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Abstract 

An important issue pertinent to the analysis of sequence data to detect association between rare 
variants in a gene and a given phenotype is the ability to annotate nonsynonymous variants in terms 
of their likely importance as affecting protein function. While a number of software tools attempt to 
do this, AlphaMissense was recently released and was shown to have good performance using 
benchmarks based on variants causing severe disease and on functional assays. Here, we assess the 
performance of AlphaMissense across 18 genes which had previously demonstrated association 
between rare coding variants and hyperlipidaemia, hypertension or type 2 diabetes. Ability to detect 
association, expressed as the signed log p value (SLP) was compared between AlphaMissense and 43 
other annotation methods. The results demonstrated marked variability between genes regarding 
the extent to which nonsynonymous variants contributed to evidence for association and also 
between the performance of different methods of annotating the nonsynonymous variants. 
Although AlphaMissense produced the highest SLP on average across genes, it produced the 
maximum SLP for only 4 genes. For some genes, other methods produced a considerably higher SLP 
and there were examples of genes where AlphaMissense produced no evidence for association while 
another method performed well. The marked inconsistency across genes means that it is difficult to 
decide on an optimal method of analysis of sequence data. The fact that different methods perform 
well for different genes suggests that if one wished to use sequence data for individual risk 
prediction then gene-specific annotation methods should be used. It would be desirable to have the 
ability to recognise characteristics of a gene which could facilitate the selection of an annotation 
method which would best discriminate variants of interest within that gene. 

This research has been conducted using the UK Biobank Resource. 
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Introduction 



As large exome-sequenced datasets become available it has become possible to detect gene-level 
associations between the burden of extremely rare coding variants and a variety of phenotypes 
(Backman et al., 2021; Wang et al., 2021). Typically, tests for association involve considering 
together variants falling into a particular category based on their predicted effect. Variants expected 
to completely disrupt function of a gene, consisting of stop gained, frameshift and splice site variants 
are jointly termed loss of function (LOF) or protein truncating variants (PTV) and when considered 
jointly it is usually the case that this category of variant is associated with the largest effect size. 
While nonsynonymous variants may also have effects, the nature and magnitude of these effects is 
likely to be heterogeneous and if all nonsynonymous variants are considered to form a single 
category then the average estimated effect will naturally be smaller than that of the variants having 
the largest effect sizes. Rare variant association studies which simply consider all nonsynonymous 
variants jointly have yielded informative results (Sazonovs et al., 2022). However a more widely used 
approach is to use some form of secondary annotation method which attempts to distinguish those 
nonsynonymous variants which are  more likely to have a biological effect and applying such 
approaches may allow one to demonstrate that those nonsynonymous variants predicted to be most 
impactful are indeed the ones which show association with a phenotype (Singh and The 
Schizophrenia Exome Meta-Analysis (SCHEMA) Consortium, 2022).  

A large number of methods are available to carry out such secondary annotations and we have 
recently assessed their relative performance (Curtis, 2022). Since then a new method, 
AlphaMissense, has been released with the aim of recognising whether a nonsynonymous variant 
observed in a patient is or is not likely to be pathogenic (Cheng et al., 2023). The report of this study 
also discusses at length the various issues involved in attempting to interpret the likely effects of 
nonsynonymous variants. The AlphaMissense prediction is based on machine learning approaches to 
assimilate information about the protein structural context and about evolutionary conservation to 
generate a score reflecting likely pathogenicity. It was demonstrated to perform well on benchmarks 
derived from clinically identified variants as well as from multiplexed assays of variant effect 
(MAVEs). 

Although one might hope that the same classification methods used to identify single variants 
causing severe disease might also be helpful in attempting to discriminate those variants increasing 
risk of common phenotypes, this is not necessarily the case. For example, when using PolyPhen-2 it 
is recommended that the version trained on HumVar be used to assist the diagnosis of Mendelian 
disorders while the version trained on HumDiv should be used to evaluate rare alleles for complex 
genotypes (Adzhubei et al., 2010). This consideration means that it would be helpful to assess the 
extent to which AlphaMissense could assist as an annotation tool in the context of large case control 
studies of exome sequenced datasets aiming to identify genes influencing the risk of common 
phenotypes.  

The aim of the present study is to compare the performance of AlphaMissense with other 
annotation methods in terms of their ability to produce evidence for association between a gene 
and a common, clinically relevant phenotype. Such associations were previously established using 
weighted burden analyses, in which different variants within a gene were weighted differentially 
according to their annotation and rarity. In the present analyses, variants are weighted for rarity and 
then the contributions to evidence for association are examined separately for AlphaMissense and a 
number of other annotation methods.  

