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ABSTRACT 

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects 

over 25% of the population and currently has no effective treatments. Plasma proteins with causal 

evidence may represent promising drug targets. We aimed to identify plasma proteins in the causal 

pathway of MASLD and explore their interaction with obesity.  

METHODS: We analysed 2,941 plasma proteins in 43,978 European participants from UK Biobank. 

We performed genome-wide association study (GWAS) for all MASLD-associated proteins and 

created the largest MASLD GWAS (109,885 cases/1,014,923 controls). We performed Mendelian 

Randomization (MR) and integrated proteins and their encoding genes in MASLD ranges to identify 

candidate causal proteins. We then validated them through independent replication, exome 

sequencing, liver imaging, bulk and single-cell gene expression, liver biopsies, pathway, and 

phenome-wide data. We explored the role of obesity by MR and multivariable MR across proteins, 

body mass index, and MASLD.  

RESULTS: We found 929 proteins associated with MASLD, reported five novel genetic loci associated 

with MASLD, and identified 17 candidate MASLD protein targets. We identified four novel targets for 

MASLD (CD33, GRHPR, HMOX2, and SCG3), provided protein evidence supporting roles of AHCY, 

FCGR2B, ORM1, and RBKS in MASLD, and validated nine previously known targets. We found that 

CD33, FCGR2B, ORM1, RBKS, and SCG3 mediated the association of obesity and MASLD, and HMOX2, 

ORM1, and RBKS had effect on MASLD independent of obesity.  

CONCLUSIONS: This study identified new protein targets in the causal pathway of MASLD, providing 

new insights into the multi-omics architecture and pathophysiology of MASLD. These findings advise 

further therapeutic interventions for MASLD. 

KEYWORDS: metabolic dysfunction-associated steatotic liver disease, non-alcoholic fatty liver 

disease, genomics, proteomics, drug target 
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ABBREVIATIONS: MASLD, metabolic dysfunction-associated steatotic liver disease; NAFLD, non-

alcoholic fatty liver disease; MASH, metabolic dysfunction-associated steatohepatitis; NASH, non-

alcoholic steatohepatitis; MR, Mendelian randomization; MRI-PDFF, magnetic resonance imaging - 

estimated proton density fat fraction; ICD, International Classification of Diseases; LC-MS/MS, liquid 

chromatography-tandem mass spectrometry; MSD, Matrix Spectral Decomposition; GWAS, genome-

wide association study; ALT, alanine aminotransferase; PheMR, phenome-wide Mendelian 

randomization study; pQTL, protein quantitative trait locus; eQTL, expression quantitative trait locus; 

BMI, body mass index; VEP, variant effect predictor; LOFTEE, loss-of-function transcript effect 

estimator; DEG, differentially expressed genes; snRNA-seq, single nucleus RNA sequence; scRNA-seq, 

single cell RNA sequence; age2, age squared; SNP, single-nucleotide polymorphism; NAFL, non-

alcoholic fatty liver; GRHPR, Glyoxylate and hydroxypyruvate reductase; HMOX2, heme oxygenase 2; 

HMOX1, heme oxygenase 1; IGF, insulin-like growth factor; SCG3, secretogranin III; RBKS, ribokinase; 

ORM1, Orosomucoid 1; AHCY, adenosylhomocysteinase; FCGR2B, Fc gamma receptor IIb.  
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Introduction 

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic 

fatty liver disease (NAFLD)1, is characterised by an excessive accumulation of fat in the liver (>5%) 

that is not caused by excessive alcohol consumption or other known liver disease aetiologies. Its 

estimated to affect more than 25% of the global population, making it one of the most common liver 

diseases worldwide2. Its prevalence is increasing rapidly, which is attributed to the increase in 

obesity. MASLD is a major risk factor for liver fibrosis, metabolic dysfunction associated 

steatohepatitis (MASH), formerly known as non-alcoholic steatohepatitis (NASH), cirrhosis, liver 

failure, and liver cancer in Western countries2. Currently, there are no specific medications for 

MASLD, and lifestyle modifications are the mainstay of treatment, which is not achievable by many 

patients. Thus, there is an urgent need to improve our understanding of MASLD and identify and 

evaluate therapeutic targets or interventions to treat it more effectively.  

Over 95% of all currently known drugs target proteins
3
, highlighting the importance of 

understanding the role of proteins in the development of MASLD. Understanding how proteins 

relate to MASLD, especially distinguishing the proteins in the causal pathway of MASLD, could 

provide insights into the underlying mechanisms of the disease and identify potential therapeutic 

targets for drug development. Studying liver tissue for proteomic analysis in MASLD is challenging 

due to a paucity of liver tissue samples available. The liver is the central organ producing and 

metabolising plasma proteins. Circulating plasma proteins can be an informative read-out of liver 

function for the discovery phase, followed by a validation in tissue specific biological data such as 

liver imaging, transcriptomics and biopsy. 

The present study aims to identify proteins in the causal pathway of MASLD by analyzing data on 

2,941 plasma proteins measured by Olink® in 43,978 European participants in UK Biobank. We find 

that 929 proteins (31.6%) are observationally associated with MASLD and identify 17 proteins that 

may be on the causal pathway to MASLD based on Mendelian randomization (MR) and genetics data. 

These include CD33, GRHPR, HMOX2, and SCG3 which are reported as protein/genetic targets of 

MASLD or NAFLD for the first time, and AHCY, FCGR2B, ORM1, and RBKS which are identified on 

their protein levels with MASLD or NAFLD for the first time. We further confirmed their validity using 

a range of independent methods, including exome sequencing, liver imaging, bulk and single-cell 

gene expression, liver biopsies, pathway analysis, and phenome-wide data.  

Materials and Methods  
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Study participants 

We conducted our study within UK Biobank which comprised over 500,000 participants aged 37 to 

73 years during the recruitment period (2006 to 2010). Participant data include genome-wide 

genotyping, exome sequencing, whole-body magnetic resonance imaging, electronic health record 

linkage, blood and urine biomarkers, and physical and anthropometric measurements. Further 

details are available online4. All participants provided electronically signed informed consent. UK 

Biobank has approval from the North West Multi-centre Research Ethics Committee, the Patient 

Information Advisory Group, and the Community Health Index Advisory Group. The current study is a 

part of UK Biobank project 53639 and 65851. 

