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Understanding the genomic impact of carcinogens is fundamental to cancer biology and
prevention. However, recent coordinated efforts to detect such fingerprints have been
largely unsuccessful, challenging the paradigm that carcinogens induce identifiable muta-
tional signatures. Here we introduce a new method based on statistics from population
genetics, signature variability analysis (SVA), that elucidates both the diversity of tumor-
causing processes and the heterogeneity of population carcinogen exposure. When
we use SVA to re-analyze four prominent studies commonly cited as evidence of non-
mutagenic carcinogens, we find that tumors induced by environmental carcinogens do
possess mutational signature patterns that distinguish them from spontaneous tumors,
even if a specific mutational signature cannot be detected. We find that, across cancers,
organs, and model organisms, carcinogen exposure generally increases both the diversity
of mutational signatures within a tumor and the homogeneity of signature activity across
subjects. Importantly, we show that this increase in signature diversity, far from being a
background effect, is associated with the geographic incidence of cancer and can facilitate
the acquisition of cancer driver mutations. Our results both encourage a re-examination of
the genomic impact of numerous substances and introduce new tools for the analysis of
the genomic effects of other substances, potentially influencing carcinogen classifications
and cancer prevention policies.

The genomic paradigm of carcinogenesis posits that cancer is
caused by the sequential acquisition of DNA “driver” alterations
in cancer genes, generating progressively more aggressive cell
clones that ultimately form a tumor1–4. DNA alterations are
either due to endogenous processes, such as spontaneous deami-
nation or defective DNA mismatch repair5–7, or to exogenous ex-
posure to environmental carcinogens such as UV light or tobacco
smoke8,9. Under this paradigm, the increased risk of cancer in
individuals exposed to environmental carcinogens is due to the
direct genotoxic effect of carcinogens, which increase the tumor
mutational burden (TMB), thereby increasing the probability of
a mutation in a cancer driver gene. For example, the increased
risk of cancer due to tobacco smoking is mainly attributed to
the effect of smoking on the TMB, with lung adenocarcinoma
samples from tobacco smokers having ten-fold the TMB of those
from never smokers (∼10 mutations per Mb and ∼1 mutation
per Mb, respectively10,11).

However, several recent studies have found no genomic ef-
fect of carcinogen exposure, challenging the ubiquity of the
genomic paradigm of carcinognesis. First, exposing mice to 20
suspected or known carcinogens, Riva and colleagues12 found
that “most of the tested chemicals induced tumors that were
indistinguishable from those arising spontaneously”13. Second,
a large genomic study of lung cancer in never smokers (LCINS)

found that patients exposed to second-hand smoke were ge-
nomically indistinguishable from unexposed patients, suggest-
ing that second-hand smoke increases cancer risk through non-
mutagenic means11. Third, our recent analysis of more than
100 malignant pleural mesothelioma tumor whole genome
sequences14 was the latest in a long line of failures to identify a
genomic difference between asbestos-exposed and non-exposed
tumors15,16, despite asbestos being one of the most powerful
known carcinogenic substances17. Finally, the most extensive
genomic study of cancer across continents to date has suggested
that, incidence, like many carcinogen exposures, cannot be ex-
plained by genomic differences between tumors18. We would
naively expect carcinogen exposure to drive both mutational
signature activity and cancer incidence. Under this hypothe-
sis, tumors in high-incidence countries should be genomically
distinguishable from tumors in low-incidence countries, per-
haps having a higher total mutational burden or possessing a
unique mutational signature that reflects an exogenous exposure.
However, analyzing esophageal cancers across countries with
strikingly different incidences, the authors identified no “known
or unknown [mutagenic] process that could be responsible for
these differences.” Collectively, these studies have caused a shift
in focus away from genetic causes of cancer, suggesting that
many carcinogens do not directly cause mutations13.
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At the core of these discoveries stand mutational signatures,
patterns of mutations throughout the genome that correspond
to distinct mutational processes19–22. A mutational signature
describes the genome-wide relative frequencies of different “mu-
tational types” caused by an exogenous exposure or endogenous
process. For example, exposure to tobacco smoke is associated
with single-base substitution signature number four (SBS4), a
genome-wide pattern of single-base substitutions characterized
by high frequencies of C to A substitutions, and low frequencies
of other single-base substitution types. In addition to single-
base substitutions (SBS), mutational signatures can be defined
in terms of other classes of mutations, such as double-base nu-
cleotide substitutions (DBS signatures), insertions and deletions
(ID signatures), copy number alterations (CN signatures), or
structural variations (SV signatures). Within a class (e.g., SBS),
each “mutational type” corresponds to both a possible alteration
(e.g., C to T substitution) and the alteration’s genomic context
(e.g., the flanking 5’ and 3’ bases for SBS; see methods for details);
the number of mutational types in each signature class typically
ranges from 32 for SV signatures to 96 for SBS signatures, and
up to 1,536 types in extended contexts.

