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Abstract

Emergency admissions (EA), where a patient requires urgent in-hospital care, are
a major challenge for healthcare systems. The development of risk prediction models
can partly alleviate this problem by supporting primary care interventions and public
health planning. Here, we introduce SPARRAv4, a predictive score for EA risk that
will be deployed nationwide in Scotland. SPARRAv4 was derived using supervised and
unsupervised machine-learning methods applied to routinely collected electronic health
records from approximately 4.8M Scottish residents (2013-18). We demonstrate im-
provements in discrimination and calibration with respect to previous scores deployed
in Scotland, as well as stability over a 3-year timeframe. Our analysis also provides
insights about the epidemiology of EA risk in Scotland, by studying predictive perfor-
mance across different population sub-groups and reasons for admission, as well as by
quantifying the effect of individual input features. Finally, we discuss broader chal-
lenges including reproducibility and how to safely update risk prediction models that
are already deployed at population level.
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Introduction

Emergency admissions (EA), where a patient requires urgent in-hospital care, represent
deteriorations in individual health and are a major challenge for healthcare systems. For
example, approximately 395,000 Scottish residents (≈1 in 14) had at least one EA between 1
April 2021 and 31 March 2022 [Public Health Scotland, 2022]. In total, around 600,000 EAs
were recorded for these individuals, nearly 54% of all hospital admissions in that period,
and they resulted in longer hospital stays (6.8 days average) compared to planned elective
admissions (3.6 days average). Modern health and social care policies aim to implement
proactive strategies [Rural Access Action Team, 2005], often by appropriate primary care
intervention [McDonagh et al., 2000, Sanderson and Dixon, 2000, Coast et al., 1996]. Ma-
chine learning (ML) can support such interventions by identifying individuals at risk of EA
who may benefit from anticipatory care. If successful, such interventions can be expected
to improve patient outcomes and reduced pressures on secondary care (Figure 1A).

A range of risk prediction models have been developed in this context [Rahimian et al.,
2018, Lyon et al., 2007, Wallace et al., 2014, Bottle et al., 2006, Billings et al., 2006,
Hippisley-Cox and Coupland, 2013]. However, transferability across temporal and geo-
graphical settings is limited due to differing demographics and data availability [Wallace
et al., 2014]. Development of models in the setting in which they will be used is thus
preferable to reapplication of models trained in other settings. In Scotland, the Information
Services Division of the National Services Scotland (now incorporated into Public Health
Scotland; PHS) developed SPARRA (Scottish Patients At Risk of Re-admission and Ad-
mission) — an algorithm to predict the risk of EA in the next 12 months. SPARRA was
derived using national electronic health records (EHR) databases and has been in use since
2006. The current version of the algorithm (SPARRAv3) [Health and Social Care Infor-
mation Programme, 2011] was deployed in 2012/13 and is calculated monthly by PHS for
almost the entire Scottish population. Individual-level SPARRA scores can be accessed by
general practitioners (GPs), helping them to plan mitigation strategies for individuals with
complex care needs. Collectively, SPARRA scores may be used to estimate future demand,
supporting planning and resource allocation. SPARRA has also been used extensively in
public health research [Leckcivilize et al., 2021, Highet et al., 2014, Bajaj et al., 2016, Canny
et al., 2016, Manoukian et al., 2021, Wallace et al., 2016].

In this paper we update the SPARRA algorithm to version 4 (SPARRAv4) using con-
temporary supervised and unsupervised ML methods. In particular, we use an ensemble of
machine learning methods [Van der Laan et al., 2007], and use a topic model [Blei et al.,
2003] to derive further information from prescriptions and diagnostic data. This represents
a large scale ML risk score, fitted and deployed at national level, and widely available in
clinical settings. We develop SPARRAv4 using EHRs collected for around 4.8 million (after
exclusions) Scottish residents between 2013 and 2018. Among other variables, this includes
data about past hospital admissions, long term conditions (e.g. asthma) and prescriptions.
We use cross-validation to evaluate the validity of SPARRAv4 and its stability over time.
This shows an improvement of performance with respect to SPARRAv3 in terms of dis-
crimination and calibration, including a stratified analysis across different subpopulations.
We also perform extensive analyses to determine what reasons for emergency admission are
predictable, and use Shapley values [Lundberg and Lee, 2017] to quantify the effect of in-
dividual input factors. Finally, we discuss some of the practical challenges that arise when
developing and deploying models of this kind, including issues associated to updating risk
scores that are already deployed at population level.
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Reproducibility is critical to ensure reliable application of ML in clinical settings [Mc-
Dermott et al., 2021]. To provide a transparent description of our pipeline, this manuscript
conforms to the TRIPOD guidelines [Collins et al., 2015] (S1). Moreover, all code is publicly
available at github.com/jamesliley/SPARRAv4. This includes non-disclosive outputs used
to generate all the figures and tables presented in this article.

Results

Data overview

The input data prior to any exclusions combines multiple national EHR databases held
by Public Health Scotland for 5.8 million Scottish residents between 1 May 2013 and 30
April 2018 (Supplementary Table S2), some of whom died during the observation period.
These comprised 468 million records, comprising interactions with the Scottish healthcare
system and deaths. The number of total available records varies across sex, age, and SIMD
(Figure 1B), and when records are grouped by database (Supplementary Figure S1A). In
particular, marginally more records are available for individuals in the most deprived areas
(as measured by deciles of the 2016 Scottish Index of Multiple Deprivation (SIMD); [Scottish
Government, 2016]), particularly within accidents and emergency and mental health hospital
records. Two additional tables (see Supplementary Table S2) containing historic data about
long term conditions (LTC, back to 1981) and mortality records were also used as input.

We selected three time cutoffs for model fitting (1 May and 1 December 2016, and 1
May 2017) leading to 17.4 million individual-time pairs, hereafter referred to as samples
(Figure 1C). This choice was informed by the extent of data required to define the input
features used by the score (3 years prior the time cutoff) and the prediction target (1 year
after the time cutoff). We used the earliest (1 May 2016) and latest (1 May 2017) possible
time cutoffs, and a third time cutoff halfway between these. Although we could have used
more than one time cutoff between the earliest and latest, we deemed that this would add
little because, for most patients, we expect to have negiblible variation in their input features
and EA status from month to month. After exclusions (which were predominantly due to
samples without SPARRA v3 scores; see Methods), the data comprise 12.8 million samples
corresponding to 4.8 million individuals. Overall, the study cohort is slightly older, has
more females, and is moderately more deprived than the general population (Table 1). The
prediction target was defined as a recorded EA to a Scottish hospital or death in the year
following the time cutoff (see Methods). In total, 1,142,169 EA or death events (9%) were
observed across all samples. This includes 57,183 samples for which a death was recorded
(without a prior EA within that year) and 1,084,986 samples for which an EA was recorded
(amongst those, 107,827 deaths were observed after the EA). As expected, the proportion
of deaths amongst the observed events increases with age (Supplementary Figure S1B).
Moreover, patients with an EA or death event (in at least one time cutoff) are, on average,
older and more deprived than those without an event (Table 1).

Overall predictive performance

In held out test data, SPARRAv4 was effective at predicting EA, and outperformed SPARRAv3
on the basis of area-under-receiver-operator-characteristic (AUROC) and area-under-precision-
recall-curve (AUPRC) (Figure 2A-B). SPARRAv4 was also better calibrated, particularly
for samples with observed risk ≈ 0.5 (Figure 2C). Whilst SPARRAv3 and SPARRAv4 scores
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Cohort

Variable
Scottish

population
Input
data

After
exclusions

EA or
death

No EA or
death

Sex (%)
Male 48.5 48.2 45.4 46.2 45.3
Female 51.5 51.8 54.6 53.7 54.7

Age at time cutoff (%)
0-19 16.9 21.1 19.6 11.8 20.4
20-70 71.2 64.2 64.9 50.1 66.4
71+ 11.9 14.7 15.4 38.1 13.2

SIMD decile (%)
1-5 50.0 50.8 52.0 59.5 51.2
6-10 50.0 49.2 48.0 40.5 48.8

Any LTC (%) Unknown 29.4 32.1 58.8 29.5

Table 1: Demographic summary for the different cohorts: the whole Scottish pop-
ulation (approximately 5.8 million), those present in the input databases at least one
(17,488,596 samples comprising 5,829,532 unique individuals), our study cohort after ex-
clusions (12,866,084 samples comprising 4,835,428 unique individuals) and our study cohort
after stratifying by event status (EA or death: 1,142,169 samples comprising 667,566 unique
individuals; no EA or death: 11,723,915 samples comprising 4,670,756 unique individuals).
Summary statistics were calculated using sample-level data. The EA or death cohort in-
cludes individual-time pairs for which the individual at least one EA or died during the
year after the time. LTC denotes long-term conditions (e.g. epilepsy). Data for the Scottish
population is from the 2011 Census [Office for National Statistics et al., 2011].
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were highly correlated, large discrepancies were observed for some samples (Supplementary
Figure S2). In samples for whom v3 and v4 disagreed (defined as |v3− v4| > 0.1), we found
that v4 was better-calibrated than v3 (Figure 2D).

We also assessed the potential population-wide benefit of SPARRAv4 over SPARRAv3
directly. Amongst the 50,000 individuals judged to be at highest risk by SPARRAv3, around
4,000 fewer individuals were eventually admitted that were amongst the 50,000 individuals
judged to be at highest risk by SPARRAv4 (Figure 2E). For another perspective, if we
simply assume that 20% of admissions are avoidable [value taken from Blunt, 2013], that
avoidable admissions are as predictable as non-avoidable admissions, and that we wish to
pre-empt 3,000 avoidable admissions by targeted intervention on the highest risk patients
(the second assumption is conservative, since avoidable admissions are often predictable due
to other medical problems). Then, by using SPARRAv4, we would need to intervene on
approximately 1,500 fewer patients than if we were to use SPARRAv3 in the same way, in
order to achieve the target of avoiding 3,000 admissions (Figure 2F).

SPARRAv4 comprises an ensemble of models (see Methods), so we also explored a
breakdown of AUROC/AUPRC (Table 2) and calibration (Supplementary Figure S3) across
constituent models. The ensemble had slightly better performance than the best constituent
models (XGB and RF). Note that some constituent models (ANN, GLM, NB) had ensemble
coefficients which were regularised to be vanishingly small, so in practice scores for those
models need not be computed when calculating SPARRAv4. We investigated whether
performance could be improved by using separate sets of coefficients for each SPARRAv3
cohort, but found that the improvement was so small that we judged this to be unnecessary
(Supplementary Note S3).

Stratified performance of SPARRAv3 and SPARRAv4

To examine differences in performance more closely, we explored the performance of SPARRAv3
and SPARRAv4 across different patient subcohorts defined by age, SIMD deciles and the
four subcohorts defined as part of SPARRAv3 development. Generally, we observed that
SPARRAv4 had better discrimination performance across all subcohorts (Figure 3A).