Human liver biopsies were obtained from female patients undergoing elective surgery, including 

bariatric procedures and gall bladder removal. All participants gave full, informed, written consent 

for the liver biopsy (NHS research ethics reference: 17/WM/0130). Clinical and biochemical data 

were collected on the day of surgery; 36 female European participants were included in the analysis 

(Supplementary Table 2). An experienced histopathologist assessed all liver biopsies for steatosis 

and MASLD activity score according to the Kleiner classification5.  

Phenotype definitions  

We defined MASLD cases based on magnetic resonance imaging-estimated proton density fat 

fraction (MRI-PDFF)
6
 ≥5% (~42K participants available) or from primary care records (~250K 

participants available), hospital admission or death registration (~500K participants available) using 

International Classification of Diseases (ICD)9 (code 5715 and 5718) and ICD10 (code K758, K760 and 

K746)
7
 until November 2022. We excluded participants with excessive alcohol consumption or any 

secondary causes of hepatic steatosis (Supplementary Table 3)8 from both cases and controls of 

MASLD analyses. The definition of other traits and covariates are descripted in Supplementary Table 

4.  

Genomic data processing  

UK Biobank array genotyping was conducted using bespoke Affymetrix UK BiLEVE Axiom® Array or 

UK Biobank Axiom® array. All genetic data were quality controlled and imputed as described 

previously9. Participants who had gender mismatch, failed quality control, significant missing data, or 

had heterozygosity were excluded following UK Biobank's recommendation10. Non-European 
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participants were excluded from current analysis. Whole-exome sequencing was measured in 

454,787 participants from UK Biobank using a previously described method
11

.  

Proteome measurement 

High-throughput proteomics measures were performed by Olink® in a randomly selected 46,673 

participants, of which 43,978 Europeans were included in the current proteomics analyses. Details of 

the Olink proteomics assay, data processing and quality control were descripted previously
12

. We 

included 2,941 protein variables, of which 12 molecules mapped to two or more possible proteins 

were analysed as one variable, and 18 proteins duplicated among panels were analysed separately in 

our analysis. A general map of the proteomics is shown in Supplementary Table 1. The protein values 

were rank-based inverse normal transformed to ensure that the results were comparable across the 

entire dataset. Analysis of proteins in the liver biopsies was performed by liquid chromatography-

tandem mass spectrometry (LC-MS/MS), which is fully described in Supplemental Materials.  

Statistical analysis 

All analyses were performed in R statistical software (version 4.0.3) unless otherwise specified. Two-

tailed tests were considered. Detailed data preparation and missing imputation is in Supplemental 

Materials. 

Proteome associations 

For the association of proteins and outcomes, we used logistic regression for binary outcomes and 

linear regression for continuous outcomes for each protein separately. We used two models for the 

regression analysis in UK Biobank: model 1 included age, age squared, sex, fasting time, and batches 

of proteomic measurement; model 2 included the covariates in model 1 and common lifestyle 

factors, including smoking status, number of pack-years of smoking, grams of alcohol consumption 

per week, education, and physical activity. Multiple testing was considered by Matrix Spectral 

Decomposition (MSD) method13. The explanation of each significance threshold in our study is 

descripted in Supplemental Materials. Linear regression analysis was used to examine the 

association between specific proteins and features of hepatic steatosis in liver biopsy tissue. The 

covariates adjusted for in the model included age, and study groups.  

We further explored the full STRING protein-protein networks and enrichment facilities of the 929 

proteins for MASLD through STRING database
14

 using the high confidence (≥ 0.90) based on 

experiments or databases source (false discovery rate, FDR<0.05). The network was clustered into 
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ten clusters based on KMeans clustering. STRING database included 905 proteins available for 

MASLD.  

Genome-wide association study (GWAS) and meta-analysis 

We performed GWAS for all proteins (n=41,286), PDFF (n=38,174), and MASLD (11,947 cases and 

313,042 controls) in UK Biobank using a whole-genome regression approach implemented in 

REGENIE
15

. It considers relatedness, population structure, polygenicity, and unbalanced binary traits 

by Firth logistic regression. We used participants with European ancestry based on both 

questionnaires and their genetic background. The relatedness included in the analysis was adjusted 

for using the genotype relatedness matrix. Covariates in the model included age, age squared, sex, 

the interaction of age and sex, the interaction of age squared and sex, batch and chip of genotyping 

process, and the first ten principal components. For MASLD GWAS sources, we also included three 

previous studies: (1) GWASGhodsian, conducted by N Ghodsian, et al16; (2) GWASFinngen, conducted using 

Finngen R9
17

; and (3) GWASMVP, conducted by M Vujkovic, et al, using unexplained chronic alanine 

aminotransferase (ALT) elevation as a proxy for MASLD18. By METAL19, considering study specific 

weight, genomic control, and sample overlap, we incorporated a meta-analysis of GWASGhodsian, 

GWASFinngen, and GWASUKB, correcting for 16.3% overlapped cases and 64.4% overlapped 

controls(GWASmeta) and a meta-analysis of GWASGhodsian, GWASFinngen, GWASUKB, and GWASMVP, 

correcting for 2.9% overlapped cases and 56.3% overlapped controls (GWASmeta+MVP). GWAS 

summary statistics for Somalogic proteome were obtained from previous publication which included 

35,559 Icelanders
20

. GWAS summary statistics for liver volume, liver iron content, liver fat 

percentage, and visceral adipose tissue volume were obtained from previous publication which 

considered over 38,000 participants in UK Biobank21.  

MR, multivariable MR, phenome-wide MR (PheMR) and colocalization 

We selected cis-protein quantitative trait loci (pQTLs) (p<5×10-8, minor allele frequency>1.0×10-3), 

cis- expression quantitative trait loci (eQTLs) (p<5×10
-8

, minor allele frequency>0.01) or genetic 

determinants of BMI (p<5×10-8, minor allele frequency>0.01) from the GWAS summary statistics22,23 

based on +/-500kbs of the encoding gene and r2<0.01 using a reference panel with 10,000 random 

European individuals from UK Biobank
24

. We used R package TwoSampleMR, 

MendelianRandomization, and MRPRESSO to perform different MR methods, including inverse-

variance weighted, weighted mode, weighted median, simple mode, and MR-Egger, Cochran's Q 

statistic for heterogeneity effect, MR-Egger intercept test and regression25, and MR-PRESSO26 for 

pleiotropic effect, and contamination mixture model
27

 for valid instrumental variables, when allowed. 
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Multivariable MR was performed using R package GRAPPLE with the function grappleRobustEst to 

estimate the causal effects of individual proteins and body mass index (BMI) under a random effect 

model of the pleiotropic effects28. For PheMR, we used the most completed GWAS summary 

statistics from Pan-UKB team29 for 916 selected diseases, which include European cases based on 

three-digit ICD10 codes. Colocalization analysis was based on HyPrColoc
30

. We used non-uniform 

priors, including genetic variants +/- 500kbs of the encoding genes, and investigated posterior 

alignment probabilities. We assumed a probability of ≥ 0.7 to indicate significant colocalization. 