Mutational signatures are ideally detected through whole-
genome sequencing of tumors, whose genomes often contain
signatures of multiple mutational processes. For example, in
Figure 1, Sample 2 of Population 1 is dominated by SBS4 (Figure
1c), and the tumor’s mutational spectrum is correspondingly
also dominated by C to A substitutions (Figure 1a). Analysis of
mutational signatures usually begins with the de novo extraction
of signatures based on the mutational spectra of samples in a
cohort and the decomposition of these de novo signatures into
novel signatures and known signatures based on whether they
are present in established databases (e.g., the Catalog Of Somatic
Mutations In Cancer, COSMIC)23. Subsequent analyses typically
focus on the activity of mutational signatures in each sample,
also called signature activity. When analyses consider many
signatures at once, the signature activities within each tumor
sample are usually averaged at the population level for straight-
forward comparison of signature activity between populations
(Figure 1e). Alternatively, each signature may be analyzed in
isolation, through the computation of associations between sig-
nature presence or population-level mean signature activity, and
variables such as cancer incidence or carcinogen exposure18.

In this study, we propose a new statistical framework for the
analysis of mutational signature data. Signature variability anal-
ysis (SVA) quantifies both the diversity of mutational signatures
active within each tumor, and the heterogeneity of signature
activities across tumors. These two statistics capture patterns of
signature activity that are missed when each signature’s activity
is analysed in isolation, enabling the detection of carcinogens
that affect the diversity of the entire mutational repertoire of a
tumor but do not leave a specific mutational signature. In our
analyses, SVA reveals previously overlooked genomic impacts
of carcinogen exposures and predicts previously unexplained
geographic gradients of cancer incidence. We further show how
signature diversity can influence carcinogenesis by influencing
the occurrence of driver mutations.

Signature variability analysis reveals patterns
obscured by analysis of mean signature activity
To understand signature variability analysis, consider two hy-
pothetical populations, each containing eight tumor samples.
In Population 1 each tumor is dominated by a single signature

(Figure 1a,c). In Population 2, each tumor contains an identical
combination of ten signatures (Figure 1b,d). Tumors in Pop-
ulation 1 were each caused by a distinct large-effect process,
while tumors in Population 2 encountered identical exposures
to many mutational processes. When these populations are sum-
marized in terms of mean signature activities, as is standard
practice20 (see signal database26), the opposing etiologies driv-
ing carcinogenesis are indistinguishable (Figure 1e). However,
the differences in population-level mutational signature activity
are revealed by considering the within-sample diversity and
across-sample heterogeneity of mutational signatures, a frame-
work we call signature variability analysis (SVA, Figure 1f).

SVA draws on a long history of population-genetic statis-
tics devised to understand the genetic diversity within popu-
lations and the genetic differentiation across populations27–30.
When considered jointly, these two dimensions of variability can
reveal the patterns of migration, selection, and demographic
change experienced by a set of populations31–33. Here, we ex-
tend these population-genetic statistics to mutational signature
data through an analogy between the diversity of alleles within
or across populations, and the diversity of mutational signature
activities within or across tumors. SVA uses standard measures
of within- and across-population genetic diversity: expected
heterozygosity and FST

27,28. We use the expected heterozygosity
to measure the diversity of signatures within tumors. It is small
when each tumor is dominated by a single signature (Population
1) and it approaches 1 as the number of signatures present in
each tumor increases, and their frequencies become more even
(Population 2, x-axis of Figure 1f). We use FST to quantify the
heterogeneity of mutational signature activity across tumors. FST
is large when each tumor is dominated by a single signature and
there are multiple signatures present across tumors (Population
1), and FST equals 0 when all tumors have identical signature
activities (Population 2, y-axis of Figure 1f).