Methods 



The methods used closely followed those described in the previous study exploring different 
annotation and weighting schemes, and the description is partly repeated here for the convenience 
of the reader (Curtis, 2022).  

The UK Biobank Research Analysis Platform was used to access the Final Release Population level 
exome OQFE variants in PLINK format for 469,818 exomes which had been produced at the 
Regeneron Genetics Center using the protocols described here: https://dnanexus.gitbook.io/uk-
biobank-rap/science-corner/whole-exome-sequencing-oqfe-protocol/protocol-for-processing-ukb-
whole-exome-sequencing-data-sets  (Backman et al., 2021). UK Biobank had obtained ethics 
approval from the North West Multi-centre Research Ethics Committee which covers the UK 
(approval number: 11/NW/0382) and had obtained written informed consent from all participants. 
The UK Biobank approved an application for use of the data (ID 51119) and ethics approval for the 
analyses was obtained from the UCL Research Ethics Committee (11527/001). To obtain 20 
population principal components reflecting ancestry, version 2.0 of plink (https://www.cog-
genomics.org/plink/2.0/) was run with the options --maf 0.1 --pca 20 approx  (Chang et al., 2015; 
Galinsky et al., 2016).  

To assess overall evidence for gene-wise associations with different phenotypes, weighted burden 

analyses had previously been carried out using the SCOREASSOC and GENEVARASSOC programs 

(Curtis, 2016). Attention was restricted to rare variants with minor allele frequency (MAF) <= 0.01 in 

both cases and controls. As previously described, variants were weighted by overall MAF so that 

variants with MAF = 0.01 were given a weight of 1 while very rare variants with MAF close to zero 

were given a weight of 10, with a parabolic function used to assign weights with intermediate MAFs 

(Curtis, 2020). Additionally each variant was annotated with the Variant Effect Predictor (VEP), SIFT 

and PolyPhen SIFT (Adzhubei et al., 2013; Kumar et al., 2009; McLaren et al., 2016). A weight was 

assigned according to this annotation and the overall weight for each variant consisted of the 

frequency weight multiplied by the annotation weight. For each subject and each gene, the weights 

for the variants carried by the subject were summed to provide an overall weighted burden score. 

Regression modelling was done to calculate the likelihood for the phenotype data given covariates 

consisting of sex and the first 20 principal components and then the likelihood was recalculated for 

the model additionally incorporating the weighted burden score. Twice the natural log of the ratio of 

these likelihoods is a likelihood ratio statistic taken to be distributed as a chi-squared statistic with 1 

degree of freedom. The evidence for association is summarised as the signed log p value (SLP) taken 

as the log base 10 of the p value and given a positive sign if there is a positive correlation between 

the weighted burden score and the phenotype.  

For the present study variant annotation was performed in two stages. First, a primary 

categorisation was made using VEP, which uses information based on the reference sequence and 

coordinates of known transcripts to report findings such as whether variants occur within exons, if 

so whether they change amino acid sequence, etc (McLaren et al., 2016). For purposes of the 

present analyses, variants predicted to have a similar kind of effect were grouped together so that, 

for example, stop gained, frameshift and essential splice site variants were all treated as LOF. The 

full list of annotations as reported by VEP and the category they were assigned to is shown in Table 

1, along with the weights which were used for the previous weighted burden analyses, which had 

been arbitrarily assigned based on expectations of the likely biological importance of each 

annotation. Each of the annotation categories was then used to generate a separate burden score, 

so that for example the burden score relating to the category LOF for a subject would consist of the 

number of LOF variants carried by that subject, each multiplied by the weight according to allele 

frequency as described above. 



In order to obtain secondary annotations using AlphaMissense for all nonsynonymous variants, VEP 

was run with the options b --canonical –regulatory --plugin AlphaMissense (Cheng et al., 2023).This 

produces two AlphaMissense annotations, a raw score and a categorisation of likely pathogenic, 

likely benign or ambiguous. These three categories were converted to numerical scores of 2, 0 or 1 

respectively. To obtain secondary annotations for other predictors, dbNSFP v4 was used  (Liu et al., 

2020). For the nonsynonymous and splice site variants listed in dbNSFP v4, secondary annotation 

scores were obtained consisting of the rank scores for a variety of different prediction and 

conservation methods. For each secondary annotation for a variant, the annotation score was then 

multiplied by the weight based on allele frequency. Thus, a subject’s overall score for the SIFT 

annotation would consist of the sum of all the SIFT rank scores of the variants carried by that 

subject, with the score for each variant also each being weighted according to allele frequency. For 

ease of processing, special characters in dbNSFP annotation names were replaced, for example 

GERP++ was changed to GERPPP. A total of 43 such scores were used, as presented below as and as 

detailed at http://database.liulab.science/dbNSFP. 

