performance of demonstration diversity operation. 

Table 1. Performance of RE in BC5CDR and DDI 2013. 

Method Model BC5CDR DDI 2013 
   Micro 

P 
Micro 

R 
Micro 

F1 
Micro 

P 
Micro 

R 
Micro 

F1 

Fine-tuning 

BioBERT 79.42 79.42 79.42 85.68 85.68 85.68 
SciBERT  82.82 82.82 82.82 85.98 85.98 85.98 
BioLinkBERT  83.54 83.54 83.54 85.88 85.88 85.88 
PubmedBERT 82.36 82.36 82.36 85.31 85.31 85.31 

Zero-shot GPT4 76.00 76.00 76.00 77.00 77.00 77.00 

Instruction 
tuning 

Llama2-7b 89.93 89.93 89.93 89.44 89.44 89.44 
Llama2-13b 91.35 91.35 91.35 91.73 91.73 91.73 
MedLLaMA_13B 92.70 92.70 92.70 91.33 91.33 91.33 

LEAP 
method 1 

Llama2-7b IAT* 90.11 90.11 90.11 89.40 89.40 89.40 
Llama2-13b IAT 85.53 85.53 85.53 92.24 92.24 92.24 
MedLLaMA_13B IAT 91.44 91.44 91.44 91.91 91.91 91.91 

LEAP 
method 2 

Llama2-7b EAT* 92.04 92.04 92.04 90.80 91.12 91.12 
Llama2-13b EAT 94.70 94.70 94.70 91.76 91.76 91.76 
MedLLaMA_13B EAT 95.13 95.13 95.13 92.20 92.20 92.20 
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* IAT: instruction adaptive tuning, EAT: example adaptive tuning 

Table 1 offers a detailed performance for two distinct tuning approaches: the instruction adaptive 

tuning and the example adaptive tuning. These strategies demonstrate that fine-tuning LLMs 

(Llama2-7b, Llama2-13b, MedLLaMA_13B) and employing adaptive tuning can significantly 

surpass the performance of traditionally fine-tuned LMs (BioBERT, SciBERT, BioLinkBERT, 

PubmedBERT) and even zero-shot GPT4, as evidenced by the metrics provided. Specifically, in 

the BC5CDR dataset, MedLLaMA_13B using example adaptive tuning reached the pinnacle of 

performance, boasting an F1 score of 95.13, while in the DDI 2013 dataset, Llama2-13b 

employing instruction adaptive tuning achieved the top F1 score of 92.24. 

In the BC5CDR dataset, the example adaptive tuning strategy, especially when applied to 

MedLLaMA_13B, significantly outperformed the fine-tuned models, achieving a superior F1 

score of 95.13 compared to 92.70 for the fine-tuned version. Llama2-7b with its example 

adaptive tuning and Llama2-13b with its example adaptive tuning also reached notable high 

performance, with F1 score of 92.04 and 94.70, respectively, surpassing the results of instruction 

tuning, where Llama2-7b and Llama2-13b scored 89.93 and 91.35. Similarly, in the DDI 2013 

dataset, the example adaptive tuning maintained superiority over the fine-tuning approach for all 

models tested.  The example adaptive tuning also demonstrated a slight edge over the fine-tuning 

approach in models MedLLaMA_13B and Llama2-13b, affirming the potential of adaptive 

tuning in enhancing LLM performance.  

While Instruction adaptive tuning exhibited fluctuating outcomes across both datasets. In the 

BC5CDR dataset, its advantage was observed solely in the Llama2-7b model, where it 

outperformed the same model utilizing standard instruction tuning. In the case of the DDI 2013 

dataset, the deployment of instruction adaptive tuning on both Llama2-13b and 
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MedLLaMA_13B models yielded better results than when these models were subjected to 

conventional instruction tuning. 

 

DISCUSSION 

The discussion of the potential applications of generative LLMs in RE has gained momentum, as 

current research often gravitates towards deploying state-of-the-art methodologies CoT reasoning 

or retrieval-based techniques to construct hard instructions [21-29]. These methods aim to enhance 

generative LLMs’ ability to comprehend and process complex data. Notably, there is emerging 

evidence suggesting that prefix prompts may surpass the performance of fine-tuned models in 

clinical RE [40]. However, the literature still lacks a comprehensive exploration of adaptive tuning 

in demonstration and, more specifically, example adaptive tuning with the latest and most 

sophisticated generative LLM frameworks, such as Llama. 

In the initial phase of our study, we have delved into various demonstration paradigms, seeking to 

understand their influence on RE tasks. With the Instruction + Options + Examples and Instruction 

+ Options + Examples +Options Description modes leading to a notable increased performance, 

our findings resonate with the insights garnered from our prior research [27], indicating that the 

integration of examples within demonstration is not merely beneficial but critical for the success 

of RE tasks. This alignment underscores the significance of tailored examples in enhancing model 

comprehension and suggests a pivotal role for example-based learning in LLMs’ operational 

frameworks. 

Moving into the second stage, our results show that the example adaptive tuning configuration 

yields superior performance for MedLLaMA_13B, Llama2-7b, and Llama2-13b models when 

juxtaposed with the instruction finetuning versions of the same models. This enhancement in 
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performance indicates that example-based learning may provide a more robust framework for 

these models to understand and process complex tasks. 

In the BC5CDR and DDI 2013 dataset, the instruction adaptive tuning’s performance varied 

among the models and did not yield the same level of enhancement as the example adaptive tuning. 

This variation suggests that within the domain of biomedical RE, prompts augmented with well-

crafted examples are more critical than mere task explanations. This aligns with our initial phase 

findings, where the performance did not significantly improve with the addition of explanations 

for various relation labels compared to the mode adding the examples, reaffirming the importance 

of examples in RE task. 

The implications of these findings are far-reaching. They invite us to reconsider the traditional 

reliance on extensive finetuning in favor of more dynamic, example-rich, and context-aware 

prompting strategies. By embracing this shift, we could potentially streamline the training process, 

reduce computational overheads, and accelerate the deployment of generative LLMs in real-world 

medical applications. Further research is warranted to validate these preliminary results and to 

explore the scalability of these approaches, potentially leading to a new paradigm in the training 

and application of generative LLMs for specialized tasks such as medical relation extraction. 

This study, while offering valuable insights, does acknowledge certain constraints: Firstly, the 

scope did not extend to assessing the impact that varying lengths of soft prompts may have. Second, 

a comprehensive examination of how model size influences outcomes was not conducted. For 

instance, we did not implement the Llama 70b model in our experiments. 

CONCLUSION 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2023. ; https://doi.org/10.1101/2023.12.15.23300059doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.15.23300059
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our investigation into the application of LLMs for RE tasks has unveiled promising avenues for 

enhancing model performance through LEAP adaptive tuning strategies. The study’s comparative 

analysis between instruction adaptive and example adaptive tuning on state-of-the-art models like 

Llama highlights the substantial benefits of incorporating contextually rich examples into 

demonstration. Our findings not only corroborate previous research advocating for example-

centric approaches but also showcase the potential of these strategies to outperform traditional 

finetuning methods. 
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FIGURE LEGENDS 

Figure 1. Overview of Study. 

Figure 2. Example of Instruction Searching.  

Figure 3. Instruction tuning (a) and LLM Instruction-Example Adaptive Prompting (b, c).  

Figure 4. performance of demonstration diversity operation. 
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