Conditional performance of SPARRAv4 by admission type and im-
minence

Figure 3B displays the distribution of SPARRAv4 scores stratified according to event status
and, for those with an EA, according to the diagnosis that was assigned to the patient during
admission (Supplementary Table S5). When comparing samples with and without an event
(defined by the composite EA or death outcome), we observed the former had generally
lower SPARRAv4 scores. Amongst those with an event, all-cause mortality was associated
with high SPARRAv4 scores. If the event was an EA, we found that samples with certain
medical classes of admission tended to have particularly high SPARRA scores, suggesting
that such admissions can be predicted disproportionately well (Figure 3B): in particular,
those with mental/behavioural, respiratory and endocrine/metabolic related admissions. As
one would expect, we were less able to predict external causes of admissions (e.g., S21: open
wound of thorax [World Health Organization, 2004]). Obstetric and puerperium-related
admissions were particularly challenging to predict by SPARRAv4. Similarly, all cause
mortality was also associated with high SPARRAv4 scores. As one would expect, we were
less able to predict external causes of admissions (e.g., S21: open wound of thorax [World
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Health Organization, 2004]). Obstetric and puerperium-related admissions were particularly
challenging to predict by SPARRAv4. When further analysing SPARRAv4 scores, we also
found that among individuals who had an EA during the 1 year outcome period, those with
higher risk scores were likelier to have the first EA near the start of the period (Figure 3C).
We did not use an absolute threshold to determine who is at high risk. Instead, we ranked
individuals according to their scores and looked at those in the top part of the ranking (i.e.
with the highest risk scores).

Deployment scenario stability and performance attenuation

We next addressed two crucial aspects pertaining to practical usage of SPARRAv4. Firstly,
we assess the durability of performance for a model trained once (at the time cutoff 1 May
2014, using a one-year lookback) and employed to generate scores at future times (1 May
and 1 December 2015, 1 May and 1 December 2016, 1 May 2017), confirming it does not
deteriorate. This is the way in which SPARRAv4 will be deployed by PHS, generating new
scores each month but without repeated model updating, akin to SPARRAv3’s monthly use
without update from 2013–2023. Secondly, we demonstrate that it is none-the-less necessary
to update scores despite the absence of model updates, since evolving patient covariates lead
to the performance attenuation of any point-in-time score.

We firstly used a static model M0 (Methods) to predict risk at future time-points (i.e. new
scores are generated as the features are updated). M0 performed essentially equally well
over time ( Figure 4A-C), with no statistically significant decrease in performance (adjusted
p-values > 0.05), or improved performance with time for all comparisons of AUROCs. With
stability under the deployment scenario confirmed, we also explored the distribution of scores
over time. In line with expectations, the quantiles of scores generated by the static model
increased as the cohort grew older (Figure 4D). The mean risk scores of individuals in the
highest centiles of risk at t0 decreased over time (Figure 4E), suggesting that very high risk
scores tend to be transient. The bivariate densities of time-specific scores (Figure 4F) also
show lower scores to be more stable than higher scores, and that subjects ‘jump’ to higher
scores (upper left in Figure 4F) more than they drop to lower scores (bottom right).

Finally, we examined the behaviour of static scores (computed at t0 using M0) to predict
future event risk (note that the model is also static in this setting, though we will call it static
scores for brevity). We observed that the static scores performed reasonably well even 2-3
years after t0, although discrimination and calibration were gradually lost (Supplementary
Figure S4A-C). More generally, we observe that scores fitted and calculated at a fixed time
cutoff had successively lower AUROCs for predicting EA over future periods (Supplementary
Figure S4D). Although the absolute differences in AUROC over time with static scores
are small, they are visibly larger than those seen between SPARRAv3 and SPARRAv4
(Figure 2A), indicating that comparisons analogous to Figure 2E,F would similarly show
much larger differences. This affirms the need for updated scores in deployment, despite the
static model.

Feature importance

The features with the largest mean absolute Shapley value (excluding SPARRAv3 and the
features derived from the topic model) were age, the number of days since the last EA,
the number of previous A&E attendances, and the number of antibacterial prescriptions
(Table 3). Most features had non-linear effects (see e.g. Supplementary Figure S5A-B). For
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example, the risk contribution from age was high in infancy, dropping rapidly from infancy
through childhood, then remaining stable until around age 65, and rising rapidly thereafter
(Figure 5A). We also found a non-linear importance of SIMD (Figure 5B) and number of
previous emergency hospital admissions (Supplementary Figure S5C).

We further investigated the contribution of SIMD by comparing Shapley values between
features. We computed the mean difference in contribution of SIMD to risk score between
individuals in the most deprived and least deprived SIMD decile areas, and the additional
years of age which would contribute an equivalent amount. This was generally around
10-40 additional years (Figure 5D). In terms of raw admission rates, disparity was further
apparent: individuals aged 20 in lowest SIMD decile areas had similar admission rates to
individuals aged 70 in the 3 highest SIMD decile areas (Figure 5E).

When exploring the added value (in terms of AUROC) of including the features derived
using the topic model (Supplementary Table S4), we observed slightly better performance
than the model without such features (p-value = 3× 10−29; Supplementary Figure S5E-F).
In some cases, topic features led to substantial changes in overall score: for example, a topic
relating to skin disease contributed more than 2% to the SPARRAv4 score (roughly equiv-
alent to the mean contribution to the score from age for individuals aged 75; see Figure 5A)
for around 0.43% of individuals with the resultant SPARRAv4 scores better-calibrated than
the SPARRAv3 scores, which did not use a topic model (Supplementary Note S1). Analo-
gously to Figure 2E, we also computed the additional number of samples correctly identified
as having an event amongst the top scores by the two models. Although the absolute dif-
ference in AUROC was small, we found that the use of topic features increased the number
of EAs detected in the top 500,000 scores by around 200.

Deployment

SPARRAv4 was developed in a remote data safe haven (DSH) environment [Public Health
Scotland, 2020] without access to internet or modern collaboration tools (e.g. git version
control). Whilst our analysis code and a summary of model outputs (e.g. AUROC values)
could be securely extracted from the DSH, this was not possible for the actual trained model
due to potential leaks of sensitive patient information [Jefferson et al., 2022]. This intro-
duced reproducibility challenges, since the model had to be retrained in a different secure
environment before it was deployed by PHS. In particular, this re-development outside the
DSH had two distinct phases. Firstly, the raw data transformations (to convert the original
databases into a format that is suitable for ML algorithms) were reproduced from scratch
from the same source data. Once the output of the transformations matched perfectly
between the DSH and the external environment for all features, the topic and predictive
models were re-trained. The training process could not be exactly matched due to differ-
ing compute environments, package versions and training/validation split. However, after
training, the external models were validated by comparing the performance (via AUROC)
and the calibration with the results obtained within the DSH.

Another practical issue that arises when developing and deploying a new version of
SPARRA is due to potential performative prediction effects [Perdomo et al., 2020b]. Since
SPARRAv3 is already visible to GPs (who may intervene to reduce the risk of high-risk pa-
tients), v3 can alter observed risk in training data used for v4, with v3 becoming a ‘victim
of its own success’ [Lenert et al., 2019, Sperrin et al., 2019]. This is potentially hazardous: if
some risk factor R confers high v3 scores prompting GP intervention (e.g., enhanced follow-
up), then in the training data for v4, R may no longer apparently confer increased risk.
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Should v4 replace v3, some individuals would therefore have their EA risk underestimated,
potentially diverting important anticipatory care away from them. This highlights a critical
problem in the theory of model updating [Liley et al., 2021], which we expand on in Supple-
mentary Note and illustrate in Figure 6A-D. As a practical solution, during deployment,
GPs could receive the maximum between v3 and v4 scores. This would avoid the potential
hazard of risk underestimation, at the cost of mild loss of AUROC (Figure 6E) and score
calibration (Figure 6F).

Discussion

We used routinely collected EHRs from around 5.8 million Scottish residents to develop and
evaluate SPARRAv4, a risk score that quantifies 1-year EA risk based on age, deprivation
(using SIMD as a geographic-based proxy) and a wide range of features derived from a
patient’s past medical history. SPARRAv4 constitutes a real-world use of ML, derived from
population-level data and embedded in clinical settings across Scotland (Figure 1).

While the increases in AUROC and AUPRC over the previous version of SPARRA may
be small (Figure 2A,B), the improvement provided by SPARRAv4 in terms of absolute
benefit to population is substantial (Figure 2E,F). This arises from the use of more flexible
ML methods (e.g. to capture non-linear patterns between features and EA risk) and the
incorporation of features derived by a topic model which extracts more granular information
(with respect to the manually curated features used by SPARRAv3) from past diagnoses and
prescriptions data. The latter can be thought of as a proxy for multi-morbidity patterns, in
that topic models identify patterns of diagnoses and prescriptions which commonly occur
together [Kremer et al., 2022], which can be seen to occur in our data (Supplementary
Table S4). The use of an ensemble of models also allows stronger models and methods to
dominate the final predictor, and weaker models to be discarded.

Our analysis also provides insights into the epidemiology of EA risk, highlighting pre-
dictable patterns in terms of EA type (as defined by the recorded primary diagnosis; Fig-
ure 3B) and the imminence of EA (Figure 3C), in that those at high risk of an admission
are likely to have an imminent admission rather than equally likely to have an admission
over the year-long prediction period. Moreover, we studied the contribution of each feature,
revealing a complex relationship between age, deprivation and EA risk (Figure 5). Note,
however, that we cannot assign a causal interpretation for any reported associations. In
particular, the link between SIMD and EA risk is complex; SIMD includes a ‘health’ con-
stituent [Scottish Government, 2016], and individuals in more-deprived SIMD decile areas
(1: most deprived; 10: least deprived) miss more primary care appointments [Ellis et al.,
2017].

One important strength of SPARRAv4 is its nationwide coverage, using existing health-
care databases without the need for additional bespoke data collection. This, however,
prevents the use of primary care data (beyond community prescribing) as it is not currently
centrally collected in Scotland. Due to privacy considerations, we were also unable to access
geographic location data, precluding the study of potential differences between e.g. rural and
urban areas and the use of a geographically separated test set [Wallace et al., 2014]. Limited
data availability also limits a straightforward comparison of predictive performance (e.g. in
terms of AUROC) with respect to similar models developed in England [Billings et al.,
2006, Rahimian et al., 2018] (this is also complicated because of different model choices,
e.g. [Rahimian et al., 2018] modelled time-to-event data but we used a binary 1-year EA
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indicator). For example, we do not have information about marital and smoking status,
blood test results and family histories; all of which were found to be predictive of EA risk
by [Rahimian et al., 2018]. Our training dataset is non-representative of our raw dataset
(which in turn is non-representative of the Scottish population, as per Table 1, as is typical
of studies based on electronic health records [Verheij et al., 2018, Agniel et al., 2018]), but
it does generally include individuals at higher EA risk.

Beyond model development and evaluation, our work also highlights broader challenges
that arise in this type of translational project using EHR. In particular, as SPARRAv4
has the potential to influence patient care, we have placed high emphasis on transparency
and reproducibility while ensuring compliance with data governance constraints. Providing
our code in a publicly available repository will also allow us to transparently document
future changes to the model (e.g. if any unwanted behaviour is identified during the early
stages of deployment). SPARRAv4 also constitutes a real-world example in which potential
performative effects need to be taken into account when updating an already deployed risk
prediction model (Figure 6).

It is critical to emphasise that SPARRAv4 will not replace clinical judgement, nor does
it direct changes to patient management made solely based on the score. Indeed, any poten-
tial interventions must be decided jointly by medical professionals and patients, balancing
the underlying risks and benefits. Moreover, lowering EA risk does not necessarily entail
overall patient benefit as e.g. long-term oral corticosteroid use in mild asthmatics would
reduce EA risk, but the corticosteroids themselves cause an unacceptable cost of long-term
morbidity [NICE guidelines, 2017].