The genes selected for this study consisted of those which had previously produced exome-wide 
significant results in weighted burden analyses using phenotypes of hypertension, hyperlipidaemia 
and type 2 diabetes (Curtis, 2023a, 2023b, 2023c). These genes and phenotypes are listed in Table 2. 
For each phenotype, a mixture of self-report, recorded diagnoses and medication reports was used 
to designate a set of participants as cases, with all other participants taken to be controls. There 
were a total of 469,818  exome-sequenced UK Biobank participants, of whom 167,127 were 
designated cases for hypertension, 106,091 for hyperlipidaemia and 33,629 for type 2 diabetes. As 
noted in the legend for Table 2, for some of these genes the original SLPs obtained were negative, 
indicating that variants impairing the function of these genes were protective and were associated 
with lower risk of developing the clinical phenotype. For the purpose of the current study, in order 
to make it easier to interpret the results for these genes alongside the others, the phenotype of 
interest for these genes is taken to be “being a control”, meaning that all variants associated with 
the phenotype would tend to generate positive SLPs.  

To gain an understanding of the relationships between the different annotation methods, a 

correlation matrix was produced of all the secondary annotation scores across all the 

nonsynonymous variants in all these genes and this matrix was visualised using the correl package in 

R (Makowski et al., 2020; R Core Team, 2014). 

In order to assess the contributions of each different category of variant to the evidence for 

association, a logistic regression analysis was performed separately on the weighted burden score 

for each of the primary categories, with population principal components and sex being included as 

covariates. The Wald statistic was then used to obtain an SLP for each variant category for each gene 

and these were tabulated and compared.  

Similar analyses were performed for secondary annotations obtained from AlphaMissense and 

dbNSFP, except that for these analyses the weighted burden score produced by the ProteinAltering 

category was included as an additional covariate. This is because the overall burden for each of 

these secondary annotations would depend on the total the number of nonsynonymous variants 

each subject carries and the purpose of these analyses is to assess the relevant performance of the 

different secondary annotation methods to distinguish the effect of different nonsynonymous 

variants. Again, the Wald statistic was used to obtain SLPs for each secondary annotation and these 

were tabulated and compared.  

Data manipulation and statistical analyses were performed using GENEVARASSOC, SCOREASSOC and 

R  (Curtis, 2020, 2016; R Core Team, 2014). 



Results 

Figure 1 shows a heatmap which illustrates the relative magnitude of the SLP produced by each 

variant category for each gene and the actual SLPs are shown in Table 3. From this it can be seen 

that for most genes the only variant categories to generate SLPs of a large magnitude were LOF and 

ProteinAltering. However for ABCG5 and ANGPTL3 the SpliceRegion category had large SLPs whereas 

for LDLR and HNF4A the InDelEtc category had large SLPs. For some genes both the LOF and 

ProteinAltering categories had large SLPs but for others only one category did. For example, for 

HNF1A the LOF category produced a much larger SLP than ProteinAltering did, whereas for HNF41A 

this situation was reversed and the ProteinAltering category produced a fairly large SLP whereas the 

LOF SLP was minimal. Thus it can be seen that there is no consistency across genes regarding which 

variant categories make the most substantial contribution to evidence for association, implying that 

no single scheme could be optimal for all genes. 

In order to gain insights into the relationships between the secondary annotations, pairwise 

correlation coefficients were obtained between all pairs across variants in all genes, comprising 

10,567 nonsynonymous variants, and a heatmap illustrating these correlations is shown in Figure 2. 

The raw correlation coefficients themselves are tabulated in Supplementary Table 1. It can be seen 

that the AlphaMissense annotations are positively correlated with each other and with 15 other 

annotations, forming a block. There is then a second block comprising 8 annotations which are again 

positively correlated with each other but which show little correlation with any of the annotations 

forming the first block. Interestingly, the Mutation Predictor (MutPred) score is positively correlated 

with the annotations of the first block and somewhat negatively correlated with those in the second 

block (Li et al., 2009). Following these two blocks are a number of other annotations showing little in 

the way of correlation with any of the others. Notably, this list includes the CADD annotations, which 

are quite widely used but which somewhat surprisingly seem to pick up different variant 

characteristics than the other methods (Rentzsch et al., 2019). 