The expected heterozygosity and FST , which we respectively
refer to as within-sample diversity and across-sample hetero-
geneity, delimit a two-dimensional plane of variability32 (Figure
1f). The position of a population of tumors in this space rep-
resents both the diversity of mutational processes driving car-
cinogenesis in the population (within-sample diversity, x-axis),
and the heterogeneity of population exposure (across-sample
heterogeneity, y-axis).

We implement SVA in an R package, sigvar, which enables
the straightforward computation of both within-sample diver-
sity and across-sample heterogeneity, as well as data visual-
ization and statistical hypothesis testing. SVA also allows
for the optional inclusion of a pairwise similarity matrix be-
tween the signatures, which allows the statistics to account
for the varying similarities between pairs of mutational sig-
natures. When not stated otherwise, all analyses presented
here account for the similarity (cosine) between mutational
signatures34–36. The sigvar R package is available for download
at https://github.com/MaikeMorrison/sigvar.

Carcinogen exposure increases diversity of mu-
tational signatures
To explore the impact of carcinogen exposure on signature vari-
ability, we re-analyzed data from four studies: one in mice and
three in humans (Figure 2). First, we re-analyzed data from
mice exposed to 20 known or suspected carcinogens, where the
resulting tumors were sequenced in order to identify the mu-
tagenic impacts of each substance12. Their initial comparison
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Figure 1 | Mutational composition of two hypothetical populations of tumor samples with identical mean signature activities
but extremely different variability within and across tumor samples. a, Example mutational spectra of hypothetical samples from
Population 1. Each sample in Population 1 is dominated by a single mutational signature with just a 1% activity from the remaining nine
signatures. b, Example mutational spectra of hypothetical samples from Population 2. All samples are caused by an identical mixture
of ten mutational signatures. c-d, Relative activity of each mutational signature in each sample in Population 1 (c) and Population 2 (d).
e, Populations 1 and 2 are identical both in their mean relative signature activities and in the proportion of samples with each signature.
Dot size corresponds to the proportion of samples in each population that contain a given signature, while color corresponds to the mean
relative activity of each signature across all samples in the population. f, Populations 1 and 2 have very different values of within-sample
diversity (mean expected heterozygosity; computed from equation 6) and across-sample heterogeneity (FST ; computed from equation 9).

of mean signature activity within carcinogen groups found that
most of the carcinogen-induced tumors were indistinguishable
from spontaneously occurring tumors (Figure S1a-b). On the
contrary, SVA found that all but one carcinogen led to greater
within-sample signature diversity than spontaneous tumors,
and despite small sample sizes, 10 of the 20 comparisons be-
tween carcinogen-induced and spontaneous tumors were sta-
tistically significant (Figure 2a; Table S1; bootstrap test with
1,000 replicates, one-sided P<0.05 for 10/20 chemicals in liver
tumors, and for for 2/9 chemicals in liver tumors). In contrast,
only 1 of the 20 carcinogens induced tumors with significantly
less within-sample signature diversity than spontaneous tumors
(one-sided bootstrap test P<0.001). The greater signature diver-
sity in carcinogen-induced tumors was not due to the greater
contribution of one signature but rather to the more frequent co-
occurrence of many endogenous signatures (e.g., mSBS19 with
mSBS1, mSBS5, mSBS40, mSBS12, mSBS17, and mSBS18; Fig-
ures S2 and S3, Table S3). SVA also identified a carcinogen that
induced liver tumors with more across-sample signature het-
erogeneity than spontaneous liver tumors (Table S1, one-sided
P<0.05 for 1 chemical).

We next reanalyzed malignant pleural mesothelioma (MPM)
whole-genome sequencing data from our recent MESOMICS
project14. This project sought to identify genomic differences
between MPM tumors with varying exposure to asbestos, the
primary cause of MPM17. The MESOMICS project found that
MPM somatic alterations consisted mostly of copy number (CN)
alterations, leading us to hypothesize that asbestos exposure
would leave a footprint on CN signatures. However, the study
failed to identify any difference in mean CN or SBS signature
activity between low- and high-exposure patients (Figure S1c-d).
Here, we reanalyzed the CN signature data with signature vari-
ability analysis. SVA revealed that tumors from patients exposed

to asbestos have more within-sample signature diversity and
less across-sample heterogeneity than those from unexposed
patients (Figure 2b, bootstrap test with 1,000 replicates, one-
sided P=0.028 for within-sample diversity, one-sided P=0.022
for across-sample heterogeneity; Figure S4a, S5 ). This find-
ing posits a previously unknown genomic footprint of asbestos
exposure.