Optimal translation into clinical action is a vital research area and is essential for quan-
tifying the benefit of such scores in clinical practice. Indeed, any benefit is dependent on
widespread uptake and the existence of timely integrated health and social care interven-
tions, and identification of EA risk is only the first step in this pathway. As such, the
evaluation of real-world effectiveness for SPARRAv4 and similar risk scores is complex, and
requires a multi-disciplinary approach that considers a variety of factors (e.g. the local health
economy and the capacity to deliver pre-emtive interventions in primary care) Therefore,
we will continue to collaborate to achieve successful deployment of SPARRAv4 and will
carefully consider the feedback from GPs to improve the model and the communication of
its results further (e.g. via informative dashboards). As the COVID-19 pandemic resolves,
it will also be important to assess potential effects of dataset shift [Subbaswamy and Saria,
2020] due to disproportionate mortality burden in older individuals and long-term conse-
quences of COVID-19 infections. In an era where healthcare systems are under high stress,
we hope that the availability of robust and reproducible risk scores such as SPARRAv4 (and
its future developments) will contribute to the design of proactive interventions that reduce
pressures on healthcare systems and improve healthy life expectancy.

Methods

SPARRAv3

SPARRAv3 [Health and Social Care Information Programme, 2011], deployed in 2012, uses
separate logistic regressions on four subcohorts of individuals: frail elderly conditions (FEC;
individuals aged > 75); long-term conditions (LTC; individuals aged 16-75 with prior health-
care system contact), young emergency department (YED; individuals aged 16-55 who have
had at least one A&E attendance in the previous year) and under-16 (U16; individuals
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aged < 16). If an individual belongs to more than one of these groups, the maximum of
the associated scores is reported. SPARRAv3 was fitted once (at its inception in 2012)
with regression coefficients remaining fixed thereafter. Most input features were manually
dichotomised into two or more ranges for fitting and prediction. The prediction target for
SPARRAv3 is EA within 12 months. People who died in the pre-prediction period, and
who therefore do not have an outcome for use in the analysis, are excluded. PHS calculated
SPARRAv3 scores and provided them as input for the analysis described herein. Any GP
in Scotland can access SPARRA scores after attaining information governance approval.

Exclusion criteria

The exclusion criteria were applied per sample (defined as individual-time pairs; Figure 1C).
Samples were excluded if: (i) they were excluded from SPARRAv3 (these are individuals
for which PHS did not calculate a SPARRAv3 score and largely correspond to individuals
with no healthcare interactions or that were not covered by the four SPARRAv3 subcohorts;
[Health and Social Care Information Programme, 2011]), (ii) when the individual died prior
to the prediction time cutoff, (iii) when the SIMD for the individual was unknown, or (iv)
those associated to individuals whose Community Health Index [CHI; ISD Scotland Data
Dictionary, 2023] changed during the study period (‘Unmatched’ in Figure 1). The CHI
number is a unique identifier which is used in Scotland for health care purposes. Rates
of EA and death in the follow-up period were generally lower in excluded samples than in
included samples (3.40% versus 8.88%, only considering exclusions which were not due to
the individual having died prior to the time cutoff; Supplementary Table S6). Exclusion
criteria (i) and (ii) were applied at the sample level, while exclusion criteria (iii) and (iv)
were applied at the individual level.

Feature engineering

A typical entry in the source EHR tables (Supplementary Table S2) recorded a single in-
teraction between a patient and NHS Scotland (e.g. hospitalisation), comprising a unique
individual identifier (an anonymised version of the CHI number), the date on which the
interaction began (admission), the date it ended (discharge), and further details (diagnoses
made, procedures performed). For each sample, entries from up to three years before the
time cutoff were considered when building input features, except long-term condition (LTC)
records, which considered all data since recording began in January 1981. A full feature
list is described in Supplementary Table S3. This includes SPARRAv3 [Health and Social
Care Information Programme, 2011] features, e.g. age, sex, SIMD deciles and counts of pre-
vious admissions (e.g. A&E admissions, drug-and-alcohol-related admissions). Additional
features encoding time-since-last-event (e.g. days since last outpatient attendance) were in-
cluded following findings in [Rahimian et al., 2018]. From community prescribing data, we
derived predictors encoding the number of prescriptions of various categories (e.g. respira-
tory), extending the set of predictors beyond a similar set used in SPARRAv3. Similarly
to SPARRAv3, we also derived the total number of different prescription categories, the
total number of filled prescription items, and the number of British National Formulary
(BNF) sections from which a prescription was filled [Prasad, 1994]. From LTC records, we
extracted the number of years since diagnosis of each LTC (e.g. asthma), the total number
of LTCs recorded, and the number of LTCs resulting in hospital admissions.

Data from prescription records and recorded diagnoses tend to be sparse, in that most
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medications and diagnoses will only be recorded for a small proportion of the population.
We used our topic model [Blei et al., 2003] to assimilate this data, by jointly modelling pre-
scriptions and diagnoses using 30 topics (effectively clusters of prescriptions and diagnoses),
considering samples as ‘documents’ and diagnoses/prescriptions as ‘words’. This enabled a
substantial reduction in feature dimensionality, given the number of diagnoses/prescription
factor levels. Using the map from documents to topic probabilities, we used derived topic
probabilities as additional features in SPARRAv4, which corresponded to sample-wise mem-
bership of each topic.

Choice of prediction target for SPARRAv4

The primary target for SPARRA is to predict whether an individual will experience an EA
within 12 months from the prediction cutoff. A problem arises due to the deaths during the
follow-up year for which the target may be unknown (e.g. if someone died within 6 months,
without a prior EA). Broadly, there are four options for how to treat such individuals during
model training and testing:

1. Exclude them from the dataset

2. Treat them according to whether they had an emergency admission before they died

3. Treat them as no admission, or

4. Treat them as an admission

It would also be possible to code death in follow-up differentially; for instance, coding
in-hospital death as EA and in-community death as exclusions or non-EA. Our choice not
to code all deaths identically is in the interests of non-maleficence. If an individual is at
risk of imminent death in the community they will typically be admitted to hospital if it is
possible to react in time, with a possible exemption if this is not in their best interests.

Option 1 would exclude the most critically ill individuals from the dataset and hence was
discarded. Option 2 would effectively mean such individuals have a follow-up time less than
a year, and would classify individuals who died without a hospital admission as having had
a ‘desirable’ outcome. Option 3 would effectively classify death as a ‘desirable’ outcome,
so we avoided it. The consequences from coding community deaths as non-EA would be
severe, as it could mean that healthier individuals at risk of sudden death are either coded
as non-EA or excluded from the dataset, potentially leading to inappropriately low scores
being assigned to these individuals. This could draw treatment away from individuals in
high need. Instead, option 4 allows the general description of the target as ‘a catastrophic
breakdown in health’. In this case, our model would not be able to distinguish community
deaths from emergency admissions: we may assign high ’EA’ scores to the very old and
terminally ill, when in fact these individuals may be treated in the community rather than
admitted. The potential harm from this option is small. It could mean that such individuals
are excessively treated rather than palliated, but since palliation over treatment is an active
decision [Romo et al., 2017] and such individuals are generally known to be high-risk it is
unlikely that the SPARRA score will adversely affect any decisions in this case. As the
philosophy of the SPARRA score is to avert breakdowns in health, of which death can be
considered an example, we decided to use a composite prediction target (EA or death within
12 months) which is consistent with option 4.
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Machine learning prediction methods

For SPARRAv4, we had no prior belief that any ML model class would be best, so considered
a range of binary prediction approaches (hereafter referred to as constituent models). The
following models were fitted using the h2o [LeDell et al., 2019] R package (version 3.24.0.2):
an artificial neural network (ANN), two random forests (RF) (depth 20 and 40), an elastic
net generalised linear model (GLM) and a naive Bayes (NB) classifier. The xgboost [Chen
et al., 2019] R package (version 1.6.0.1) was used to train three gradient-boosted trees
(XGB) models (maximum tree depth 3, 4, and 8). Hyper-parameter choices are described
in Methods. SPARRAv3 was used as an extra constituent model.

Rather than selecting a single constituent model, we used an ensemble approach. Similar
to [Van der Laan et al., 2007], we calculated an optimal linear combination (L1-penalised
regression, using the R package glmnet, version 4.1.4) of the scores generated by each
constituent model. Ensemble weights were chosen to optimise the AUROC. Finally, we
monotonically transformed the derived predictor to improve calibration by inverting the
empirical calibration function (Supplementary Note S2).

Data imputation

As all non-primary care interactions with NHS Scotland are recorded in the input databases,
there was no missingness for most features. For ‘time-since-interaction’ type features, sam-
ples for which there was no recorded interaction were coded as twice the maximum lookback
time. There was minor non-random missingness in topic features (∼0.8%) due to individuals
in the dataset with no diagnoses or filled prescriptions, for whom topic probabilities could
not be calculated. We used mean-value imputation in the ANN and GLM models (deriv-
ing mean values from training data only), used missingness to inform tree splits (defaults
in [LeDell et al., 2019]) in RF, used sample-wise imputation in XGB (as per [Chen et al.,
2019]) and dropped during fitting (default in [LeDell et al., 2019]) in NB (omitted missing
values for prediction). All imputation rules were determined using training sets only.

Particular care was required for features encoding total lengths of hospital stays. In some
cases, a discharge date was not recorded, which could lead to an erroneous assumption of a
very long hospital stay (from admission until the time cutoff). To address this, we truncated
apparently spuriously long stays at data-informed values (Supplementary Note S4).

Hyperparameter choice for ML prediction methods

We used a range of constituent models. The h2o [LeDell et al., 2019] R package (version
3.24.0.2) was used to train ANN, RF, GLM and NB models. The xgboost [Chen et al., 2019]
R package (version 1.6.0.1) was used to train the XGB models. Unless otherwise specified,
hyperparameters were set as the software defaults. When tuned, hyperparameter values
were chosen to optimise the default objective functions implemented for each method: log-
loss or the ANN, RFs and GLM, likelihood for the NB model; and a logistic objective for
the XGB trees. In all cases, hyperparameters were determined by randomly splitting the
relevant dataset into a training and test set of 80% and 20% of the data respectively. Details
for each method are provided below. Only limited hyperparameter tuning was possible due
to the restricted computational environment in the data safe haven (see Results)
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SPARRAv3

SPARRAv3 scores were calculated by PHS using their existing algorithm Health and Social
Care Information Programme [2011].

Artificial neural network (ANN)

We used a training dropout rate of 20% to reduce generalisation error. We optimised over
the number of layers (1 or 2) and the number of nodes in each layer (128 or 256).

Random forest (RF)

We fitted two RF: one had maximum depth 20 and 500 trees, and the other had maximum
depth 40 and 50 trees (both taking a similar time to fit).

Gradient-boosted trees (XGB)

We fitted three boosted tree models with three maximum depths: 3, 4, and 8. For the
deeper-tree model, we set a low step size shrinkage η = 0.075 and a positive minimum loss
reduction γ = 5 in order to avoid overfitting. In the other two models, we used default
values of η = 0.3, γ = 0.

Naive Bayes (NB)

The only hyperparameter we tuned was a Laplace smoothing parameter, varying between 0
and 4.

Penalised Generalised linear model (GLM)

We optimised L1 and L2 penalties (an elastic net), considering total penalty (L1 + L2) in
10−{1,2,3,4,5}, and a ratio L1/L2 in {0, 0.5, 1}.