Whole exome sequencing analyses 

Exome-wide association analysis was performed through REGENIE15 in the European population only 

to exclude the ancestry heterogeneity as previous publication
11

. Variants were annotated using 

Variant Effect Predictor (VEP) versions, and Loss-Of-Function Transcript Effect Estimator (LOFTEE) 

plug-ins, to select the most severe consequence of each variant among all protein-coding transcripts. 

We focused on variants that are highly or moderately like to influence the function of phenotypes 

defined through snpEff31, including transcript ablation/amplification, splice acceptor/donor variants, 

loss/gain-of-function mutations, missense variants, inframe insertion or deletion, and protein-

altering variants.  

Gene expression related analyses 

Default FUMA
32

 pipeline based on GTEx (v8) dataset
22

 were used to demonstrate the expression 

levels of the encoding genes of target proteins. It included the gene expression levels through log2 

transformed average expression values and enrichment analysis based on pre-calculated 

differentially expressed genes (DEG) sets across 54 different general tissue types. Genes with log2 

transformed expression values greater than 2.84, which corresponds to an expression level 

approximately 6.5-fold higher than the median expression level across all genes, were considered to 

be highly expressed. The GWAS summary statistics of gene expression in the liver and adiposity 

tissues were obtained from GTEx (v8) dataset
22

 and STARNET dataset
33

 and used to identify the 

genetic variants/determinants of the gene expression (p<5×10-8).  

The bulk RNA-seq data of liver biopsies were obtained from a previous transcriptomic study, which 

have snap-frozen biopsies from 206 MASLD patients and 10 healthy obese control cases without any 

biochemical or histological evidence of MASLD processed for RNA sequencing on the Illumina 

NextSeq 500 system34. Sixteen of the 17 candidate causal proteins were available, except for SCG3 
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which was not measured in the full set of control groups (n<10). GEO2R platform was used to 

perform the analysis
35

.  

Analysis of single nucleus RNA sequence (snRNA-seq) and single cell RNA sequence (scRNA-seq) 

We integrated six independent studies of liver cell snRNA-seq and scRNA-seq data, considering the 

differences in sample processing techniques and donor health conditions across the studies36–42. 

Detailed procedure is descripted in Supplemental Materials. For each the liver comprising cell types, 

we calculated the fraction of cells and the mean expression levels of the encoding genes of target 

proteins. For genes detected in more than 15% of the cells and a mean expression level greater than 

75% of the genes, we compared the differential gene expression levels through the Mann-Whitney-

Wilcoxon test across disease groups. We used data from Ramachandran et al.’s study
38

 for MASLD 

and non-MASLD groups. As there were no available MASLD data for hepatocytes and stellate cells, 

we used alternative data from NASH or alcoholic liver disease studies38–40.  

Pathway enrichment analyses 

Comprehensive enrichment analyses among all the potential causal targets of MASLD were 

performed through Metascape pipeline
43

. Functional enrichment analyses have been carried out by 

hypergeometric test and Benjamini-Hochberg p-value correction algorithm with the following 

ontology sources: GO Biological Processes, DisGeNET44, and PaGenBase45. All genes in the genome 

have been used as the enrichment background. Terms with a p < 0.01, a minimum count of three, 

and an enrichment factor > 1.5 (the enrichment factor is the ratio between the observed counts and 

the counts expected by chance) were collected and grouped into clusters based on their 

membership similarities.  

Results 

A flow chart of the study design is presented in Figure 1.  

Cohort description 

We studied 43,978 randomly selected European participants from UK Biobank for proteomic 

analyses. After excluding participants with excessive alcohol consumption or secondary liver disease, 

1,181 MASLD patients and 30,719 controls were identified. Individuals with MASLD had a higher 

prevalence of obesity, male gender, diabetes, hypertension, and various metabolic abnormalities 

compared to controls (p<1.0×10-3; Table 1). Only 8.4% of participants (3,676 out of 43,978) had liver 
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imaging data, while a comparison between those with and without liver imaging data shows a high 

correlation in the association of MASLD with its common risk factors (r=0.89, p=2.4×10
-11

; 

Supplementary Figure 1; Supplementary Table 5), suggesting no evidence of major selection bias in 

the patients included.  

Proteins associated with MASLD 

After adjusted significance threshold for multiple testing (p<3.35×10
-5

), 1,022 (34.8%) of the 2,941 

plasma proteins were found to be associated with MASLD based on the baseline model 

(Supplementary Table 6). Adjustment for common lifestyle factors additionally reduced the number 

of proteins associated with MASLD by 9.1% to 929 (Figure 2A, Supplementary Figure 2). BMI, the 

most important risk factor for MASLD, was found to be significantly associated with most of the 

proteins associated with MASLD (99.0%) apart from nine proteins (Supplementary Table 6; Figure 

2B). 

The 929 proteins associated with MASLD were further investigated for their co-regulation through 

network and enrichment analyses using the STRING database14. The proteins showed active 

interactions in the networks (Supplementary Figure 3) and were enriched in various biological 

pathways, diseases, and tissues, particular in immune system, lipoprotein, and visceral adipose and 

liver tissue-related pathways (Supplementary Table 7). 

Identification of proteins may be in the causal pathways of MASLD  

For causal inference, we conducted MR analyses to distinguish proteins that cause MASLD from 

those that are affected by the disease or other biases. We used cis-pQTL data from GWAS of 

individual protein in UK Biobank for the MR analyses. We identified 824 out of the 929 MASLD-

associated proteins having at least one cis-pQTL. 

To increase the power of GWAS summary statistics for MASLD, we utilized multiple sources including 

three previous studies (GWASGhodsian,
16 GWASFinngen,

17 and GWASMVP
46) and three in-house sources: 

GWASUKB, GWASmeta, and GWASmeta+MVP (Methods; Supplementary Table 8; Supplementary Figure 4). 