Third, we compared the signature variability of LCINS who
were exposed to second-hand smoke (“passive smokers”) to
those in unexposed never smokers11. This study found strong
similarities in the mutational patterns between these two expo-
sure groups (Figure S1g-h). While SVA failed to find a significant
difference in across-sample signature heterogeneity (bootstrap
test with 1,000 replicates, two-sided P=0.637), it did find that
passive smokers had slightly more diverse mutational signatures
than unexposed never smokers (Figure 2b, bootstrap test with
1,000 replicates, one-sided P=0.116; Figure S4c, S6). This result is
consistent with our findings in mesothelioma and mouse tumors
that carcinogen exposure increases signature diversity.

Finally, we reanalyzed data from a study of lung adenocarci-
noma in East Asians24. As expected, this study found significant
differences between the mutational signature activities of smok-
ers and non-smokers, evidence of the well-established direct
mutagenic effect of tobacco smoke (Figure S1e-f). Applying SVA
to this data, we found that patients who smoke had significantly
more within-sample signature diversity and less across-sample
heterogeneity than non-smoking patients, suggesting that the
causes of adenocarcinoma are at once more diverse within tu-
mors and more homogeneous across tumors from smokers than
from non-smokers (Figure 2b, bootstrap test with 1,000 replicates,
one-sided P=0.112 for across-sample heterogeneity, P=0.005 for
within-sample diversity; Figure S4b, S7). Interestingly, this find-
ing closely matches the results of SVA between mesothelioma
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Figure 2 | Carcinogen exposure is associated with increased diversity of signature activity within tumors. a, Within-sample signa-
ture diversity of tumors in mice exposed to 20 known or suspected carcinogenic substances12. Violin plots give the distributions of within-
sample diversity for all tumors in each exposure group (n=3−12 samples per group; Table S2). Vertical lines indicate the mean within-
sample diversity in spontaneous tumors for each organ: liver (left) or lung (right). Dots represent the mean within-sample signature diver-
sity for each exposure group. Stars and colors indicate the one-sided significance of bootstrap tests comparing the mean within-sample
signature diversity in each exposure group to that of spontaneous tumors. All P-values are presented in Table S1. b, SVA of tumors in
human populations with varying carcinogen exposure. Dots represent the mean within-sample diversity (x-axis) and the across-sample
heterogeneity (y-axis) of signature activities of high- and low-carcinogen-exposure populations for three cancer groups: malignant pleural
mesothelioma14 (orange and green correspond to populations professionally exposed and unexposed to asbestos, n=80 and 30, respec-
tively), lung adenocarcinoma in East Asians24 (red and navy correspond to smokers and non-smokers, n=35 and 53), and lung cancer in
never smokers11 (yellow and navy correspond to never smokers exposed to second-hand smoke—“passive smokers”—and unexposed
never smokers, n=64 and 149). Violin plots give the distributions of within-sample diversity (x-axis) for all samples from each population.

samples from patients exposed and unexposed to asbestos (Fig-
ure 2b), despite the fact that the mesothelioma samples do not
differ in their mean signature activity (Figure S1c-d). These par-
allel results suggest previously unappreciated similarities in the
genomic effects of carcinogens that do and do not produce a
direct mutational signature.

We also investigated whether other clinical characteristics
had an effect on signature variability (Table S4). Although pa-
tient age is known to influence the TMB37, within-sample di-
versity was not statistically associated with age in any of the
datasets (t-tests, P > 0.05). This suggests that somatic muta-
tions accumulate with age through the same mutational pro-
cesses rather than through more and more diverse processes.
Mutational processes are not expected to differ by sex, but pro-
fessional asbestos exposure and smoking are both male-biased.
Thus, as expected, males had a significantly greater signature
diversity in mesothelioma and lung adenocarcinoma (t-test,
P<0.05) but not in LCINS. Tumor stage did not have a consistent
effect: diversity was similar across stages in lung adenocarci-
noma in East Asians, but greater in stages II and III in LCINS
(t-test, P<0.05). The LCINS cohort was the only dataset includ-
ing different histological types (adenocarcinoma and carcinoids).
The more aggressive adenocarcinoma had a significantly higher
diversity than carcinoids (t-test, P<2.2 × 10−16).