Cross-validation

We fitted and evaluated SPARRAv4 using three-fold cross-validation (CV). We considered
three-fold cross validation acceptable in our case given the size of our dataset [Bates et al.,
2023]. This was designed such that all elements of the model evaluated on a test set were
agnostic to samples in that test set. Individuals were randomly partitioned into three
data folds (F1, F2 and F3). At each CV iteration, F1 and F2 were combined and used
as a training dataset, F3 was used as a test dataset. The training dataset (F1+F2) was
used to fit the topic model and to train all constituent models (except SPARRAv3, whose
training anyhow pre-dates the data used here). The ensemble weights and re-calibration
transformation were learned using F1 + F2, i.e. without using the test set from the test set
(Supplementary Note S2).

Predictive performance

Our primary endpoint for model performance was AUROC. We also considered area-under-
precision-recall curves (PRC) and calibration curves. We plotted calibration curves using a
kernelised calibration estimator (Supplementary Note S5).
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For simplicity, figures show ROC/PRC that were calculated by combining all samples
from the three test CV folds (that is, all scores and observed outcomes were merged to draw
a single curve). Quoted AUROC/AUPRC values were calculated as an average across the
three test CV folds to avert problems from between-fold differences in models [Forman and
Scholz, 2010]. For ease of comparison, we also used mean-over-folds to compute quoted
AUROCs and AUPRCs for SPARRAv3, although the latter was not fitted to our data.

Deployment scenario stability and performance attenuation

Using the same analysis pipeline as for the development of SPARRAv4, we trained a static
model M0 to an early time cutoff (t0=1 May 2014), and using one year of data prior to
t0 to derive predictors (the restricted lookback is the only deviation from the actual model
pipeline, due to limited temporal span of the training data).

We studied the performance of M0 as a static model to repeatedly predict risk at future
time cutoffs, which mirrors the way in which PHS will deploy the model. To do this, we
assembled test features from data 1 year prior to t1=1 May 2015, t2=1 Dec 2015, t3=1
May 2016, t4=1 Dec 2016, and t5=1 May 2017, applying M0 to predict EA risk in the year
following each time-point. In this analysis, the comparison of the distribution of scores over
time only considered the cohort of patients who were alive and had valid scores at t1, . . . , t5.

To ensure a fair comparison when evaluating the performance of static scores (computed
at t0 using M0) to predict future event risk (at t1, . . . , t5), we only considered a subsample of
1 million individuals with full data across all time-points, selected such that global admission
rates matched those at t0.

Assessment of feature importance

We examined the contribution of feature to risk scores at an individual level by estimating
Shapley values [Lundberg and Lee, 2017] for each feature. For simplicity, this calculation
was done using 20,000 randomly-chosen samples in the first cross-validation fold (F1). We
treated SPARRAv3 scores as fixed predictors rather than as functions of other predictors.

We also assessed the added value of inclusion of topic-model derived features, which
summarise more granular information about the previous medical history of a patient with
respect to those included in SPARRAv3. For this purpose, we refitted the model to F2+F3
with topic-derived features excluded from the predictor matrix. We compared the perfor-
mance of these models using F1 as test data. We compared the performance of predictive
models with and without the features derived from the topic model by comparing AUROC
values using DeLong’s test [DeLong et al., 1988].
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Figure 1: Data and model fitting overview. (A) Illustration of how SPARRA can
support primary care intervention with the goal of improving patient outcomes. (B) Distri-
bution of the number of input EHR entries (prior to exclusions) according to age, sex and
SIMD deciles (1: most deprived; 10: least deprived). (C) Flow chart summarising data and
model fitting pipelines.
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Figure 2: Comparison of overall predictive performance between SPARRAv3
and SPARRAv4. (A) ROC. (B) PRC. Lower sub-panels show differences in sensitivity
and precision, respectively. Confidence intervals are negligible. (C) Calibration curves.
(D) Calibration curves for samples in which |v4 − v3| > 0.1. Lower sub-panels show the
difference between curves and the y = x line (perfect calibration). Confidence envelopes
are pointwise (that is, for each x-value, not the whole curve). Predicted/true value pairs
are combined across cross-validation folds in all panels for simplicity. (E) Difference in the
number of individuals who had an event amongst individuals designated highest-risk by v3
and v4. The repeating pattern is a rounding effect of v3. (F) Difference in the number of
highest-risk individuals to target to avoid a given number of admissions.
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Model
Fold 1

AUROC AUPRC Coef.
ANN 0.7613 0.346 0
Penalised GLM 0.7879 0.3657 0
Naive Bayes 0.7471 0.2233 0
RF, depth: 20 0.7927 0.3787 0.3624
RF, depth: 40 0.7845 0.3666 0
SPARRAv3 0.7812 0.3568 0
XGB depth: 4 0.7981 0.3839 0.6626
XGB depth: 8 0.7984 0.3873 2.004
XGB depth 3 0.7984 0.3864 1.363
Ensemble 0.7989 0.3888

Model
Fold 2

AUROC AUPRC Coef.
ANN 0.7698 0.3479 0
Penalised GLM 0.7874 0.367 0
Naive Bayes 0.7468 0.2238 0
RF, depth: 20 0.7928 0.3799 0.3749
RF, depth: 40 0.7844 0.3678 0
SPARRAv3 0.7809 0.3584 0
XGB depth: 4 0.7975 0.3839 0.6579
XGB depth: 8 0.798 0.3881 1.162
XGB depth 3 0.7981 0.387 1.727
Ensemble 0.7987 0.3895

Model
Fold 3 Mean over folds

AUROC AUPRC Coef. AUROC AUPRC
ANN 0.7693 0.3525 0 0.7668 0.3488
Penalised GLM 0.7878 0.3661 0 0.7877 0.3663
Naive Bayes 0.7468 0.2246 0 0.7469 0.2239
RF, depth: 20 0.7926 0.3791 0.5013 0.7927 0.3792
RF, depth: 40 0.784 0.3674 0 0.7843 0.3672
SPARRAv3 0.7809 0.3572 0 0.7810 0.3574
XGB depth: 4 0.7973 0.3837 0.9105 0.7976 0.3838
XGB depth: 8 0.7978 0.3877 1.116 0.7981 0.3877
XGB depth 3 0.798 0.3867 1.418 0.7982 0.3867
Ensemble 0.7985 0.3891 0.7987 0.3891

Table 2: Overall discrimination performance for SPARRAv4 and its constituent
models. Areas under ROC curves and PR curves by fold for each constituent predictor and
ensemble. Columns ‘Coef.’ indicate estimated coefficients (weights) in the final ensemble
(see Methods section for details). All standard errors for AUROCs are < 5× 10−4 and for
AUPRCs are < 8× 10−4
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Figure 3: Stratified performance of SPARRAv3 and SPARRAv4. (A) Performance
of SPARRAv3 and SPARRAv4 in subcohorts defined by age, SIMD and the original subco-
horts defined during SPARRAv3 development (Methods). Top: AUROC (blue: SPARRAv3;
red: SPARRAv4). Vertical bars denote plus/minus 3 standard deviations. Middle: AUROC
increase for SPARRAv4 with respect to SPARRAv3. For context, bottom sub-panels show
the proportion of samples with an event within each group. (B) Distribution of SPARRAv4
scores (in log-scale) based on the type of diagnosis recorded during the admission (see Sup-
plementary Table S5 for definitions). Black points indicate the associated medians. Groups
were defined according to whether an event was observed (grey violin plots) or, for those
with an EA, based on the diagnosis recorded during the admission (black violin plots). (C)
Density of time-to-first-EA (that is, days between time cutoff and first EA date) in subsets
of individuals who had an EA in the year following the time cutoff and had a SPARRAv4
score above a given cutoff. For instance, the lightest line shows density of time-to-first-EA
in samples who had an EA and had SPARRAv4¿0.8
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Figure 4: Performance of a static model with changing scores over time. (A-
C) Performance of scores calculated at t1 − t5 from static model M0. (A) ROC curves.
Lower panel shows differences in sensitivity with respect to t1. (B) PRC curves. Lower
panel shows differences in precision with respect to t1. (C) Calibration curves. Lower panel
shows the difference between observed and expected EA frequency. (D) Centiles (grey) and
deciles (black) of risk scores (calculated using M0) over time, across all individuals with data
available at all time cutoffs. (E) Average score over time for groups of individuals defined
by risk centiles (grey) and deciles (black) at time t0 (2 May 2015). (F) Density (low to high:
white-grey-red-yellow) of scores generated using the static model M0 to predict EA risk at
t1 (2 May 2015) and t2 (1 Dec 2015). The density is normalised to uniform marginal on the
Y axis, then the X axis; true marginal distributions of risk scores are shown alongside in
grey.
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Figure 5: Analysis of Shapley values. Distribution of Shapley values by (A) age and
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Variable Importance
Age at time cutoff 1.530
Days since last emergency admission 0.752
Number of previous A&E attendances 0.509
Number of antibacterial prescriptions 0.376
Number of central nervous system related prescriptions 0.375
Male sex 0.373
Days since last A&E attendance 0.321
SIMD decile 0.310
Number of emergency bed days 0.299
Days since last acute admission of any type 0.285
Days since last outpatient attendance 0.257
Number of diuretic prescriptions 0.213
Number of lipid lowering drug prescriptions 0.194
Number of previous first outpatient appointments 0.190
Number of recorded long term conditions 0.173
Number of emergency admissions 0.161
Total number of filled prescriptions 0.160
Number of antianaemic prescriptions 0.159
Number of bronchodilator prescriptions 0.152
Number of BNF sections from which a prescription was filled 0.141

Table 3: Top 20 most important variables by mean absolute Shapley value (per-
centage scale). Importance can be interpreted as the average percent added or subtracted
to risk score due to this factor.
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Figure 6: Model updating in the presence of performative effects. (A-D) Causal
structure for the training and deployment of SPARRAv3 and SPARRAv4. Xi represents
covariates for a patient-time pair; v3(fit)/v4(fit) and v3(Xi)/v3(Xi) represent the fitting
and deployment of v3 and v4 respectively. (A) Training setting for SPARRAv3. (B) Train-
ing setting for SPARRAv4. (C) Deployment setting if SPARRAv4 were to naively replace
SPARRAv3. (D) Deployment setting in which SPARRAv4 is used as an adjuvant to SPAR-
RAv3. (E) Comparison of discrimination (ROC) between SPARRAv4 and the maximum of
both scores. (F) Comparison of calibration between SPARRAv4 and the maximum of both
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23

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.06.21261593


Model updating in the presence of performative effects

We aim to produce the SPARRA score to accurately estimate EA risk over a year under
normal medical care. In other words, the score should represent the EA risk if GPs do not
already have access to such a risk score. Because GPs see a SPARRA score (SPARRAv3)
and may act on it, the observed risk may be lower than predicted - the score may become
a ‘victim of its own success’ [Lenert et al., 2019, Sperrin et al., 2019] due to performative
effects Perdomo et al. [2020a]. Unfortunately, since the SPARRAv3 score is widely available
to Scottish GPs, and may be freely acted on, we cannot assess the behaviour of the medical
system in its absence. This is potentially hazardous [Liley et al., 2021].