GWASmeta included 19,477 MASLD cases and 886,736 controls, and GWASmeta+MVP included 109,885 

MASLD or proxy (unexplained chronic ALT elevation) cases and 1,014,923 controls, as the largest 

MASLD GWAS up to date. Our in-house GWAS identified five unique loci which were reported to be 

genome-wide significantly associated with MASLD for the first time (p<5×10-8; Table 2; 

Supplementary Figure 5). They included four loci based on GWASmeta (APP, CYP7A1/UBXN2B, 
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RPL7P6/CAPZA3, and ZNF737), and two loci based on GWASmeta+MVP (PEMT, and ZNF737). Table 2 

demonstrates the directional consistency of the associations across the various GWASs.  

Our MR analysis of the 824 plasma proteins and MASLD GWAS sources identified the genetic 

predisposition of nine proteins associated with MASLD, directionally consistent with the findings in 

the observational study. It included plasma APOE, CD33, GRHPR, HMOX2, IL1RN, KRT18, and SORT1 

with a higher risk of MASLD and plasma NCAN and SCG3 with a lower risk of MASLD (p<1.2×10-4; 

Figure 3A, Supplementary Table 9). Among them, CD33, GRHPR, HMOX2, and SCG3 are newly 

identified proteins associated with MASLD or NAFLD. The association was robust using various MR 

methods, including simple mode, weighted mode, weighted median, MR Egger, and/or MR-

PRESSO25,26 (Figure 3B). Further MR-Egger intercept test, MR-Egger regression and contamination 

mixture method
27

 also revealed that pleiotropy, and heterogeneity did not influence the associations 

between the nine significant proteins and MASLD (Supplementary Table 9). Colocalization analysis 

suggested that the genetic associations with plasma APOE, KRT18, and IL1RN were due to the same 

genetic variants associated with MASLD
30

 (posterior probability ≥ 0.7; Supplementary Figure 6). 

Comparing MR results in independent MASLD GWAS sources (GWASMVP, GWASFinngen, and GWASUKB) 

revealed directionally consistent and significant associations with MASLD for APOE, IL1RN, NCAN, 

SORT1, and a novel target, SCG3 (p<0.05; Figure 3A). Further MR analyses using previous Somalogic 

proteome data in an independent population
20

 replicated the association of APOE, IL1RN, NCAN, and 

SCG3 with MASLD (p<8.3×10-3; Figure 3C; Supplementary Table 10). 

We hypothesized that proteins observationally associated with MASLD are more likely to be on the 

causal pathway of the disease if their encoding genes are also associated with MASLD. We found 

that 11 of the 929 MASLD-associated proteins with at least one MASLD-associated single-nucleotide 

polymorphism (SNP; p<5×10-8) in or near their encoding genes. In addition to the proteins also 

identified in the MR above (APOE, IL1RN, and NCAN) these included AHCY, ANPEP, APOC1, FCGR2B, 

KRT8, LPL, ORM1, and RBKS (Supplementary Table 11). Among them, AHCY, FCGR2B, ORM1, and 

RBKS were identified on their plasma protein levels with MASLD or NAFLD for the first time.  

By combining observational and genetic analyses, we identified 17 unique proteins that may play a 

role in the causal pathway of MASLD, including eight novel MASLD-associated plasma proteins (AHCY, 

CD33, FCGR2B, GRHPR, HMOX2, ORM1, RBKS, and SCG3) and nine known MASLD-associated 

proteins (ANPEP, APOC1, APOE, IL1RN, KRT18, KRT8, LPL, NCAN, and SORT1).  

Integration of the 17 candidate causal MASLD proteins with multi-dimensional data  
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To further understand the causal pathways implicated by the 17 MASLD-associated proteins, we 

conducted further cross-omics annotation, which are summarized in Figure 1 and Table 3. 

Integrating with exome sequencing data 

We tested whether genetic variants in the exome sequencing data from UK Biobank (n~470K, 

p<5×10-8; Methods) were associated with both MASLD and the candidate causal proteins in-cis and 

directionally consistent with the observational findings. We focused on variants with moderate to 

high impact on gene function31. We found that the missense variant at 19:19219115 (minor allele 

frequency, MAF = 0.075) was associated with plasma NCAN and MASLD, and the common missense 

variants at 19:44905910 (MAF = 0.36) and 19:44908684 (MAF=0.15) were associated with plasma 

APOE and MASLD (Supplementary Figure 7; Supplementary Table 12).  

Integrating with liver imaging data 

We then explored various evidence from liver imaging for the 17 candidate causal proteins. We 

studied MRI-PDFF, liver volume, liver iron content, liver fat percentage, and visceral adipose tissue 

volume, assessed by liver MRI in UK Biobank. We found that APOC1, APOE, NCAN, and RBKS have at 

least one SNP, in or near their encoding genes (+/-500kb), genome-wide significantly associated with 

PDFF and liver volume, and NCAN and RBKS have at least one SNP genome-wide significantly 

associated with liver fat percentage (p<5×10-8; Supplementary Figure 8). MR analyses showed that 

genetically determined plasma APOE and NCAN levels were associated with PDFF, liver fat 

percentage, and liver volume, whereas genetically determined IL1RN levels were associated with 

liver iron content (p<3.3×10-3, Figure 3D; Supplementary Table 13). 

Integrating with gene expression data in the liver and visceral adipose tissue 

We further investigated the 17 plasma proteins with gene expression data to understand whether 

these candidate causal proteins might originate from the liver. We found that the encoding genes of 

AHCY, ANPEP, APOC1, APOE, GRHPR, HMOX2, IL1RN, KRT18, KRT8, ORM1, and RBKS were highly 

expressed  in liver, and the encoding genes of AHCY, ANPEP, APOC1, APOE, CD33, FCGR2B, GRHPR, 

HMOX2, KRT18, KRT8, LPL, SGSH, and SORT1 were highly expressed in visceral adipose tissue 

(Supplementary Figure 9A). The up-regulated differential expression of these encoding genes was 

enriched in liver and visceral adipose tissues than other tissues (p<0.05/54; Supplementary Figure 

9B). We identified ANPEP, CD33, FCGR2B, and SORT1 having at least one cis-eQTL for liver tissue in 

or near their encoding genes, and ANPEP, CD33, FCGR2B, GRHPR, and HMOX2 having at least one 
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cis-eQTL for visceral adipose tissue (p<5×10-8; Supplementary Table 14). MR analyses show that the 

genetically determined expression levels of ANPEP, FCGR2B and SORT1 in liver, and the genetically 

determined expression levels of CD33, FCGR2B, GRHPR, and HMOX2 in visceral adipose tissue 

associated with MASLD, directionally consistent with the association between plasma proteins and 

MASLD (Supplementary Table 15). Using bulk RNA-seq data of liver biopsies from 206 MASLD 

patients and 10 controls34, we found that expression levels of APOC1, APOE, HMOX2, KRT18 and 

KRT8 were significantly different in the liver tissues of MASLD patients and non-MASLD controls, and 

in the consistent direction as shown in our observational findings (p<3.3×10
-3

, Supplementary table 

16).  