The relative performance of the different secondary annotations in terms of producing evidence for 

association is displayed as a heatmap in Figure 3 and the underlying SLPs are listed in Table 4. One 

thing of note is that there is considerable variability between genes as to the extent to which any of 

the secondary annotation methods produces evidence for association, as measured by the 

magnitude of the SLP. For some genes the methods are clearly quite effective. For example, LDLR, 

PCSK9 and GCK all yield large SLPs for a variety of different annotations. Interestingly, although 

APOC3 produced a negligible SLP of 1.34 for the ProteinAltering category taken as a whole, when 

these variants are annotated with MutationTaster they yield an SLP of 11.33 (Schwarz et al., 2014). 

Conversely, ABCG5 produced SLP = 7.80 for the ProteinAltering category but none of the secondary 

annotation methods seems able to distinguish which variants within this category are more 

associated with risk and the maximum any of them produces is SLP = 2.25 for the SiPhy score, which 

is a conservation score based on comparison of human and mammalian genomes (Lindblad-Toh et 

al., 2011).  

When a secondary annotation method is able to produce a high SLP, there is inconsistency between 

genes with regard to the relative performance of the different methods. While the AlphaMissense 

annotations have the best performance on average across all genes (for AlphaMissense category SLP 

= 7.12 and for AlphaMissense score SLP = 7.50), they actually produce the maximum SLP for only 4 

genes: LDLR, ANGPTL3, NPR1 and HNFA1. There are some genes where AlphaMissense is able to 

produce reasonable evidence for association but other methods do considerably better. For 

example, PCSK9 yields SLP = 11.70 with the AlphaMIssense score but SLP = 21.07 with 

MutationTaster, while GCK yields SLP = 6.49 with the AlphaMissense category but SLP = 18.46 with 



MutationTaster and SLP = 18.35 with the Variant Effect Scoring Tool (VEST4) (Carter et al., 2013). 

More strikingly, there were genes for which AlphaMissense was not able to find any evidence for 

association whereas another method performed well. For example, AlphaMissense produces 

negligible SLPs for both APOC3 and ASXL1 whereas MutationTaster produces SLP = 11.07 for APOC3 

and CADD produces SLP = 4.50 for ASXL1. 

Discussion 

Examining this relatively small number of gene-phenotype pairs in detail is sufficient to establish that 

there is dramatic variability in the performance of secondary annotation methods in terms of their 

ability to produce evidence for association. This would seem to have a number of implications.  

The first implication is that it is not at all clear what is the optimal approach to use when testing for 

association between coding variants and a complex phenotype. There are choices to be made 

between carrying out multiple different analyses using different categorisations, annotation 

methods and weighting schemes or attempting to combine information from multiple sources into a 

smaller number of analyses. The results shown here seem to demonstrate that relying on a single 

annotation method would risk failing to detect some real associations, although if one were forced 

to rely on a single method then it does seem that AlphaMissense has the best performance on 

average. 

The second implication seems to be that, because different methods work better for different gene-

phenotype pairs, one would want to take account of this if the aim was to use sequence data for 

individual level risk prediction. For example, if one wished to obtain a comprehensive assessment of 

an individual’s risk of developing type 2 diabetes then based on these results one might use 

MutationTaster to classify GCK variants, AlphaMissense for HNF4A and CADD for HNF1A and for 

GIGYF1. It would be suboptimal to apply a single annotation method to characterise variants across 

multiple genes. 

Finally, it seems that it would be very desirable to be in a position where one could in advance 

identify for a given gene or gene-phenotype pair which annotation method would best distinguish 

the relevant variants. As knowledge accrues it would be helpful to investigate what are the 

characteristics of a gene which mean that one method will perform well and another poorly. 

Ultimately one would then seek to develop an automated method in which the first step was gene 

classification and then this would be followed by application of a gene-relevant annotation method.  
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Table 1. Table showing annotations produced by VEP, the weights assigned to them for the previous 

weighted burden analyses and the categories they were assigned to for the current analyses. 

Annotations marked as unused were not applied to any of the variants in the genes studied. 