Formally, at a given fixed time, for each individual, the value of ‘EA in the next 12
months’ is a Bernoulli random variable. The probability of the event for individual i is
conditional on a set of covariates Xi derived from their EHR. We denote v3(Xi), v4(Xi) the
derived SPARRAv3 and SPARRAv4 scores as functions of covariates, and assume a causal
structure shown in Figure 6 (for simplicity, we assume there are no unobserved confounders
but the same argument applies in their presence). With no SPARRA-like predictive score
in place, there is only one causal pathway Xi → EA. It is to this system (coloured red)
that v3 was fitted. Here, v3(Xi) estimates the ‘native’ risk Pr(EA|Xi) (ignoring previous
versions of the SPARRA score, which covered < 30% of the population). Although v3(Xi)
is determined entirely by Xi, the act of distributing values of v3(Xi) to GPs opens a second
causal pathway from Xi to EA (Figure 6) driven by GP interventions made in response to
v3(Xi) scores. It is to this system (coloured red) that SPARRAv4 is fitted. Hence, v4(Xi) is
an estimator of Pr(EA|Xi, v3(Xi)), a ‘conditional’ risk after interventions driven by v3(Xi)
have been implemented.

If SPARRAv4 naively replaced SPARRAv3 (Figure 6), we would be using v4(Xi) to
predict behaviour of a system different to that on which it was trained (Figure 6). To
amend this problem, we propose to use SPARRAv4 in conjunction with SPARRAv3 rather
than to completely replace it (Figure 6). Ideally, GPs would be given v3(Xi) and v4(Xi)
simultaneously and asked to firstly observe and act on v3(Xi), then observe and act on
v4(Xi), thereby only using v4(Xi) as per Figure 6. This is impractical, so instead, we
propose to distribute a single value (given by the maximum between v3(Xi) and v4(Xi)),
avoiding the potential hazard of risk underestimation, at the cost of mild loss of score
calibration (Figure 6).

Supporting information

Supplementary Table S1 Checklist for TRIPOD guidelines [Collins et al., 2015].

Supplementary Table S2 Definition of input features for SPARRAv4

Supplementary Table S3 Definition of input features for SPARRAv4.

Supplementary Table S4 Exploration of contributors to each topic.

Supplementary Table S5 Definition of different admission types.
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Supplementary Table S6 Frequency of admissions and deaths amongst excluded sam-
ples.

Supplementary Table S7 Coefficients of ensemble when fitted separately to SPARRAv3
cohorts.

Supplementary Figure S1 Extended data overview.

Supplementary Figure S2 Density plot comparing SPARRAv3 and SPARRAv4 scores.

Supplementary Figure S3 Calibration curves for SPARRAv4 model constituents.

Supplementary Figure S4 Performance of a static model and static scores used to
predict risk at future time cutoffs.

Supplementary Figure S5 Feature importance

Supplementary Note S1 Analysis of specific effects of a topic feature.

Supplementary Note S2 Details of the re-calibration procedure.

Supplementary Note S3 Investigation of use of SPARRAv3-cohort specific ensemble
coefficients

Supplementary Note S4 Imputation of lengths of stay when discharge date was missing.

Supplementary Note S5 Assessment of calibration.
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Code and data sharing

Raw data for this project are patient-level EHR, and are confidential. Due to the confidential
nature of the data, all analysis took place on a remote “data safe haven”, without access
to internet, software updates or unpublished software. Information Governance training
was required for all researchers accessing the analysis environment. Moreover, to avoid
the risk of accidental disclosure of sensitive information, an independent team carried out
statistical disclosure control checks on all data exports, including the outputs presented in
this manuscript. All analysis code and co-ordinates required to reproduce our Figures are
available in github.com/jamesliley/SPARRAv4. This manuscript conforms to the TRIPOD
guidelines [Collins et al., 2015] (Supplementary Table S1).
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ethical opinion from the East of Scotland NHS Research Ethics Service).

Acknowledgements

The authors note that this project’s success was entirely contingent on close co-operation
between the Alan Turing Institute and PHS. We thank all individuals involved in primary
care in Scotland for the continued support of the SPARRA project and the Public Benefit
and Privacy Panel for Health and Social Care (study number 1718-0370) for Information
Governance approval on behalf of the Health Boards in NHS Scotland.

All author contributions were significant and essential to the completion of this work.
Author contributions were as follows: Manuscript preparation: JL, SRE, BAM, SJV, CAV,
LJMA, IT; Project initiation: SJV, CAV, LJMA, CH; Model design: JL, GB, SJV, CAV,
LJMA; Code and scripts: JL, GB, LJMA; NC; IT; SDR; Code review and checking: SRE,
IT; SDR; Setup of computational system: GB, LJMA; Data access management: DC, RP;
EHR access: KB, DC, JI, RP, SO, SR; Public health input: KB, DC, SO, JI, RP, SR;
Medical input: JL, BAM, KM; Core planning group: JL, GB, SRE, BAM, KB, DC, JI,
KM, RP, SJV, CAV, LJMA; Logistical and legal oversight of project: SH, KP.

Computing for this project was performed in the Scottish National Safe Haven (NSH),
which is commissioned by eDRIS, Public Health Scotland from EPCC, based at The Uni-
versity of Edinburgh. The authors would like to acknowledge the support of the eDRIS
Team for their involvement in obtaining approvals, provisioning and linking data and the
use of the secure analytical platform within the National Safe Haven.

We thank the Alan Turing Institute, PHS, the MRC Human Genetics Unit at the Uni-
versity of Edinburgh, Durham University, University of Warwick, Wellcome Trust, Health
Data Research UK, and King’s College Hospital, London for their continuous support of
the authors. JL, IT, CAV and LJMA were partially supported by Wave 1 of The UKRI
Strategic Priorities Fund under the EPSRC Grant EP/T001569/1, particularly the “Health”
theme within that grant and The Alan Turing Institute; JL, IT, BAM, CAV, LJMA and
SJV were partially supported by Health Data Research UK, an initiative funded by UK
Research and Innovation, Department of Health and Social Care (England), the devolved
administrations, and leading medical research charities; SJV, NC and GB were partially sup-
ported by the University of Warwick Impact Fund. SRE is funded by the EPSRC doctoral

26

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.06.21261593


training partnership (DTP) at Durham University, grant reference EP/R513039/1; LJMA
was partially supported by a Health Programme Fellowship at The Alan Turing Institute;
CAV was supported by a Chancellor’s Fellowship provided by the University of Edinburgh.

For the purpose of open access, the author has applied a Creative Commons Attribution
(CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Conflicts of interest

The authors declare no conflicts of interest.

27

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.06.21261593


References

Denis Agniel, Isaac S Kohane, and Griffin M Weber. Biases in electronic health record data
due to processes within the healthcare system: retrospective observational study. Bmj,
361, 2018.

N Bajaj, S Jauhar, and J Taylor. Scottish patients at risk of readmission and admission-
mental health (SPARRA MH) case study of users and non-users of a national information
source. Health Syst Policy Res, 3:3, 2016.

Stephen Bates, Trevor Hastie, and Robert Tibshirani. Cross-validation: what does it esti-
mate and how well does it do it? Journal of the American Statistical Association, pages
1–12, 2023.

John Billings, Jennifer Dixon, Tod Mijanovich, and David Wennberg. Case finding for
patients at risk of readmission to hospital: development of algorithm to identify high risk
patients. BMJ, 333(7563):327, 2006.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

Ian Blunt. Focus on preventable admissions. London: Nuffield Trust, 2013.

Alex Bottle, Paul Aylin, and Azeem Majeed. Identifying patients at high risk of emer-
gency hospital admissions: a logistic regression analysis. Journal of the Royal Society of
Medicine, 99(8):406–414, 2006.

Anne Canny, Frances Robertson, Peter Knight, Adam Redpath, and Miles D Witham.
An evaluation of the psychometric properties of the indicator of relative need (IoRN)
instrument. BMC geriatrics, 16(1):1–10, 2016.

Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho,
Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, Mu Li, Junyuan Xie, Min
Lin, Yifeng Geng, and Yutian Li. xgboost: Extreme Gradient Boosting, 2019. URL
https://CRAN.R-project.org/package=xgboost. R package version 0.90.0.2.

Joanna Coast, Abby Inglis, and Stephen Frankel. Alternatives to hospital care: what are
they and who should decide? BMJ, 312(7024):162–166, 1996.

Gary S Collins, Johannes B Reitsma, Douglas G Altman, and Karel GM Moons. Trans-
parent reporting of a multivariable prediction model for individual prognosis or diagnosis
(tripod): the tripod statement. Journal of British Surgery, 102(3):148–158, 2015.

Elizabeth R DeLong, David M DeLong, and Daniel L Clarke-Pearson. Comparing the areas
under two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, pages 837–845, 1988.

David A Ellis, Ross McQueenie, Alex McConnachie, Philip Wilson, and Andrea E
Williamson. Demographic and practice factors predicting repeated non-attendance in
primary care: a national retrospective cohort analysis. The Lancet Public Health, 2(12):
e551–e559, 2017.

28

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://CRAN.R-project.org/package=xgboost
https://doi.org/10.1101/2021.08.06.21261593


George Forman and Martin Scholz. Apples-to-apples in cross-validation studies: pitfalls in
classifier performance measurement. Acm Sigkdd Explorations Newsletter, 12(1):49–57,
2010.

Health and Social Care Information Programme. A report on the development of
SPARRA version 3 (developing risk prediction to support preventative and antici-
patory care in Scotland), 2011. https://www.isdscotland.org/Health-Topics/

Health-and-Social-Community-Care/SPARRA/2012-02-09-SPARRA-Version-3.pdf,
Accessed: 6-3-2020.

Gill Highet, Debbie Crawford, Scott A Murray, and Kirsty Boyd. Development and eval-
uation of the supportive and palliative care indicators tool (SPICT): a mixed-methods
study. BMJ supportive & palliative care, 4(3):285–290, 2014.

Julia Hippisley-Cox and Carol Coupland. Predicting risk of emergency admission to hospital
using primary care data: derivation and validation of QAdmissions score. BMJ open, 3
(8):e003482, 2013.

ISD Scotland Data Dictionary. CHI - Community Health Index, 2023. https://www.ndc.

scot.nhs.uk/Dictionary-A-Z/Definitions/index.asp?ID=128, Accessed: 17-3-2023.

Emily Jefferson, James Liley, Maeve Malone, Smarti Reel, Alba Crespi-Boixader, Xaroula
Kerasidou, Francesco Tava, Andrew McCarthy, Richard Preen, Alberto Blanco-Justicia,
et al. GRAIMATTER green paper: Recommendations for disclosure control of trained
machine learning (ML) models from trusted research environments (TREs). arXiv preprint
arXiv:2211.01656, 2022.

Ron Kremer, Syed Mohib Raza, Fabiola Eto, John Casement, Christian Atallah, Sarah
Finer, Dennis Lendrem, Michael Barnes, Nick J Reynolds, and Paolo Missier. Tracking
trajectories of multiple long-term conditions using dynamic patient-cluster associations.
In 2022 IEEE International Conference on Big Data (Big Data), pages 4390–4399. IEEE,
2022.

Attakrit Leckcivilize, Paul McNamee, Christopher Cooper, and Robby Steel. Impact of
an anticipatory care planning intervention on unscheduled acute hospital care using
difference-in-difference analysis. BMJ health & care informatics, 28(1), 2021.

Erin LeDell, Navdeep Gill, Spencer Aiello, Anqi Fu, Arno Candel, Cliff Click, Tom Kralje-
vic, Tomas Nykodym, Patrick Aboyoun, Michal Kurka, and Michal Malohlava. h2o: R
Interface for ‘H2O’, 2019. URL https://CRAN.R-project.org/package=h2o. R package
version 3.26.0.2.