To better understand the effect of carcinogen exposure on
signature variability, we simulated signature activities for popu-
lations with varying carcinogen exposure (Figure S8). We used
the smoking signature activity distributions of the lung adeno-
carcinoma in East Asians data to derive 10 carcinogen expo-
sure levels ranging from the low exposure of non-smokers to
the high exposure of smokers24. Our simulations corroborate
the results of mesothelioma and lung adenocarcinoma (Figure

2b), demonstrating that within-sample diversity increases and
across-sample heterogeneity decreases as carcinogen exposure
strengthens (Figure S8a). The one exception to this pattern oc-
curs for very high exposures, when the within-sample diversity
reaches a maximum and begins to decrease as one signature
(SBS4) starts to strongly dominate all the others (Figure S8b).

In summary, in both in vivo murine models and human pop-
ulations, highly exposed populations consistently had more
within-sample diversity than their less exposed counterparts.
More highly exposed human populations additionally often had
less across-sample heterogeneity.

Mutational signature variability explains geo-
graphic patterns of cancer incidence
In the previous section, we found that populations exposed to
carcinogens generally had higher within-sample signature diver-
sity and lower across-sample signature heterogeneity than unex-
posed populations. In this section, we apply SVA to data from
populations with varying cancer incidence. If signature vari-
ability influences carcinogenesis, as suggested by the results of
the previous section, we would expect high- and low-incidence
countries to follow the same SVA patterns as high- and low-
carcinogen-exposure populations. We test this hypothesis using
data from the Mutographs project18,25. This consortium has
recently sought to identify mutational signature differences driv-
ing global distributions of esophageal squamous cell carcinoma
(ESCC) and clear cell renal cell carcinoma (ccRCC), whose dra-
matically varying geographic incidences are not fully explained
by known risk factors.

The study of 552 ESCC samples found similar mean signature
profiles across all eight countries, concluding that, if there is an
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Figure 3 | Across cancers and countries, within-sample signature diversity and across-sample signature heterogeneity are as-
sociated with incidence. a, Mean signature activities across esophageal squamous-cell carcinoma (ESCC) samples from countries with
high or low ESCC incidence (n=55218). b, SVA of ESCC samples grouped by country. Colors represent cancer incidence. c, Mutational
signature activities for samples from Japan and Tanzania. The legend presents the 10 most abundant signatures. d, Mean signature ac-
tivities across clear cell renal cell carcinoma (ccRCC) samples from countries listed in order of increasing ccRCC incidence (n=95725). e,
SVA for ccRCC samples grouped by country. Colors represent the age-standardized rate (ASR) of ccRCC in each country. f, Mutational
signature activities for samples from Romania and Lithuania. Note that in panels b and e, SVA does not account for cosine similarity be-
cause the ccRCC results included SBS signatures defined in terms of both 3- and 5-nucleotide contexts, complicating the computation of
cosine similarities between signatures (see Figure S9 for similar results collapsing all signatures to a 3-nucleotide context and weighting by
cosine similarity among signatures). See Figure S10 for a representation of the distributions of within-sample diversity for each country.

exogenous mutagen driving differences in ESCC incidence, it
left no genetic signature18 (Figure 3a). However, SVA computed
at once across SBS, DBS, and ID signatures reveals a dramatic
difference in the signature variability of high- and low-incidence
countries. ESCC cases in high-incidence regions from five coun-
tries (as defined in the original studies, incidence rates above 20
in 100,000) are each caused by a more diverse set of mutational
signatures than those in low-incidence countries (incidence rates
below 6 in 100,000), and these signatures are also more homoge-
neous across tumors (Figure 3b-c, Figure S11; Welch’s two Sam-
ple t-test, one-sided P=0.001 for mean within-sample diversity,
one-sided P=0.004 for across-sample heterogeneity; Table S5).

The study of 962 clear cell renal cell carcinomas (ccRCC)
from 11 countries did find evidence of multiple exogenous
exposures25, including signatures of aristolochic acid (SBS22a
and b) in Romania, Serbia, and Thailand, a signature of unknown
origin in Japan (SBS12), and a signature of unknown origin asso-
ciated with incidence (SBS40b)25. However, the mean activities
of many signatures were still quite comparable across popula-
tions (Figure 3d). Applying SVA to ccRCC, we find that tumors
from higher-incidence countries have more within-sample diver-
sity and less across-sample heterogeneity (Figure 3e-f, Pearson
correlation, one-sided P=0.033 for within-sample diversity, one-
sided P=0.003 for across-sample heterogeneity). This result
corroborates our analysis of ESCC (Figure 3b), again finding

a positive relationship between within-sample diversity and
incidence, and a negative relationship between across-sample
heterogeneity and incidence.