Integrating with snRNA-seq and scRNA-seq data  

A further exploration on liver tissue cell-type-based differential gene expression of the encoding 

genes of the 17 candidate causal MASLD proteins was performed, combining snRNA-seq and scRNA-

seq data from human liver biopsies from six previous publications
36–42

 (Supplementary Figure 10). 

We found that ANPEP, APOC1, APOE, GRHPR, ORM1, and RBKS were differentially expressed in 

hepatocytes than other genes in hepatocytes. ANPEP, APOE, GRHPR, ORM1, and RBKS expression 

levels were significantly (p<1.0×10-3) up-regulated in non-alcoholic fatty liver (NAFL)/NASH patients39, 

directionally consistent with our observational study in plasma. APOE, KRT8, KRT18, ORM1, RBKS, 

and SORT1 were differentially expressed in cholangiocytes and up-regulated significantly in MASLD 

patients38. AHCY, CD33, and FCGR2B were differentially expressed in myeloid cells, and HMOX2 was 

differentially expressed in T-lymphocytes, and up-regulated significantly in MASLD patients
38

.  

Integrating with protein data in liver biopsy 

We next associated the proteins with histological hepatic steatosis features using human liver 

biopsies from 36 women undergoing elective surgery (Methods). Eight candidate causal proteins 

(AHCY, ANPEP, APOC1, APOE, GRHPR, KRT8, KRT18, and RBKS) were available amongst the proteins 

measured in the liver biopsies using mass spectrometry. We identified KRT18 and RBKS levels in 

these liver biopsies were positively significantly associated with percentage of steatosis (p<8.3×10-3; 

Supplementary Table 17).  

Pathway enrichment analysis  

We performed enrichment analyses of the 17 candidate causal proteins to understand biological 

mechanisms of MASLD (Supplementary Table 18)
43,47

. The top pathway enriched was cholesterol 
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metabolism (APOC1, APOE, LPL, SORT1 and HMOX2), followed by extrinsic apoptotic signalling 

pathway (KRT8, KRT18, and SORT1) and regulation of interleukin-1 beta production (ANPEP, CD33, 

FCGR2B, HMOX2, LPL, and ORM1). The top three diseases enriched were alcoholic liver diseases 

(IL1RN, KRT8, KRT18, LPL, and NCAN), fatty liver disease (AHCY, ANPEP, APOE, FCGR2B, IL1RN, KRT18, 

and LPL), and serum total cholesterol measurement (APOC1, APOE, IL1RN, LPL, NCAN, and SORT1). 

APOC1, APOE, GRHPR and ORM1 were enriched in liver tissue and APOC1, IL1RN, and ORM1 were 

enriched in human liver cancer cell line (Hep-G2).  

PheMR  

We performed a PheMR to explore potential effects of the 17 candidate causal proteins on other 

diseases beyond MASLD (p<1.0×10
-5

, Supplementary Figure 11, Supplementary Table 19). The 

PheMR results show that for five proteins in the causal pathway, modifying their plasma levels for 

lowering MASLD risks also reduces the risk of other diseases, including obesity and arthritis with 

APOE, depressive episode and ulcerative colitis with FCGR2B, acute myocardial infarction with LPL, 

type 2 diabetes with NCAN, and tympanic membrane disorders with SCG3. However, modifying the 

plasma APOE levels for MASLD may increase the risk of neurological degenerative disorders, such as 

Alzheimer’s disease, vascular dementia, cognitive disorders, and delirium, whereas modifying 

plasma RBKS levels may increase the risk of iron deficiency anaemia. 

Druggable analysis 

To leverage the 17 potential causal proteins to therapeutic avenues for MASLD, we investigated 

their potential druggability through OpenTargets48 and Therapeutic Target Database49. APOC1, APOE, 

IL1RN, LPL, NCAN, ORM1, and SCG3 are secreted proteins which are easier accessible sources of 

therapeutics. We also identified nine unique drugs targeting five proteins, including ANPEP 

(Tosedostat/IP10C8), APOE (AEM-28), CD33 (Gemtuzumab ozogamicin/Lintuzumab/M195/AVE-

9633), FCGR2B (Obexelimab), and LPL (Clofibrate).  

BMI in the causal association of proteins and MASLD 

We further explored the role of BMI, the most important risk factor of MASLD, in the association 

between the candidate causal proteins and MASLD. We found that genetically determined BMI was 

associated with AHCY, APOC1, CD33, FCGR2B, IL1RN, KRT18, KRT8, LPL, NCAN, ORM1, and SCG3 

(Figure 4A); while genetically determined APOE and SCG3 were associated with BMI (p<3.3×10-3; 

Supplementary Table 20; Figure 4B). Multivariable MR analysis showed that after adjusting for the 
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causal effect of BMI on MASLD, genetically determined plasma ANPEP, APOC1, APOE, GRHPR, 

HMOX2, IL1RN, KRT18, KRT8, LPL, ORM1, RBKS, and SORT1 were still significantly associated with 

MASLD (p<3.3×10-3; Supplementary Table 21; Figure 4C). We did not detect significance between 

genetic determined plasma AHCY, CD33, FCGR2B, NCAN, and SCG3 with MASLD after adjusting for 

the causal effect of BMI on MASLD (Figure 4D). 

Discussion 

Using large-scale genomic and proteomic data, we identified 929 (31.6%) plasma proteins associated 

with MASLD. Of these proteins, 17 were potentially involved in the causal pathway of MASLD (Table 

3). By adopting a plasma proteome-first approach and integrating with human genetics, 

transcriptomics, liver imaging, and biopsy proteomics, we found four novel protein/genetic targets 

of MASLD, namely CD33, GRHPR, HMOX2, and SCG3. Additionally, our study provided evidence 

supporting AHCY, FCGR2B, ORM1, and RBKS on MASLD from proteins, and validated previously 

known MASLD targets by MR, including ANPEP, APOC1, APOE, IL1RN, KRT18, KRT8, LPL, NCAN, and 

SORT1.  