Matthew C Lenert, Michael E Matheny, and Colin G Walsh. Prognostic models will be
victims of their own success, unless. . . . Journal of the American Medical Informatics
Association, 26(12):1645–1650, 2019.

James Liley, Samuel R Emerson, Bilal A Mateen, Catalina A Vallejos, Louis JM Aslett, and
Sebastian J Vollmer. Model updating after interventions paradoxically introduces bias.
AISTATS proceedings, 2021.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in neural information processing systems, pages 4765–4774, 2017.

29

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://www.isdscotland.org/Health-Topics/Health-and-Social-Community-Care/SPARRA/2012-02-09-SPARRA-Version-3.pdf
https://www.isdscotland.org/Health-Topics/Health-and-Social-Community-Care/SPARRA/2012-02-09-SPARRA-Version-3.pdf
https://www.ndc.scot.nhs.uk/Dictionary-A-Z/Definitions/index.asp?ID=128
https://www.ndc.scot.nhs.uk/Dictionary-A-Z/Definitions/index.asp?ID=128
https://CRAN.R-project.org/package=h2o
https://doi.org/10.1101/2021.08.06.21261593


David Lyon, Gillian A Lancaster, Steve Taylor, Chris Dowrick, and Hannah Chellaswamy.
Predicting the likelihood of emergency admission to hospital of older people: development
and validation of the emergency admission risk likelihood index (EARLI). Family practice,
24(2):158–167, 2007.

S Manoukian, S Stewart, N Graves, H Mason, C Robertson, S Kennedy, J Pan, L Haahr,
SJ Dancer, B Cook, et al. Evaluating the post-discharge cost of healthcare-associated
infection in NHS Scotland. Journal of Hospital Infection, 114:51–58, 2021.

Matthew BA McDermott, Shirly Wang, Nikki Marinsek, Rajesh Ranganath, Luca Foschini,
and Marzyeh Ghassemi. Reproducibility in machine learning for health research: Still a
ways to go. Science Translational Medicine, 13(586):eabb1655, 2021.

Marian S McDonagh, David H Smith, and Maria Goddard. Measuring appropriate use of
acute beds: a systematic review of methods and results. Health policy, 53(3):157–184,
2000.

NICE guidelines. Asthma: diagnosis, monitoring and chronic asthma management. National
Institute of Health and Care Excellence, November 2017.

Office for National Statistics, National Records of Scotland, and Northern Ireland Statistics
and Research Agency. 2011 census aggregate data. UK data service (edition: June 2011),
2011.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative
prediction. In International Conference on Machine Learning, pages 7599–7609. PMLR,
2020a.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative
prediction. In International Conference on Machine Learning, pages 7599–7609. PMLR,
2020b.

Anne B Prasad. British National Formulary. Psychiatric Bulletin, 18(5):304–304, 1994.

Public Health Scotland. eDRIS Products and Services, Public Health Scotland, 2020. URL
https://www.isdscotland.org/Products-and-Services/eDRIS/.

Public Health Scotland. Acute hospital activity and NHS beds information
for Scotland, 2022. URL https://publichealthscotland.scot/media/15288/

2022-09-27-annual-acuteactivity-report.pdf.

Fatemeh Rahimian, Gholamreza Salimi-Khorshidi, Amir H Payberah, Jenny Tran,
Roberto Ayala Solares, Francesca Raimondi, Milad Nazarzadeh, Dexter Canoy, and
Kazem Rahimi. Predicting the risk of emergency admission with machine learning: De-
velopment and validation using linked electronic health records. PLoS medicine, 15(11):
e1002695, 2018.

Rafael D Romo, Theresa A Allison, Alexander K Smith, and Margaret I Wallhagen. Sense
of control in end-of-life decision-making. Journal of the American Geriatrics Society, 65
(3):e70–e75, 2017.

Rural Access Action Team. The national framework for service change in NHS Scotland.
Scottish Executive, Edinburgh, 2005.

30

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://www.isdscotland.org/Products-and-Services/eDRIS/
https://publichealthscotland.scot/media/15288/2022-09-27-annual-acuteactivity-report.pdf
https://publichealthscotland.scot/media/15288/2022-09-27-annual-acuteactivity-report.pdf
https://doi.org/10.1101/2021.08.06.21261593


Colin Sanderson and Jennifer Dixon. Conditions for which onset or hospital admission is
potentially preventable by timely and effective ambulatory care. Journal of health services
research & policy, 5(4):222–230, 2000.

Scottish Government. Scottish index of multiple deprivation, 2016.

Matthew Sperrin, David Jenkins, Glen P Martin, and Niels Peek. Explicit causal reasoning
is needed to prevent prognostic models being victims of their own success. Journal of the
American Medical Informatics Association, 26(12):1675–1676, 2019.

Adarsh Subbaswamy and Suchi Saria. From development to deployment: dataset shift,
causality, and shift-stable models in health ai. Biostatistics, 21(2):345–352, 2020.

Mark J Van der Laan, Eric C Polley, and Alan E Hubbard. Super learner. Statistical
applications in genetics and molecular biology, 6(1), 2007.

Robert A Verheij, Vasa Curcin, Brendan C Delaney, and Mark M McGilchrist. Possible
sources of bias in primary care electronic health record data use and reuse. Journal of
medical Internet research, 20(5):e185, 2018.

Emma Wallace, Ellen Stuart, Niall Vaughan, Kathleen Bennett, Tom Fahey, and Susan M
Smith. Risk prediction models to predict emergency hospital admission in community-
dwelling adults: a systematic review. Medical care, 52(8):751, 2014.

Emma Wallace, Susan M Smith, Tom Fahey, and Martin Roland. Reducing emergency
admissions through community based interventions. BMJ, 352, 2016.

World Health Organization. International statistical classification of diseases and related
health problems, volume 1. World Health Organization, 2004.

31

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.06.21261593


Development and assessment of a machine learning tool
for predicting emergency admission in Scotland
James Liley1,2,3,*,⊥, Gergo Bohner1,4,*, Samuel R. Emerson3, Bilal A. Mateen1,5, Katie Borland6,
David Carr6, Scott Heald6, Samuel D. Oduro6b, Jill Ireland6, Keith Moffat6,7, Rachel Porteous6,
Stephen Riddell6b, Simon Rogers8,9, Ioanna Thoma1,2, Nathan Cunningham1,9, Chris Holmes1,10,
Katrina Payne1, Sebastian J. Vollmer1,4, Catalina A. Vallejos1,2,⊥, and Louis J. M. Aslett1,3,⊥

1Alan Turing Institute, London, UK
2MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
3Department of Mathematical Sciences, Durham University, UK
4Mathematics Institute, University of Warwick, UK
5Institute of Health Informatics, University College London, UK, and Wellcome Trust, London, UK
6Public Health Scotland (PHS). (b): former employee
7University of St Andrews, UK
8National Services Scotland, UK
9School of Computing Science, University of Glasgow, UK
10Department of Statistics, University of Warwick, UK
11Department of Statistics, University of Oxford, UK
*Equal contribution
⊥Corresponding

ABSTRACT

Emergency admissions (EA), where a patient requires urgent in-hospital care, are a major challenge for healthcare systems. The
development of risk prediction models can partly alleviate this problem by supporting primary care interventions and public health planning.
Here, we introduce SPARRAv4, a predictive score for EA risk that will be deployed nationwide in Scotland. SPARRAv4 was derived using
supervised and unsupervised machine-learning methods applied to routinely collected electronic health records from approximately 4.8M
Scottish residents (2013-18). We demonstrate improvements in discrimination and calibration with respect to previous scores deployed in
Scotland, as well as stability over a 3-year timeframe. Our analysis also provides insights about the epidemiology of EA risk in Scotland,
by studying predictive performance across different population sub-groups and reasons for admission, as well as by quantifying the effect
of individual input features. Finally, we discuss broader challenges including reproducibility and how to safely update risk prediction
models that are already deployed at population level.

Keywords: Emergency admission, Primary care, Machine learning
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Words Label
Antihist, Hyposensit & Allergic Emergen Nasal allergies
Drugs Acting On The Nose
Corti’roids & Other Anti-Inflamm.Preps.
Nasal Products

Contraceptives Eye products
Miscellaneous Ophthalmic Preparations
Eye Products
Antiviral Drugs
Corti’roids & Other Anti-Inflamm.Preps.
Anti-Infective Eye Preparations

Antidepressant Drugs
Antibacterial Drugs

(BNF) Unknown

Wound Management & Other Dressings Wound management
Drugs Used In Neuromuscular Disorders
Antibacterial Drugs
Skin Fillers And Protectives
Night Drainage Bags
Catheters
Leg Bags
Stockinette
Arm Sling/Bandages
Surgical Adhesive Tape
Swabs
Irrigation Solutions
Urinary tract infection, site not specified
Essential (primary) hypertension

Hypnotics And Anxiolytics Substance Abuse and Mental Health
Drugs Used In Substance Dependence

Acne and Rosacea
Sex Hormones & Antag In Malig Disease
Hypothalamic&Pituitary Hormones&Antioest
Antibacterial Drugs
Chemotherapy session for neoplasm
Malignant neoplasm, breast, unspecified

Antiplatelet Drugs Metabolic syndrome
Lipid-Regulating Drugs

Oral Nutrition Skin disease
Preparations For Warts And Calluses
Top Local Anaesthetics & Antipruritics
Vaccines And Antisera
Anti-Infective Skin Preparations
Other Appliances
Anthelmintics
Anti-Infective Eye Preparations
Cough Preparations
Drugs Acting On The Oropharynx
Antiperspirants
Base/Dil/Susp Agents/Stabilisers
Other chemotherapy
Viral infection, unspecified
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Thyroid And Antithyroid Drugs
CNS Stimulants and drugs used for ADHD
Antibacterial Drugs

Analgesics

Antibacterial Drugs
Anti-Infective Skin Preparations
Drugs Acting On The Oropharynx
Treatment Of Vaginal & Vulval Conditions
Antifungal Drugs
Drugs Acting On The Ear
Topical Corticosteroids
Cough Preparations
Anti-Infective Eye Preparations

Hypertension and Heart Failure

Anaemias + Other Blood Disorders
Chronic Bowel Disorders
Antifibrinolytic Drugs & Haemostatics
Cytotoxic Drugs

Dyspep&Gastro-Oesophageal Reflux Disease Stoma care
Drugs Used In Psychoses & Rel.Disorders
Drugs Used In Park’ism/Related Disorders
Acute Diarrhoea
Ileostomy Bags
Adhesive Removers (Sprays/Liquids/Wipes)
Colostomy Bags
Swabs
Skin Fillers And Protectives

Emollient & Barrier Preparations Skin and scalp disorders
Topical Corticosteroids
Emollients
Shampoo&Other Preps For Scalp&Hair Cond
Preparations For Eczema And Psoriasis
Anti-Infective Skin Preparations

Corticosteroids (Endocrine)
Drugs Affecting The Immune Response
Fluids And Electrolytes
Minerals
Sunscreens And Camouflagers
Antibacterial Drugs
Acute Diarrhoea

Antisecretory Drugs+Mucosal Protectants
Antibacterial Drugs

Lipid-Regulating Drugs

Beta-Adrenoceptor Blocking Drugs

Drugs For Genito-Urinary Disorders
Sex Hormones
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ICD10 code begins with: Admission type
A;B Infectious disease
C Neoplasm
D1;D2;D3;D4 Neoplasm
D5;D6;D7;D8;D9 Blood
E Endocrine/metabolic
F Mental/behavioural
G Nervous system
H1;H2;H3;H4;H5 Eye
H6;H7;H8;H9 Ear
I Circulatory
J Respiratory
K Digestive
L Skin
M Musculoskeletal
N Genitourinary
O Obstetric/puerperium
P Perinatal
Q Congenital
R Abnormality NEC
S;T;V;X;Y External
U;Z Other

Table S5. Definition of different admission types.