In both ESCC and RCC, we find that, across countries, the
mean activities of several mutational signatures are associated
with SVA results (Tables S6 and S7). For example, we found that
the mean activity of SBS40b, which was shown in the original
study of RCC to correlate positively with cancer incidence25, was
significantly negatively correlated with across-sample hetero-
geneity (Pearson correlation, R=− 0.708, one-sided P=0.011).
This result is consistent with our hypothesis that signature com-
position is more homogeneous in higher incidence countries.

In summary, we find a nearly identical pattern when applying
SVA to global samples of ESCC and ccRCC: in both cancer types,
higher incidence countries have greater mean within-sample sig-
nature diversity and lesser across-sample signature heterogene-
ity (Figure 3b,e). This result suggests that mutational processes
are both more diverse and more ubiquitous in high-incidence
countries. In addition, the patterns of signature variability be-
tween high- and low-incidence countries parallel those between
populations exposed to high and low levels of asbestos or to-
bacco smoke (Figure 2b). This similarity supports the hypothesis
that the genomes of cancers in both high-carcinogen-exposure
and high-cancer-incidence populations are directly influenced by
carcinogenic exposures, both in cases when an exposure leaves

Unpublished manuscript draft| 5



Article

mSBS40

mSBS12

mSBS_N1

Within-sample diversity

Low High

Within-sample diversity

mSBS1

mSBS5

mSBS40

mSBS12

mSBS17

mSBS18

Low High

age

unknownmSBS19

Mouse liver tumors
(Riva et al. 2020)

etiology

age

unknown

etiology

ROS
VDC

Mouse lung tumors
(Riva et al. 2020)

** *

0.0

0.1

0.2

0.3

0.4

Low High Low High

Within-sample diversity Within-sample diversity

0.0

0.1

0.2

0.3

0.4

P = 3.2×10-13

0.0010

0.0015

0.0020

0.0 0.2 0.4 0.6

Within−sample diversityP
ro

ba
bi

lit
y 

of
 E

G
F

R
 d

ri
ve

r 
al

te
ra

tio
n g

*

Non-smoker Passive
smoker

e
Lung cancer in never-smokers

(Zhang et al. 2021)

f

P < 2.2×10-16

0.030

0.035

0.040

0.045

0.0 0.2 0.4 0.6

Within−sample diversityP
ro

ba
bi

lit
y 

of
 T

P
53

 d
ri

ve
r 

al
te

ra
tio

n

*

Non-smoker Passive
smoker

h

i j

D
iv

er
si

ty
 o

f
re

sp
on

si
bl

e 
si

gn
at

ur
es

P
ro

po
rt

io
n 

of
 d

riv
er

s

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00
responsible
signature

responsible
signature

b Greatest diversity sample

SBS1

SBS2

SBS5SBS7b

SBS13

SBS18

c d

R
el

at
iv

e 
ab

un
da

nc
e

Lowest diversity samplea

0%

5%

10% SBS1

SBS5

C>A C>G C>T T>A T>C T>G

0%

1%

P
ro

po
rt

io
n 

of
 d

riv
er

s

C>A C>G C>T T>A T>C T>G

0%

5%

10%

15%

C>A C>G C>T T>A T>C T>GC>A C>G C>T T>A T>C T>G

EGFR TP53

0%

5%

10%

Figure 4 | Within-sample diversity impacts driver mutations. a-b, SBS mutational spectra of the sample from LCINS11 with the least
(a) and greatest (b) mutational signature diversity, colored by activity of SBS mutational signatures. c-d, SBS mutational spectrum of
known driver alterations in genes EGFR (n=25 mutations) and TP53 (n=202 mutations), respectively. e, Left: association between within-
sample diversity and the probability of a mutation being a driver mutation in gene EGFR in LCINS (n=232 patients). The P value corre-
sponds to a two-sided Spearman correlation test. Right: association between passive smoking and the probability of a driver alteration in
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Within-sample diversity of the mean signature activities in driver mutations presented in g-h.

a detectable signature (e.g., smoking, ccRCC) and in cases when
no unique signature is detected (e.g., asbestos exposure, ESCC).
This symmetry provides further evidence for a link between
carcinogen exposure, signature diversity, and carcinogenesis.