VEP annotation Weight Category 

intergenic_variant 0 Unused 

feature_truncation 0 IntronicEtc 

regulatory_region_variant 0 IntronicEtc 

feature_elongation 0 IntronicEtc 

regulatory_region_amplification 1 IntronicEtc 

regulatory_region_ablation 1 IntronicEtc 

TF_binding_site_variant 1 IntronicEtc 

TFBS_amplification 1 IntronicEtc 

TFBS_ablation 1 IntronicEtc 

downstream_gene_variant 0 IntronicEtc 

upstream_gene_variant 0 IntronicEtc 

non_coding_transcript_variant 0 IntronicEtc 

NMD_transcript_variant 0 IntronicEtc 

intron_variant 0 IntronicEtc 

non_coding_transcript_exon_variant 0 IntronicEtc 

3_prime_UTR_variant 1 ThreePrime 

5_prime_UTR_variant 1 FivePrime 

mature_miRNA_variant 5 Unused 

coding_sequence_variant 0 Unused 

synonymous_variant 0 Synonymous 

stop_retained_variant 5 Synonymous 

incomplete_terminal_codon_variant 5 Unused 

splice_region_variant 1 SpliceRegion 

protein_altering_variant 5 ProteinAltering 

missense_variant 5 ProteinAltering 

inframe_deletion 10 InDelEtc 

inframe_insertion 10 InDelEtc 

transcript_amplification 10 InDelEtc 

start_lost 10 ProteinAltering 

stop_lost 10 ProteinAltering 

frameshift_variant 100 LOF 

stop_gained 100 LOF 

splice_donor_variant 100 LOF 

splice_acceptor_variant 100 LOF 

transcript_ablation 100 LOF 

  



Table 2. List of genes used for these analyses along with the SLP obtained in the original analyses 
with the corresponding phenotype (Curtis, 2023a, 2023b, 2023c). Variants which impaired 
functioning of NPC1L1, PCSK9, ANGPTL3 and APOC3 were found to be protective against 
hyperlipidaemia so for convenience the phenotype of interest is stated to be “Not hyperlipidaemia”. 
Likewise, variants impairing functioning of INPPL1 and DBH are protective against hypertension. 

Phenotype Gene 

symbol 

Gene name SLP 

Hyperlipidaemia LDLR Low Density Lipoprotein Receptor 156.81 

Hyperlipidaemia ABCG5 ATP Binding Cassette Subfamily G Member 5 6.95 
Not hyperlipidaemia NPC1L1 NPC1 Like Intracellular Cholesterol Transporter 1 7.60 

Not hyperlipidaemia PCSK9 Proprotein Convertase Subtilisin/Kexin Type 9 43.57 

Not hyperlipidaemia ANGPTL3 Angiopoietin Like 3 12.68 
Not hyperlipidaemia APOC3 Apolipoprotein C3 13.19 

Hypertension DNMT3A DNA Methyltransferase 3 Alpha 14.20 

Hypertension FES FES Proto-Oncogene, Tyrosine Kinase 9.92 

Hypertension SMAD6 SMAD Family Member 6 6.02 
Hypertension NPR1 Natriuretic Peptide Receptor 1 7.98 

Hypertension GUCY1A1 Guanylate Cyclase 1 Soluble Subunit Alpha 1 9.13 

Hypertension ASXL1 ASXL Transcriptional Regulator 1 8.35 
Not hypertension INPPL1 Inositol Polyphosphate Phosphatase Like 1 7.09 

Not hypertension DBH Dopamine Beta-Hydroxylase 9.71 

Type 2 diabetes GCK Glucokinase 32.11 

Type 2 diabetes HNF4A Hepatocyte Nuclear Factor 4 Alpha 9.39 

Type 2 diabetes HNF4A Hepatocyte Nuclear Factor 4 Alpha 7.98 
Type 2 diabetes GIGYF1 GRB10 Interacting GYF Protein 1 7.58 

 

 



Table 3  

SLPs produced individually by each variant category for each gene, including sex and principal components as covariates. SLPs of 3 or more are shown in bold and SLPs of 6 

or more in bold italics. The final column shows the mean SLP achieved by each category across all genes. 

 

Variant 

category LD
LR
 

A
B
C
G
5
 

N
P
C
1
L1
 

P
C
S
K
9
 

A
P
O
C
3
 

A
N
G
P
T
L3
 

D
N
M
T
3
A
 

F
E
S 

A
S
X
L1
 

S
M
A
D
6
 

N
P
R
1
 

G
U
C
Y
1
A
1
 

IN
P
P
L1
 

D
B
H
 

G
C
K
 

H
N
F4
A
 

H
N
F1
A
 

G
IG
Y
F1
 

M
e
a
n
 

FivePrime -0.31 0.04 -1.15 0.05 -0.42 0.29 -0.34 0.00 -0.77 0.04 1.17 -0.51 -0.65 -0.99 0.56 -0.85 2.35 -0.37 -0.10 