Antibacterial Drugs

Anticoagulants And Protamine Arrhythmias
Treatment Of Glaucoma
Positive Inotropic Drugs
Anti-Arrhythmic Drugs
Atrial fibrillation and flutter

Nit,Calc Block & Other Antianginal Drugs

Soft-Tissue Disorders & Topical Pain Rel
Local Anaesthesia
Analgesics
Elastic Hosiery
Dry Mouth Products
Acute Diarrhoea

Table S4. Exploration of the inferred topics. Details of derived topics for topic model used for prediction in F1 (fitted to F2+F3). A
topic model assumes that each ‘document’ (individual) in a ‘corpus’ (population) is associated with various ‘topics’ (roughly, illness
categories) where each topic corresponds to a distribution over ‘words’ (ICD10 codes and medication types). We would expect that the 30
topics fitted to each fold roughly represent the major clusters of disease types which occur amongst those individuals. This tables shows
the ‘words’ with the highest probability of membership in each topic (> 1%, where probabilities over all words sum to 100%). In each
topic, words are ordered by decreasing probability of topic membership. ICD10 codes are italicised; medication types are not. Topics are
ordered by decreasing importance (mean absolute Shapley value). We manually assigned labels to some topics which appear to code for
particular disease types.
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Total Admitted only Died Both
Excluded 4,622,512 128,241 6,139 3,166
Included 12,866,084 977,159 57,183 107,827
Died 585,322 0 0 0
No v3 4,528,514 121,857 6,036 3,011
No SIMD 199,746 12,688 151 263
Unmatched 13,524 526 0 0
Died and No v3 585,089 0 0 0
Died and No SIMD 1,258 0 0 0
Died and Unmatched 0 0 0 0
No v3 and No SIMD 112,992 6,648 48 110
No v3 and Unmatched 6,468 179 0 0
No SIMD and Unmatched 303 20 0 0
Died and No v3 and No SIMD 1,258 0 0 0
Died and No v3 and Unmatched 0 0 0 0
Died and No SIMD and Unmatched 0 0 0 0
No v3 and No SIMD and Unmatched 258 17 0 0
All 0 0 0 0

Table S6. Frequency of EA and deaths amongst samples excluded from SPARRAv4. All figures show total numbers. In row
names, as for Figure 1B: ‘Died’: Died prior to time cutoff; ‘No SIMD’: missing SIMD; ‘No v3’: missing SPARRAv3 score; ‘Unmatched’:
could not match record. For completeness, combinations of exclusions are included even if no individual was excluded with this particular
combination.
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Fold 1
YED U16 FEC LTC

ANN 0 0 0 0
Penalised GLM 0 0 0 0
Naive Bayes 0 0 0 0
RF, depth: 20 0 0 0.24 0.07
RF, depth: 40 0.18 0.21 0.17 0.23
SPARRAv3 0 0 0 0
XGB depth:3 1.86 1.57 1.24 1.69
XGB depth:4 0.84 1.57 0.68 0.62
XGB depth: 8 3.12 3.20 2.14 2.39

Fold 2
YED U16 FEC LTC

ANN 0 0 0 0
Penalised GLM 0 0 0 0
Naive Bayes 0 0 0 0
RF, depth: 20 0 0 0.09 0.01
RF, depth: 40 0.22 0.20 0.24 0.16
SPARRAv3 0 0 0 0
XGB depth:3 1.87 1.58 1.37 1.62
XGB depth:4 0.88 1.72 0.68 0.74
XGB depth: 8 3.02 3.45 2.07 2.47

Fold 3
YED U16 FEC LTC

ANN 0 0 0 0
Penalised GLM 0 0 0 0
Naive Bayes 0 0 0 0
RF, depth: 20 0 0 0.28 0
RF, depth: 40 0.16 0.11 0.15 0
SPARRAv3 0 0 0 0
XGB depth:3 1.73 1.16 1.31 1.60
XGB depth:4 1.07 1.82 0.67 0.48
XGB depth: 8 3.02 3.42 2.06 2.44

Table S7. Coefficients of ensemble when fitted separately to SPARRAv3 cohorts. Columns YED, U16, FEC, and LTC correspond
to subcohorts in SPARRAv3; please see Methods.
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Figure S1. Extended data overview. Distribution of the number of input EHR entries (prior to exclusions) according to age, sex and
SIMD deciles (1: most deprived; 10: least deprived) stratified by the input database. All sub-panels are drawn to the same scale. “Other”
includes geriatric long stay (SMR01E) and urgent care monitoring (System Watch). (B) Distribution of target events by age stratified by
event type.
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Figure S2. Density plot comparing SPARRAv3 and SPARRAv4 scores. The test datasets used within each CV iteration were
combined in order to generate this plot (i.e. all samples are included once). Joint density (low to high: white-grey-red-yellow) of
individual SPARRAv3 and SPARRAv4 scores. The density is normalised to uniform marginal on the Y axis, then the X axis; true
marginal distributions of risk scores are shown alongside in grey.
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Figure S3. Calibration curves for SPARRAv4 model constituents. Estimates obtained for the test set within each CV iteration are
shown in different colours (legend shown in top left panel). Bottom sub-panels show departure from perfect calibration.
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Figure S4. Performance of a static model and static scores used to predict risk at future time cutoffs. (A-C) Performance of
static scores evaluated using M0 at time t0 for predicting EA at times t1− t5. (A) ROC curves. (B) PR curves. (C) Calibration curves. (D)
AUROCs for scores calculated at each time cutoff (based on M0) for prediction in subsequent time cutoffs.
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Figure S5. Feature importance. (A-B) Two examples of non-linear feature importance as measured by mean Shapley values (vertical
lines show plus/minus one standard deviation). (C) Distribution of Shapley values for the number of previous elective and emergency
admissions. (D-E) Comparison of predictive performance with and without topic-model derived features. (D) ROC. (E) PRC. (F)
Calibration curve. For (D-E), bottom sub-panels show differences in sensitivity and specificity, respectively. In (F) bottom sub-panel
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SUPPLEMENTARY NOTES

S1 Analysis of specific topic effects
We searched for individuals for whom the topic model made a substantial difference to their SPARRA score. We considered Shapley
values for the 30 topic features across 20,000 uniformly-randomly-chosen individuals in cross-validation fold 1. We searched for
topic-derived features for which some of these 20,000 individuals had a Shapley value in excess of 2% for that topic. This is a large
Shapley value; for reference, the mean Shapley value from being in the most-deprived decile is only around 1%.

We noted that for one topic feature (topic 21) 87 individuals (about 0.43% of the cohort of 20,000) had a Shapley value in excess of
2%, meaning that the additive contribution to their score from the topic feature was at least 0.02. To gauge the effect of this change, we
compared the SPARRAv3 and SPARRAv4 scores of these individuals (the SPARRAv3 score does not use features derived from a topic
model). The SPARRAv4 scores were on average higher (mean 0.52 for SPARRAv4 vs 0.40 for SPARRAv3; p-value (t-test) < 1×10−4)
and calibration-in-the-large was closer for SPARRAv4 (admission frequency 0.56; closer to 0.52 (SPARRAv4) than 0.40 (SPARRAv3)).

Topic 21 was associated with skin and scalp disorders (see Supplementary Table S4). It is possible that the individiuals for whom this
topic feature had a high Shapley value were at elevated risk of EA due to such disorders, but that this was not detectable from the features
used in SPARRAv3.

In order to avoid data leakage while using our cross-validation scheme, we needed to fit three separate topic models, each fitted to
data from two cross-validation folds and used to generate topic features for the remaining fold (see Methods section). For the deployed
model, a topic model is refitted to the entire cohort, so the inferred topics are unlikely to contain the exact same cluster of prescriptions
and diagnosis. Furthermore, topic-specific contributions may differ from those presented here. However, the analysis above does indicate
that, in general, topic features can lead to substantial improvements in score accuracy for some individuals.

S2 Model re-calibration
We applied a monotonic transformation to optimise the calibration of the scores generated by the ensemble. Given a predicted value Ỹ
(for ease of notation we do not explicitly include its dependency on the input features X) we defined a transformation m(·) to optimise
calibration, essentially using isotonic regression. The latter was derived using the following procedure.

Fitst, we defined an empirical calibration function for an estimator Ỹ of Y |X :

CALỸ (y) = mean
(

Ỹ
∣∣∣∣(|Ỹ − y|< 1

100

))
≈ EY |X

(
Y |Ỹ = y

)
(1)

We then found a,b such that the mean and mode of (aỸ + b) were approximately correctly calibrated; that is, CALaỸ+b(y) = y for
y ∈ {mean(aỸ + b),mode(aỸ + b)}, and scaled a,b such that 0 ≤ aỸ + b ≤ 1. Across an evenly spaced grid G of 100 y-values we
computed the function:

c(y) = (1−10−5) max
y′∈G;y′≤y

CALaỸ+b(y
′)+10−5y (2)

using the cumulative maximum of CAL(·) to ensure c(·) is non-decreasing, and adding a linear term to ensure c(·) is increasing. We
extended the domain of c(·) to [0,1] using piecewise linear interpolation, and defined our calibrating transform m(·) as the inverse of c(·):

m(y) = c−1(ay+b) (3)

The transformation above was optimised using by further splitting the training set (F1+F2) within our 3-fold cross-validation (CV)
procedure (we use F1, F2 and F3 to denote each fold). For each CV-fold, the following steps were performed:

1. Train all constituent models using F1 (except SPARRAv3, for which PHS provided the scores).

2. Each constituent model was then used to generate scores for samples in F2.

3. Given those scores, ensemble weights were inferred via 10-fold CV within F2.

4. Using the previously calculated scores and ensemble weights, the parameters a and b were chosen to optimise calibration in F2.

5. The optimal ensemble weights and calibration transformation parameters (a and b) were then used as fixed constants when training
the model in the combined F1+F2 dataset.

Note that, due to computational constrains, the topic model was not retrained within the above procedure. Instead, a pre-trained topic
model (using F1+F2 as a combined dataset) was used to generate features to be used in step 1.
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S3 Use of subcohort-specific ensemble coefficients
When fitting the SPARRAv4 score, for each cross-validation fold, we computed predictions for a range of constituent machine learning
models. The final score was defined as a linear combination of the predictions generated by each constituent model a(see Methods section
and Table 2). The optimal linear combination was determined by fitting an L-1 penalised generalised linear model with the predictions
from the constituent models as input and presence of EA as output.