We used the largest proteomics dataset currently available to discover proteins associated with 

MASLD. Comparing to a recent study by Sveinbjornsson et al.
50

, which found one protein associated 

with NAFLD by MR, we identified nine proteins potentially on the causal pathway to MASLD using 

MR. Our GWAS helped to identify five novel MASLD loci (APP, CYP7A1, PEMT, RPL7P6/CAPZA3, and 

ZNF737), of which the expression of CYP7A1 and PEMT were reported previously with NAFLD
51,52

. 

These novel loci were associated (p<5×10-8) with other traits such as Alzheimer’s disease (APP), 

height (APP, PEMT, and RPL7P6/CAPZA3), BMI and lung function (RPL7P6/CAPZA3), waist-hip index 

and coronary artery disease (PEMT), lipid levels (APP, CYP7A1, PEMT, and ZNF737) and gallstones, 

cholelithiasis, liver enzymes, Insulin-like growth factor 1 levels and bilirubin (CYP7A1) 
53

. 

We have identified CD33, GRHPR, HMOX2, and SCG3 as novel targets of MASLD. Among them, 

GRHPR and HMOX2 had independent effects on MASLD beyond obesity/BMI. Glyoxylate and 

hydroxypyruvate reductase (GRHPR) reduces glyoxylate into less reactive glycolate and is mainly 

present in the liver. Previous studies have reported impaired glyoxylate detoxification in MASLD54, 

which may explain the causal association of plasma GRHPR and MASLD beyond obesity. Heme 

oxygenase 2 (HMOX2) is a genetically distinct isozymes of heme oxygenase 1 (HMOX1), and previous 

studies have reported that increased expression of HMOX1 in human liver biopsies reflects the 

severity of MASLD55. The colocalization of HMOX2 expression in tibial artery and muscle with blood 

insulin-like growth factor (IGF) 1 levels suggests potential pathways through artery and/or muscle to 
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MASLD. Secretogranin III (SCG3) is a secreted protein which has been reported previously to regulate 

IGF transport and insulin secretion
56

 and is associated with BMI
53,57

. Our study provides robust causal 

evidence of the effect of plasma SCG3 on MASLD, which was disappeared when adjusted for the 

causal effect of BMI on MASLD, suggesting the importance of obesity in the association of SCG3 and 

MASLD. Few previous studies focused on the association of CD33 and MASLD, though approved 

drugs of CD33 are available.   

Moreover, we deduced the causal association of plasma AHCY, FCGR2B, ORM1, and RBKS with 

MASLD involving MASLD GWAS studies. These targets were not previously highlighted in the GWAS, 

potentially because GWAS tend to map target genes based on the top genetic loci/SNP, ignoring 

secondary associations with neighbouring genes. Our study's pipeline caught this missing 

information by looking up the full set of genes mapped in any genome-wide significant SNPs of 

MASLD, validated by their encoding proteins associated with MASLD. Ribokinase (RBKS) is one of the 

genes which was in a known MASLD region but over-shadowed by the primary association with 

GCKR. Our study found a consistent association of liver RBKS levels with steatosis features in liver 

biopsies, along with significant differential gene expression in liver tissue, mainly hepatocytes and 

cholangiocytes. This finding suggests that carbohydrate metabolism, the main pathway of RBKS, in 

the liver may alter the incidence of MASLD. Orosomucoid 1 (ORM1) is another target of MASLD, 

which was masked by AKNA. It is a secreted protein and transports proteins in the blood stream but 

is also highly expressed in human hepatocytes and cholangiocytes38,39. Its isoform ORM2 regulates 

de novo lipogenesis, one of the most important mechanisms of MASLD, in the mouse liver, which 

may indicate the potential causal association of ORM1 and MASLD
58,59

. A few studies have reported 

the potential association of Adenosylhomocysteinase (AHCY)
60

 and Fc gamma receptor IIb (FCGR2B) 

with MASLD61,62. Our study found that their causal association with MASLD disappeared after 

adjusting for the causal effect of BMI. 

Our study provides causal evidence for previous MASLD targets, including ANPEP, APOC1, APOE, 

IL1RN, KRT18, KRT8, LPL, NCAN, and SORT163–69. Notably, there have been approved drugs targeting 

ANPEP, APOE, LPL and SORT1
48,49

, though their effect on liver diseases is still not clear. We also 

provided various evidence for these targets, including gene expression in liver or single cells, liver 

imaging, liver biopsies, and potential beneficial or unbeneficial effects to other diseases. Our study 

examined the association of these targets with BMI, showing that BMI has causal mediating effect 

on the association of APOE to MASLD, and APOC1, IL1RN, KRT18, KRT8, and LPL have causal 

mediating effects on the association of BMI to MASLD. Additionally, we found that the causal 

association between NCAN and MASLD may be fully explained by the causal effect of BMI; while 
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ANPEP, APOC1, IL1RN, KRT18, KRT8, LPL, and SORT1 have causal effects on MASLD beyond obesity. 

This suggests that, besides obesity, these proteins may be involved in other pathways relevant for 

MASLD that requires further exploration.  

Despite being a comprehensive study identified many innovative findings of the targets for MASLD, 

this study has some limitations. Firstly, liver imaging was not available for all participants, which may 

have led to an underestimation of MASLD cases and increased the rate of false-negative results in 

MASLD associations. Secondly, the study relied on plasma proteins to identify potential therapeutic 

targets for MASLD, which may not necessarily reflect protein levels in liver tissue. However, this 

approach is informative, and partially validated by tissue data. Thirdly, the MASLD GWAS by Vujkovic 

M, et al used chronic ALT elevation as a proxy for MASLD, but their conclusion was well validated70 

and our findings were generally consistent across cohorts (Figure 3). Fourthly, the shared genetic 

variation between MASLD and proteins was limited, which may be due to violations of the single 

causal variant assumption or the known high false-negative rate for colocalization71. Fifthly, when 

comparing snRNA-seq and scRNA-seq data between MASLD/NASH and non-MASLD groups, selection 

bias from limited participants may drive the conclusions.  

Overall, our study underscores the immense potential of large-scale multi-omics in enhancing our 

understanding of complex diseases, such as MASLD in our study, and identifying potential targets for 

translational research. By leveraging these innovative technologies, we were able to shed new light 

on the pathophysiology of MASLD and uncover promising new avenues for therapeutic intervention.  
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Table 1. Characteristics of the study population for proteomic analyses. 