InDelEtc 4.82 0.18 -0.41 -0.17 0.81 0.83 0.68 0.50 0.09 -0.20 0.15 -0.62 -0.99 0.38 0.75 4.12 1.38 0.05 0.69 

IntronicEtc -0.03 0.82 -0.21 -1.36 1.31 -0.08 -0.44 0.09 -1.09 -0.49 -0.83 0.75 0.25 0.39 0.89 0.47 -0.15 1.11 0.08 

LOF 30.87 1.15 5.15 17.57 10.88 8.36 9.70 4.49 14.11 2.29 3.09 5.36 1.80 1.36 21.42 0.27 10.42 10.83 8.84 

ProteinAltering 65.60 7.80 2.28 14.78 1.34 2.68 5.47 1.84 -0.04 4.09 1.75 2.67 3.98 7.82 6.23 5.42 2.25 1.50 7.64 

SpliceRegion -1.35 6.07 0.36 -0.39 -0.12 4.57 -0.32 -0.55 0.23 -0.18 0.32 0.28 0.21 -0.36 0.50 0.73 0.49 -0.06 0.58 

Synonymous -1.45 0.29 0.56 -0.06 0.71 0.44 0.14 -0.20 0.84 -1.45 -0.37 2.58 0.09 2.25 0.03 0.02 0.33 -0.62 0.23 

ThreePrime -0.27 -0.80 0.26 -0.12 -0.02 0.41 -1.85 -0.21 0.06 -0.04 -0.19 2.79 -0.31 -0.06 -0.69 -0.59 0.32 -0.78 -0.12 

 

 
               

                

                

                

                

  



Table 4  

SLPs produced individually by each secondary annotation from AlphaMissense and dbNSFP for each gene, including sex and principal components as covariates. SLPs of 3 or 

more are shown in bold and SLPs of 6 or more in bold italics. The final column shows the mean SLP achieved by each annotation across all genes. 

Annotation LD
LR
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C
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N
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N
F1
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Y
F1
 

M
e
a
n
 

AlphaMissense 

Category 

76.51 2.07 0.72 9.76 -0.45 3.89 2.90 2.97 0.41 0.31 4.82 4.38 1.20 2.57 6.49 6.15 2.28 1.12 7.12 

AlphaMissense 

Score 

80.33 1.62 0.74 11.70 -0.15 2.56 2.93 4.32 0.30 0.53 4.15 4.35 1.46 1.83 4.36 8.24 3.73 2.06 7.50 

Polyphen2 HDIV 

rankscore 

43.87 1.04 1.34 6.14 1.04 0.25 1.08 6.87 0.18 0.36 0.96 1.89 0.82 3.04 10.61 2.36 1.33 0.26 4.64 

SIFT converted 

rankscore 

27.02 1.22 1.05 9.94 0.04 1.29 0.56 4.04 -0.05 0.40 3.67 4.18 0.23 5.12 10.07 2.74 0.15 0.39 4.00 

SIFT4G converted 

rankscore 

36.14 0.34 1.49 4.72 0.08 0.57 3.51 3.50 0.48 0.41 3.97 3.44 -0.06 5.56 11.13 3.08 0.45 0.32 4.40 

Polyphen2 HVAR 

rankscore 

49.94 1.41 0.78 7.00 0.51 0.39 0.44 6.82 0.13 0.64 2.42 2.70 1.29 3.88 10.20 2.19 1.46 0.37 5.14 

LRT converted 

rankscore 

39.31 1.86 1.10 11.33 0.71 -0.48 5.83 3.83 0.46 -0.16 0.49 2.65 0.32 2.45 11.48 4.01 1.55 0.75 4.86 

MutationTaster 

converted 

rankscore 

25.14 0.79 1.59 21.07 11.07 0.58 10.27 0.72 0.68 0.54 0.46 4.99 0.19 3.92 18.46 1.31 1.67 1.65 5.84 

MutationAssessor 

rankscore 

45.73 1.28 1.43 6.21 0.00 1.85 1.53 1.94 -0.12 0.37 3.69 0.00 0.69 1.65 8.19 2.67 0.00 0.00 4.28 

FATHMM 

converted 

rankscore 

0.96 0.53 -0.04 5.12 -0.57 -0.45 0.51 -2.81 0.29 -0.26 0.86 -1.13 -1.42 1.41 0.32 0.27 -1.06 0.22 0.15 