We considered the possibility that the model could be improved by allowing the coefficients of each model to vary across different
subsets of the population. In particular, we assessed the extent to which allowing models to vary across the subcohorts used in the
SPARRAv3 score (LTC, YED, FEC, and U16; see Methods section) improved the overall performance of the model. We fitted separate
penalised regression models (leading to different ensemble weights) in each of the three cross-validation folds and four cohorts (for 12
overall). Subsequently, we assessed how predictive performance changed in the corresponding subcohort in the test set. For instance, we
fit one linear model to samples in the YED cohort in folds 2 and 3, and evaluated the performance of this model in samples in the YED
cohort in fold 1.

For comparison, we also considered the performance of our original non-cohort-specific ensemble weights, the performance of the
best constituent model, and the performance of our original model without topic-model derived features. We evaluated all models using
AUROC.

We found that using cohort-specific coefficients in this way improved AUC in the relevant test sets (of 12 comparisons of AUROC, 11
improved; p < 0.007 using a Binomial test). However, the magnitude of the change was small: AUC improved in each subcohort by
a mean value of only 3.8×10−5 (where the mean is across cross-validation folds and cohorts). By comparison, use of topic features
improves AUC by a mean of 4.1×10−4, around ten times higher, and use of a weighted sum of models rather than just the best-performing
constituent model improves AUC by 7.7×10−4, around twenty times higher.

Given the relatively small advantage of doing this relative to the difficulty of implementation, we opted not to fit separate models in
subcohorts in this way. However, this remains an active area of further research.

Table S7 details the coefficients attained in each model. Generally, the same models (XGB and RF) had non-zero coefficients in each
case.

S4 Imputation of lengths of stay when discharge date was missing
Some of our predictors concerned lengths-of-stay; that is, total days spent in hospital in the pre-prediction period ( elective bed days,
emergency bed days, and other bed days; see Table S3). In general, these were calculated by finding all stays listed for a given
individual, subtracting the admission date from the discharge date for each stay, and summing the results across all stays. However, for
some hospital stays, no discharge date was present in the source tables. In some cases, this was due to the individual still being in hospital
at the time cutoff, but in others was evidently due to the discharge date simply not being recorded; we identified several individuals who
were admitted with no discharge date who had evidence of community activity during the time they were supposedly in the hospital. To
manage this, we used an imputation procedure for hospital stays in which the discharge date was not recorded. When we see an individual
at a time cutoff t with admission date d and no discharge date, we have options of:

1. Do not count this admission towards the total length of stays; that is, count the stay length as 0 days for that admission. This will
under-estimate the total length of stay.

2. Count time t−d towards the total length of stay. Effectively this imputes the discharge date using the time cutoff. This could lead
to incorrect assumptions of very long hospital stays for individuals; indeed, since the pre-prediction period is three years, the mean
assumed hospital stay length for such patients would be in excess of eighteen months. This is likely to over-estimate the total length
of stay.

3. Count some arbitrary time t0 towards the total length of stay. Depending on the value of t0, the total length of stay may be under- or
over-estimated.

All of these options coult potentially decrease the usefulness of these variables by artificially inflating (or deflating) the predicted EA
risk. As a compromise, we decided to use

min(t−d, t0) (4)

as the length of stay for admissions with a missing discharge date. Effectively, this strategy uses t0 as a default minimum length for stays
with missing discharge date.

To choose t0, we use an empirical Bayes-optimal decision rule. Let E be the event that the discharge time for a given admission is not
recorded. We model the time t−d as a (discrete) random variable X with a mixture distribution depending on E. We want to choose t0 so
that P(E|X = x)≥ 1/2 if and only if x≥ t0. We set

P(X = x|¬E) = f (x)

P(X = x|E) = 1
3×365.25

= c
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that is; if the discharge time is recorded (in which case the individual is genuinely still in hospital at time t), we have some distribution of
true lengths of stay, whereas if the discharge time is not recorded, the time t−d has an equal probability of being anywhere between one
day and three years.

Let P(E) = q. Now

P(E|X = x) = P(X = x|E) P(E)
P(X = x)

=
cq

cq+(1−q) f (x)
(5)

Given estimates of q and f (·), to find t0 we may set this expression to 1/2 and solve for x.
In order to estimate q and f with q̂ and f̂ , we consider the population P of admissions (not individuals) where the admission date is

between May 2013 and May 2014. We then estimate

q̂ = proportion of P with no recorded discharge date or discharged after May 2016

f̂ (x) = proportion of P with recorded discharge date before May 2016 with length of stay x

We use this population of admissions so as to avoid data leakage, since these are prior to the earliest time cutoff (May 2016) used in
fitting the model. This is also our rationale for treating individuals who were discharged post-May 2016 the same as having no recorded
discharge date: we cannot use this information without data leakage. However, we note that the number of individuals with genuine > 2
year hospital stays is very small.

Following this procedure, estimated values of t0 are 26, 19 and 6 for emergency bed days, elective bed days and
other bed days, respectively.

S5 Assessment of calibration
We use an estimator for calibration broadly based on the Nadaraya-Watson kernel estimator [Nadaraya, 1964, Watson, 1964]. We re-derive
several properties (consistency, bias) to highlight their interpretation in our context.

We assume in general that, for IID predictor/outcome pairs (Xi,Yi)∼ (X ,Y ), i ∈ 1..n, and an optimal predictor function popt , we have

Y |X ∼ Bernoulli[popt(X)] (6)

noting that this implies

popt(X) = E[Y |popt(X)] (7)

We want to estimate popt(X).
Since we only observe Y = 1 or Y = 0, we must estimate E[Y |p(X) = z] as some kind of average of Y about observed values p(X)

close to z. A routine way to do this is to use ‘reliability diagrams’ [Bröcker and Smith, 2007] in which we bin values of p(X) and estimate
E(Y |p(X)) in each bin.

Since for small bin sizes there may be few or no values of p(X) in some bins, we use a kernel estimate ĉp(z) of cp(z) = E[Y |p(X) = z]:

ĉp(z) = z
∑i YiKδ [p(Xi),z)]

∑i p(Xi)Kδ [p(Xi),z]
= ∑

i
wiYi (8)

where Kδ : (0,1)2→ R+ is some distance-measuring kernel with width δ , and

wi = z
Kδ [p(Xi),z)]

∑i p(Xi)Kδ [p(Xi),z]
(9)

We avoid the simpler estimate given by the Kδ -weighted mean of Yis:

c̃p(z) =
∑i YiKδ [p(Xi),z)]

∑i Kδ [p(Xi),z]
(10)

for reasons shown below. We note the following:

Proposition 1. If p(X) has Lesbegue-integrable positive density on (0,1), K(z,x) and cp(x) are Lesbegue-integrable functions of x for
fixed z > 0, and the kernel ‘narrows with δ ’ so

EX{p(X)Kδ [p(X),z]} δ→0−−−→ z

EX{cp[p(X)]Kδ [p(X),z]} δ→0−−−→ cp(z)

then ĉ(z) becomes a consistent estimator of c(z) as δ → 0

S25

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2021.08.06.21261593doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.06.21261593


Proof. From Slutsky’s lemma, the law of total expectation and the strong law of large numbers

ĉp(z) = z
∑i YiKδ (p(Xi),z)

∑i f (Xi)Kδ ( f (Xi),z)
n→∞−−−→
prob

z
EX
{

cp[p(X)]Kδ [ f (X),z]
}

EX {p(X)Kδ [p(X),z]}
δ→0−−−→ z

cp(z)
z

= cp(z) (11)

We note that ĉp(Z) is not generally consistent if δ > 0. However, the inconsistency is not severe: we note

Proposition 2. If, in addition to the above, Kδ (x,z) = Kδ (x− z) is a symmetric density with second moment δ and negligible moments of
higher order, and the densities of p(X) and cp(X) are twice differentiable at z, then ĉp(z)→ cp(z)+O(δ 2)

Proof. We have

EX{cp[p(X)]Kδ [p(X),z]}= Ex∼p(X)[cp(x)Kδ (x− z)]

=
∫ 1

0
fp(X)(x)cp(x)Kδ (x− z)dx

=
∫ 1

0
( fp(X)(z)+ f ′p(X)(z)(x− z))(cp(z)+ c′p(x− z))Kδ (x− z)dx

+
∫ 1

0
O
(
(x− z)2)Kδ (x− z)dx

= fp(X)(z)cp(z)+
∫ 1

0
O
(
(x− z)2)Kδ (x− z)dx

+( fp(X)(z)c
′
p(z)+ f ′p(X)(z)cp(z))

∫ 1

0
(x− z)Kδ (x− z)dz

= fp(X)(z)cp(z)+O
(
δ

2) (12)

noting the symmetry of Kδ . If we replace cp[p(X)] with p(X), the expectation is z fp(X)(z)+O(δ 2), and the result follows from the first
part of 11.

Remark 1. In the ideal case where cp(z) = z (that is, our model is perfectly calibrated) estimator 9 is consistent even when δ > 0,
whereas the apparently simpler asymptotically consistent (as δ → 0) estimator of a weighted sum of Yi’s:

c̃p(z) =
∑i YiKδ [p(Xi),z)]

∑i Kδ [p(Xi),z]
(13)

is not.

Finally, we note the following:

Proposition 3. Under the assumptions above, with fixed Xi, the bias of ĉp(z) is

∑i B(Xi,z)Kδ [p(Xi),z])
∑i p(Xi)Kδ [p(Xi),z]

= ∑
i

wi
B(Xi,z)

z
(14)

where B(Xi,z) = p(Xi)cp(z)− zcp(p(Xi)).

Proof. With fixed Xi

EY [cp(z)− ĉp(z)] = EY

[
cp(z)−∑

i
wiYi

]

= cp(z)− z
∑i cp(p(Xi))Kδ [p(Xi),z)]

∑i p(Xi)Kδ [p(Xi),z]

=
∑i[p(Xi)cp(z)− zcp(p(Xi))]Kδ [p(Xi),z])

∑i p(Xi)Kδ [p(Xi),z]

∑
i

wi
B(Xi,z)

z

as required.

Remark 2. This enables straightforward evaluation of bounds on bias given bounds on the form of cp. The estimator ĉp is unbiased if
cp(x) = kx for some k, since B(Xi,z)≡ 0.
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Remark 3. An alternative way to draw a kernelised calibration curve is to simply plot a parametric curve(
x(t)
y(t)

)
=

(
∑ p(Xi)Kδ [p(Xi), t]

∑YiKδ [p(Xi), t]

)
(15)

which, for each t, is an only-slightly biased estimate of some point z,cp(z). If a rectangular kernel is used, this is equivalent to binning
values of p(Xi) [Bröcker and Smith, 2007]. However, this method does not generally give a curve across the entire range of p(Xi).

It is straightforward to estimate

var(cp(z) | {X1,X2...Xn}) = var
(

z
∑i YiKδ [p(Xi),z]

(∑i p(Xi)Kδ [p(Xi),z])

∣∣∣∣ X1,X2..Xn

)
= var(∑

i
wiYi

∣∣ {X1,X2..Xn})

= ∑
i

w2
i var(Yi | X1,X2, ..Xn)

≈∑
i

w2
i p(Xi)(1− p(Xi))

where the approximation is exact if cp(z) = z. Together with an estimate of maximum absolute bias bz at z, this enables estimates of
conservative confidence intervals on ĉp(z) at level 1−α :

ĉp(z)±
(

bz +Φ
−1
(

α

2

)
SE(cp(z)|Xi)

)
(16)

In all plots in this paper, we bounded bias under the assumption that there existed k such that |cp(z)− kz|< z2/10.
The calibration estimator derived here is demonstrated in an R script sparra calibration.R available with the attached R code

for this manuscript.
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