Total (n = 30,719) Controls (n = 29,538) Cases (n = 1,181) 

Age (years), Mean ± SD 56.98 ± 8.07 57 ± 8.09 56.63 ± 7.46 

Male, n (%) 12,534 (40.82) 11,943 (40.43) 591 (50.04) 

BMI (kg/m
2

), Mean ± SD 27.35 ± 4.84 27.23 ± 4.79 30.30 ± 5.15 

Waist circumference (cm), Mean ± SD 89.49 ± 13.52 89.15 ± 13.42 98.04 ± 13.20 

Smoking status, n (%) 

Never 18,354 (59.75) 17,681 (59.86) 673 (56.99) 

Previous 9,796 (31.89) 9,385 (31.77) 411 (34.80) 

Current 2,569 (8.36) 2,472 (8.37) 97 (8.21) 

Smoking pack years
�

, Median (IQR) 9.0 (0.025, 23.4) 8.75 (0.025,23.25) 11.25 (0.025, 26.06) 

Alcohol grams per week
�

, Median (IQR) 80.0 (48.0, 118.4) 80.0 (48.0, 118.40) 84.0 (56.20, 124.0) 

Education, n (%) 

College or University degree 9,847 (32.06) 9,492 (32.13) 355 (30.06) 

A levels AS levels or equivalent 3,507 (11.42) 3,361 (11.38) 146 (12.36) 

CSEs or equivalent 1,661 (5.41) 1,597 (5.41) 64 (5.42) 

NVQ or HND or HNC or equivalent 1,956 (6.37) 1,875 (6.35) 81 (6.86) 

O levels GCSEs or equivalent 6,623 (21.56) 6,367 (21.56) 256 (21.68) 

Other professional qualifications 1,637 (5.33) 1,563 (5.29) 74 (6.27) 

None 5,488 (17.87) 5,283 (17.89) 205 (17.36) 

Physical activity, n (%) 

High 12,328 (40.13) 11,939 (40.42) 389 (32.94) 

Moderate 12,576 (40.94) 12,086 (40.92) 490 (41.49) 

Low 5,815 (18.93) 5,513 (18.66) 302 (25.57) 

Glucose (mmol/L), Mean ± SD 5.07 ± 0.92 5.06 ± 0.91 5.29 ± 1.22 

HbA1c (mmol/mol), Mean ± SD 36.01 ± 5.66 35.93 ± 5.55 37.90 ± 7.56 

Type 2 diabetes, n (%) 1,589 (5.17) 1,437 (4.86) 152 (12.87) 

Anti-diabetic medications, n (%) 1,086 (3.54) 988 (3.34) 98 (8.3) 

Hypertension, n (%) 15,799 (53.8) 15,085 (53.42) 714 (63.19) 

Systolic blood pressure (mmHg), Mean ± SD 136.98 ± 18.51 136.91 ± 18.55 138.66 ± 17.45 

Diastolic blood pressure (mmHg), Mean ± SD 81.56 ± 10.08 81.48 ± 10.07 83.7 ± 9.89 

Anti-hypertensive medications, n (%) 6,949 (22.62) 6,570 (22.24) 379 (32.09) 

Triglycerides (mmol/L), Median (IQR) 1.48 (1.05, 2.12) 1.46 (1.04, 2.1) 1.9 (1.41, 2.73) 

HDL-cholesterol (mmol/L), Mean ± SD 1.43 ± 0.37 1.44 ± 0.37 1.25 ± 0.31 

Lipid-lowering medications, n (%) 6,308 (20.53) 5,991 (20.28) 317 (26.84) 

AST (U/L), Median (IQR) 24.1 (20.8, 28.3) 24 (20.8, 28.1) 26.3 (22.2, 32.4) 

ALT (U/L), Median (IQR) 19.56 (15.12, 26.29) 19.38 (15.01, 25.92) 25.97 (19.18, 37.27) 

GGT (U/L), Median (IQR) 24.3 (17.6, 36.4) 24 (17.5, 35.9) 33.6 (23.8, 52.9) 

CRP (mg/L), Median (IQR) 1.32 (0.65, 2.75) 1.29 (0.64, 2.71) 1.93 (1.04, 3.83) 

MRI-PDFF (%), Median (IQR) 2.9 (2.1, 5) 2.49 (1.99, 3.16) 8.6 (6.1, 13.1) 

�

: Never smokers were not considered when calculating pack years. 
�

: Never drinkers were not considered when calculating alcohol grams 

per week. SD: standard deviation; BMI: body mass index; IQR: interquartile range; AS: Advanced Subsidiary; CES: Certificate of Secondary 

Education; NVQ: National Vocational Qualification; HND: Higher National Diploma; HNC: Higher National Certificates; GCSE: General 

Certificate of Secondary Education; HbA1c: Haemoglobin A1c; HDL: high-density lipoprotein; AST: Aspartate aminotransferase; ALT: 

Alanine aminotransferase; GGT: γ-glutamyl transferase; CRP: c-reactive protein; MRI-PDFF: Proton Density Fat Fraction measured by 

magnetic resonance imaging (MRI). 
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Table 2 Genetic loci (top SNPs) firstly reported to be genome-wide significantly associated with MASLD based on in-house GWAS of MASLD 

GWAS source CHR POS RSID Band Mapped Gene EA OA EAF BETA SE P Direction 

GWAS-meta 8 59398461 rs10504255 8q12.1 CYP7A1; UBXN2B A G 0.663 -0.029 0.005 1.05E-08 --- 

GWAS-meta 12 19133136 rs2130719 12p12.3 RPL7P6; CAPZA3 C G 0.192 0.033 0.006 3.02E-08 +++ 

GWAS-meta+MVP, GWAS-

meta 19 20732074 rs2099124 19p12 ZNF737 T G 0.045 0.034 0.006 6.14E-09 ++++ 

GWAS-meta 21 27581283 rs458358 21q21.3 APP A G 0.236 0.031 0.006 2.01E-08 +++ 

GWAS-meta+MVP 17 17456604 rs4646380 17p11.2 PEMT A G 0.061 0.028 0.005 2.88E-08 ++++ 

GWAS-UKB: GWAS based on latest UK Biobank data only. GWAS-meta (direction order): a meta-analysis of GWASChodsian, GWASFinngen, and GWASUKB. GWAS-meta+MVP (direction order): a meta-analysis of GWASMVP, 