Mutational signature diversity impacts driver
mutations
The results presented so far have established that, in nearly
all cases, carcinogen exposure and cancer incidence are posi-
tively associated with the within-sample diversity of mutational
signatures. We hypothesize that this association is mechanis-
tically driven by a relationship between the diversity of a tu-
mor’s mutational signature activity—which determines the total
spectrum of mutations acting on the genome—and the proba-
bility that a mutation from this spectrum is capable of initiating
carcinogenesis—that is, that a mutation is a so-called driver
mutation38. The greater the overlap between a tumor’s muta-

tional spectrum (e.g., Figure 4a-b) and the spectrum of driver
mutations in a cancer-associated gene (e.g., Figure 4c-d; data
from the Intogen database39), the higher the probability that a
mutation in that tumor is a driver mutation in the specified gene.

To test whether signature diversity is associated with driver
mutation probability, we compute the driver mutation proba-
bility for LCINS samples11 in each of the two most frequently
mutated genes, EGFR and TP53 (Table S8). We found that, across
these tumor samples, the driver mutation probability was in-
deed positively correlated with the within-sample diversity of
mutational signatures (P=3.2 × 10−13 for EGFR and P<2.2−16

and for TP53; Table S9). Mutations in tumors with a diversity of
0.6 had a 1.15 to 1.20 times greater probability of being drivers
compared to tumors with a diversity of 0.1 (Fig. 4e-f). Interest-
ingly, passive smokers, adenocarcinomas, and samples from the
molecular clusters with the greatest number of copy number
alterations (Forte and Mezzo-forte11) had the highest probability
of driver mutations in both EGFR and TP53 (two-sided Wilcoxon
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rank sum tests P<0.05, Figure 4e-f and Figure S12a-d). Com-
paring the mutational spectrum of the lowest-diversity sample
(Fig. 4a) to that of the greatest-diversity sample (Fig. 4b), we see
that the increased driver mutation probability in the greatest-
diversity sample is mostly due to the combined influence of two
mutational processes. On the one hand, mutations attributed to
APOBEC enzymes (SBS13, dark blue bars in Fig. 4b) created an
increase of C to T mutations that could hit many known driver
positions (red bars in Fig. 4c-d). On the other hand, mutations
attributed to reactive oxygen species (SBS18, dark yellow bars
in Fig. 4b) created an excess of C to A mutations that could hit
another set of known drivers (blue bars in the right panels in
Fig. 4c-d).

We independently replicated the correlation between the
probability of driver mutations and within-sample signature di-
versity using the mice experiments from Riva et al.12 (Table S10),
and the ESCC tumors from Moody et al.18 (Tables S11 and S12).
We show that a majority of the main drivers found in liver and
lung cancers of mice exposed to carcinogens (Hras, Braf, Fgfr2)
are more likely to occur in diverse tumors (Figure S12e-g). Inter-
estingly, drivers in Kras in lung tumors are negatively correlated
with within-sample diversity; this opposite effect of diversity
on Kras and Fgfr2 drivers is coherent with the observation from
Riva and colleagues that Kras and Fgfr2 mutations are mutually
exclusive. Similarly, a majority of drivers from ESCC were more
likely to occur in diverse tumors (PIK3CA, KMT2D, NFE2L2,
EP300; Figure S13c-e, g), and some were only more likely to occur
in diverse tumors in low-incidence countries (TP53, CDKN2A;
S13a,b). This effect of diversity on driver occurrence probability
resulted in a significant difference in driver mutation probability
between tumors from low- and high-incidence countries (Figure
S13). Note that all these results consider the probability that
a single alteration hits a driver mutation, so it imposes a simi-
lar TMB to all samples; additionally, in most of these datasets,
no significant association between carcinogen exposure or inci-
dence and TMB were reported (Figure S14, Table S13). Together,
our results exemplify the potential for diverse mutational reper-
toires (e.g., comprising both SBS13 and 18) to together increase
the driver mutation probability, thus heightening cancer risk
even without increasing mutational burden.