PROVEAN 

converted 

rankscore 

31.26 1.07 1.38 9.70 0.44 1.98 0.52 1.70 0.36 0.08 2.52 3.29 -0.16 3.87 6.23 4.11 0.76 0.06 3.84 

VEST4 rankscore 40.88 1.94 1.86 9.36 1.55 1.07 5.65 5.13 1.50 0.69 1.44 2.66 0.61 2.61 18.35 3.21 1.95 0.35 5.60 



MetaSVM 

rankscore 

26.19 2.14 1.16 6.59 -0.01 0.99 0.46 0.31 0.47 0.44 3.40 0.95 -0.27 3.23 0.91 1.03 -0.55 0.00 2.64 

MetaLR rankscore 16.92 1.32 1.69 4.89 -0.27 0.64 0.70 0.36 0.08 0.18 3.63 0.49 0.06 2.75 3.16 0.96 -0.28 0.35 2.09 

M CAP rankscore 2.80 1.93 1.25 7.28 1.14 1.02 4.55 0.57 0.11 -0.41 2.02 1.56 0.93 2.29 4.22 1.71 -0.02 0.07 1.83 

REVEL rankscore 25.63 2.02 0.75 7.21 0.61 1.51 1.68 1.19 0.62 0.44 1.02 1.59 0.22 4.25 6.22 2.85 -0.03 0.09 3.22 

MutPred 

rankscore 

11.04 1.77 0.98 0.36 -1.08 0.19 0.96 1.92 0.32 0.93 1.37 3.80 1.11 0.48 4.65 2.04 2.94 0.31 1.89 

MVP rankscore -2.16 -0.08 -0.16 1.33 0.76 -0.37 -1.33 -1.29 0.22 -0.87 -1.32 -0.81 -1.95 0.97 -1.01 -0.30 -0.90 0.66 -0.48 

MPC rankscore 3.97 0.06 -0.36 3.94 1.14 0.24 -0.65 -0.01 0.14 -1.20 -1.12 -1.53 -0.81 2.14 0.58 -0.03 -0.67 0.76 0.37 

PrimateAI 

rankscore 

6.96 -0.02 0.01 3.93 0.55 -0.56 0.60 -0.01 -0.20 -1.34 -0.63 -0.80 -1.77 0.74 0.93 0.70 -1.06 0.75 0.49 

DEOGEN2 

rankscore 

-0.87 -0.22 -0.33 2.50 1.23 0.38 -0.18 -1.68 -0.06 -0.89 -0.47 -2.36 -1.91 0.44 -0.94 -0.20 -2.24 0.91 -0.38 

BayesDel addAF 

rankscore 

7.04 0.93 0.37 9.88 11.49 2.82 7.16 2.73 3.83 -0.08 3.76 0.52 -0.03 2.81 7.22 1.25 0.02 3.70 3.63 

BayesDel noAF 

rankscore 

0.72 0.57 0.66 11.21 11.70 1.95 3.86 0.23 1.70 -0.26 0.34 0.04 -0.72 2.89 2.68 0.09 -1.23 2.77 2.18 

ClinPred 

rankscore 

24.08 -0.03 -1.80 3.42 -0.06 1.86 1.64 2.75 0.17 -0.51 2.61 -0.14 0.25 0.97 1.66 1.41 0.28 0.25 2.16 

LIST S2 rankscore 2.52 0.60 0.00 3.53 1.06 0.48 0.28 -0.15 0.08 -0.52 -0.15 -1.99 -1.75 1.28 0.53 0.08 -2.11 1.05 0.27 

CADD raw 

rankscore 

15.96 0.57 1.42 14.65 4.28 2.40 4.40 3.46 3.22 -0.02 3.28 -0.22 0.07 1.12 9.53 0.53 7.81 4.72 4.29 

CADD raw 

rankscore hg19 

15.91 1.08 0.75 18.71 4.65 2.07 4.56 3.12 4.50 -0.35 3.27 -0.39 0.47 0.65 11.03 0.27 7.36 4.79 4.58 

DANN rankscore 15.69 1.00 1.98 12.04 11.03 0.74 3.58 4.59 2.89 -0.07 1.02 4.20 1.36 2.55 4.32 1.51 -0.51 0.75 3.82 

fathmm MKL 

coding rankscore 

23.47 1.39 1.95 10.90 8.47 1.14 7.19 2.44 0.79 0.21 0.13 1.72 0.05 4.59 7.75 -0.09 0.88 2.33 4.18 

fathmm XF coding 

rankscore 

7.74 0.89 0.67 4.86 2.09 0.19 3.42 1.52 -0.24 0.94 0.15 0.75 -0.06 3.10 1.76 0.09 0.18 0.77 1.60 