GWASUKB, GWASChodsian, and GWASFinngen. CHR: chromosome; POS: position; RSID: SNP ID; EA: effect allele; OA: other allele; EAF: effect allele frequency; BETA: effect estimate; SE: standard error; P: p-value.  
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Table 3 Summary of the cross-omics annotation of the 17 candidate causal MASLD proteins 

AHCY ANPEP APOC1 APOE CD33 FCGR2B GRHPR HMOX2 IL1RN KRT18 KRT8 LPL NCAN ORM1 RBKS SCG3 SORT1 

  

Direction of the association 

with MASLD 
+ + - + + + + + + + + - - + + - + 

Discovery 

analysis 

MR 

MR using either MASLD 

GWAS sources    
x x 

 
x x x x 

  
x 

  
x x 

MR using independent 

MASLD GWAS sources    
x 

    
x 

   
x 

  
x x 

Colocalization x x x 

MR replicated by Somalogic x x x x 

MASLD 

GWAS 

Encoding gene genome 

widely associated with 

MASLD 

x x x x 
 

x 
  

x 
 

x x x x x 
  

Integrating 

with multi-

dimensional 

data 

Whole 

exome 

sequence 

data 

Whole exome sequence 

data    
x 

        
x 

    

Liver 

imaging 

data 

Encoding gene genome-

wide significantly 

associated with liver MRI 
  

x x 
        

x 
 

x 
  

MR with liver MRI x x x 

Bulk gene 

expression 

data in liver 

tissues 

Significant differential gene 

expression 
x x x x 

  
x x x x x 

  
x x 

  

Cis-eQTL in or near the 

encoding gene  
x 

  
x x 

          
x 

MR of gene expression and 

MASLD  
x 

   
x 

          
x 

Bulk gene 

expression 

data in 

visceral 

adipose 

tissues 

Significant differential gene 

expression 
x x x x x x x x 

 
x x x 

    
x 

Cis-eQTL in or near the 

encoding gene  
x 

  
x x x x 

         

MR of gene expression and 

MASLD     
x x x x 

         

RNA-seq 

data in liver 

tissue 

Significant differential gene 

expression between MASLD 

and controls 
  

x x 
   

x 

 

 

 

x x 
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Single-cell 

RNA-seq 

data in the 

liver tissue 

Significant differential gene 

expression between MASLD 

and controls in hepatocytes 
 

x 
 

x 
  

x 
      

x x 
  

Significant differential gene 

expression between MASLD 

and controls in other liver 

cells except for hepatocytes 

x 
  

x x x 
 

x 
 

x x 
  

x x 
 

x 

Protein 

data in liver 

biopsies 

Associated with liver 

steatosis features          
x 

    
x 

  

  Druggability x x  x x x   x   x     x 

External 

exploration 

Pathway 

analysis 

Enriched in fatty liver 

disease 
x x 

 
x 

 
x 

  
x x 

 
x 

     

Enriched in cholesterol 

metabolism or serum total 

cholesterol measurement 
  

x x 
   

x x 
  

x x 
   

x 

Enriched in liver tissue x x x x 

MR-

PheWAS 

Beneficial effect x x x x x 

Unbeneficial effect x x 

Associated 

with BMI 

Observational association x x x x x x x x x x x x x x x x x 

MR with BMI (BMI as 

exposure) 
x 

 
x 

 
x x 

  
x x x x x x x x 

 

MR with BMI (BMI as 

outcome)    
x 

           
x 

 

Associated with MASLD 

after adjusted for BMI by 

multivariable MR 
 

x x x 
  

x x x x x x 
 

x x 
 

x 

Proteins newly associated with MASLD in the current study are marked in bold.  



Figure 1 Flow chart of the study design.

929 plasma proteins from 2,941 Olink® measured 
proteins are associated with MASLD in UK Biobank

(p<3.35×10-5)

The genetically determined levels of 9 proteins are 
associated with MASLD by MR approach (p<1.2×10-4)

11 proteins have at least one MASLD-associated SNP 
(p<5×10-8) in or near their encoding genes

17 unique proteins may be in the causal pathway of MASLD for further 
analysis (eight novel and nine known proteins)

Ex
o

m
e 

se
q

u
en

ci
n

g

Li
ve

r 
im

ag
in

g

B
u

lk
 g

en
e 

ex
p

re
ss

io
n

 &
 

R
N

A
-s

eq
in

 li
ve

r

sn
R

N
A

-s
eq

&
 s

cR
N

A
-

se
q

P
ro

te
in

s 
in

 li
ve

r 
b

io
p

sy

Integration with multi-dimensional data for 
causality

Pa
th

w
ay

 a
n

al
ys

is

P
h

en
o

m
e

-w
id

e 
M

R

B
M

I i
n

 t
h

e 
ca

u
sa

l a
ss

o
ci

at
io

n
 o

f 
p

ro
te

in
s 

an
d

 M
A

SL
D

D
ru

gg
ab

le
 a

n
al

ys
is



Figure 2 Association of proteins with MASLD and BMI. A) Proteome-wide association of MASLD based on model 2. B) Comparison of the proteome-wide association
between MASLD and BMI. T-statistics were obtained from logistic regression under model 2. Fitted linear regression model and Pearson’s correlation are shown. Axis labels
show the number of cases and controls, or total samples used in the association analysis.



Figure 3 Association of proteins and MASLD by MR
analysis. A) Association of proteins and MASLD by MR
analysis through different MASLD GWAS sources.
Proteins significantly associated with at least one MASLD
GWAS source are shown (p<1.2×10-4). B) Association of
proteins and MASLD by different MR methods, if
applicable. The figure shows the MASLD GWAS source
underlying the most significant result by inverse variance
weighted MR. C) Association of proteins measured by
Somalogic in decode and MASLD by MR analysis through
different MASLD GWAS sources. Six proteins are available
and shown. D) Association of proteins and liver imaging
variables. Solid point indicates p-value less than 0.05.
Hollow point indicates p-value not less than 0.05.
Detailed data are presented in Supplementary Table 9, 10
and 13.
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Figure 4 Role of BMI in the association of candidate causal proteins and MASLD. A) Proteins as mediators in the causal association of BMI to MASLD. B) BMI as a mediator in 
the causal association of proteins to MASLD. C) Proteins directly associated with MASLD after adjusted for the causal effect of BMI by multivariable MR. D) Proteins not directly 
associated with MASLD after adjusted for the causal effect of BMI by multivariable MR. IVs: instrumental variables. Arrows indicate direction from MR analysis, or knowledge 
(i.e., IVs causes exposures, and BMI causes MASLD). 
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