Eigen raw coding 

rankscore 

23.53 1.65 1.66 14.31 9.30 1.07 6.98 3.34 0.12 0.82 1.78 2.13 0.15 4.52 7.71 0.74 -0.07 1.78 4.53 

Eigen PC raw 

coding rankscore 

21.12 1.28 1.03 12.89 7.87 1.28 5.20 2.29 1.82 0.11 0.66 0.93 0.19 3.92 9.27 0.89 0.01 1.78 4.03 



GenoCanyon 

rankscore 

7.77 1.16 0.79 4.33 10.23 1.08 2.98 -0.24 3.24 -0.25 0.07 2.89 -0.21 2.67 7.38 -0.03 -1.54 2.35 2.48 

integrated fitCons 

rankscore 

5.69 -0.07 2.13 1.63 1.74 -0.31 1.63 -0.45 0.95 -0.28 0.00 3.62 -0.28 -1.52 9.51 2.04 1.35 1.17 1.59 

GM12878 fitCons 

rankscore 

1.21 -0.12 1.07 0.29 1.39 -0.51 0.72 0.07 0.23 1.02 0.06 -0.52 -1.40 0.68 1.19 0.25 0.74 1.44 0.43 

H1 hESC fitCons 

rankscore 

0.65 -0.65 -0.47 0.65 1.11 0.11 1.51 -0.35 0.63 -0.04 -0.37 0.76 -1.36 -2.12 -0.05 -0.81 0.53 1.56 0.07 

HUVEC fitCons 

rankscore 

0.57 0.06 -0.53 -0.01 0.24 0.63 0.49 -0.28 0.66 0.17 0.36 -0.03 0.19 -0.37 2.70 0.60 -1.03 0.50 0.27 

GERPPP RS 

rankscore 

4.59 1.30 1.33 -0.01 -0.46 0.52 0.67 0.99 0.94 0.98 0.76 0.15 0.50 1.16 1.04 -0.11 1.31 0.05 0.87 

phyloP100way 

vertebrate 

rankscore 

3.85 0.79 0.68 -0.26 -0.12 0.07 0.90 0.42 -1.07 1.42 1.00 3.15 0.14 1.05 4.61 0.98 0.23 -1.01 0.94 

phyloP30way 

mammalian 

rankscore 

7.68 -1.35 0.90 0.87 8.54 -0.04 0.49 1.37 -0.35 -0.60 -0.04 0.56 -0.14 0.42 0.64 0.02 3.77 -0.07 1.26 

phyloP17way 

primate 

rankscore 

0.80 0.69 3.44 6.09 6.55 0.56 0.47 0.05 -0.35 -0.36 0.18 3.38 -0.17 1.24 6.41 0.02 0.65 -0.17 1.64 

phastCons100way 

vertebrate 

rankscore 

12.90 0.08 0.96 5.64 5.63 0.18 4.37 3.67 0.97 0.37 0.23 1.31 0.02 2.87 0.57 0.35 0.17 0.40 2.26 

phastCons30way 

mammalian 

rankscore 

0.79 1.80 1.06 6.19 6.39 0.58 1.06 1.30 0.46 -0.27 0.76 -0.01 1.40 0.87 3.33 1.71 0.58 -0.15 1.55 

phastCons17way 

primate 

rankscore 

8.83 0.77 0.63 1.45 3.04 0.36 0.81 1.09 0.99 0.37 1.10 -0.03 0.34 0.34 3.99 0.65 0.42 0.57 1.43 

SiPhy 29way 

logOdds 

rankscore 

21.86 2.25 1.54 3.43 4.30 1.05 0.51 1.25 4.24 0.69 2.50 -0.18 0.22 0.69 3.90 -0.02 9.05 4.05 3.41 

 



 

Figure 1 Heatmap of SLPs produced by each variant category for each gene. The sizes of the dots for each gene are 

proportional to the SLP for each variant category relative to the maximum category SLP obtained for that gene. 

White circles indicate negative SLPs. 

 

  



Figure 2 Plot of pairwise correlations between secondary annotations for the variants used in this study. Black circles 

indicate positive correlations and white circles negative correlations. 

 

 

 

 

 

 

  



Figure 3 Heatmap of SLPs produced by each secondary annotation for each gene. The sizes of the dots for each gene 

are proportional to the SLP for each annotation relative to the maximum SLP produced by any annotation for that 

gene. White circles indicate negative SLPs. 



 