To further verify that signature diversity indeed impacts
driver mutations, we turned to the data of Riva and colleagues12,
who determined the mutational signature most likely to be re-
sponsible for each driver mutation identified in the sequenced
tumors. Grouping tumors into above- or below-median signa-
ture diversity groups, we analyzed the proportion of drivers
caused by each mutational signature (Figure 4g-h). We found
that, for both liver and lung tumors, driver mutations in the high-
signature-diversity group were caused by a more diverse array
of responsible signatures (Figure 4g-j). For example, drivers in
the low-diversity liver cancer group (left bar in Figure 4g) are
all due to mSBS40, so the diversity of the group is 0 (left dot
in Figure 4i). Drivers in the high-diversity group, on the other
hand, are due to multiple signatures, causing their diversity to
be greater (right dot in Figure 4i). We also found that the abun-
dances of signature etiologies differed significantly between
high- and low-diversity tumors (Fisher’s exact test, P=0.004 and
0.032 for liver and lung, respectively). In liver cancers, while
all 24 drivers identified in low-diversity tumors were generated
by a single signature—age-associated signature mSBS40—the
25 drivers found in high-diversity tumors were generated by
four different signatures, including endogenous signatures of

unknown etiology (mSBS12, mSBS19) and a signature associ-
ated with VDC exposure (mSBS_N1; Figure 4g). Similarly, in
lung cancers, drivers from low-diversity samples are predomi-
nantly generated by age-related signatures (mSBS1, mSBS5, and
mSBS40), while drivers in high-diversity samples are mostly gen-
erated by signatures of unknown etiology (mSBS12 and mSBS17;
Figure 4h).

Discussion
In this study, we introduce signature variability analysis (SVA),
a new statistical framework for the analysis of mutational sig-
nature activity in a population. Using this framework, we show
that most carcinogens do have a direct effect on DNA, but that,
rather than producing a unique signature that increases the
TMB, they influence multiple mutational processes simultane-
ously, increasing the diversity of signatures observed in a tumor,
and in many cases increasing the homogeneity of population-
wide signature activities as well. Through analyses of data from
murine carcinogen exposure experiments12 and human popula-
tions exposed to asbsestos or tobacco smoke11,14,24, we find that
populations with higher carcinogen exposure tend to have more
diverse mutational signature activities, regardless of whether
a unique signature was associated with the exposure. We also
find that, in human populations, smokers and people exposed
to asbestos have more homogeneous signature activities than
do non-smokers and unexposed people. Using data from the
Mutographs project18,25, we also show that differences in ge-
ographic prevalence of ESCC and ccRCC are both associated
with higher within-sample diversity and lower across-sample
heterogeneity of mutational signatures. The symmetry in the ef-
fects of carcinogen exposure and cancer incidence on mutational
signature variability provides evidence for a link between expo-
sure, signature variability, and carcinogenesis. Indeed, we use
known driver alterations to show that the diversity of mutational
processes can influence the probability that a tumor-initiating
mutation occurs.

Our results suggest a novel conceptual mode of action for
many carcinogens. Most of the mutational signatures that we re-
port as affected by carcinogens are associated with endogenous
processes, such as APOBEC activity (SBS2 and 13) and DNA
repair (SBS3). This relationship suggests that carcinogens may
disrupt endogenous cellular processes. While the stimulation of
endogenous processes by carcinogens has been suggested as a
possible explanation for their lack of an exogenous signature13,
SVA allows for a precise quantification of this effect. We find
that strong exposures (e.g., tobacco smoke24, asbestos14, murine
carcinogen experiments12) lead to stronger signals of mutational
signature variability than weaker exposures such as second-
hand smoke[11]. For the latter, we find that the genomic effect of
second-hand smoke can only be revealed by an in-depth analysis
of the impact of diversity on driver mutations in genes EGFR
and TP53.

Our results have profound implications for cancer preven-
tion. By enabling the discovery of elusive footprints of expo-
sure, SVA opens the door to discovering more associations be-
tween environmental exposure and DNA damage. Genotoxi-
city, DNA repair alteration, and the induction of genomic in-
stability are considered key characteristics of carcinogens40,41.
However, evidence for activity of these phenomena is usually
limited to descriptions of specific signatures. Our results sug-
gest that these phenomena could also be defined by the diver-
sity of the mutational spectrum.As an example, we report that
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bromochloroacetic acid, currently classified as only “possibly
carcinogenic to humans” (group 2B), increases the diversity
of mutational signatures more than most of the 20 other sub-
stances tested by Riva and colleagues12, including three group 1
carcinogens42. Furthermore, all three substances tested by Riva
and colleagues12 that were mutagenic based on Ames tests but
were not associated with a mutational signature or an increase in
TMB (isobutyl nitrate, G. biloba extract and primaclone) led to
elevated signature diversities, possibly reconciling genomic anal-
yses with classical genotoxicity tests. In fact, most substances
increased diversity relative to spontaneous tumors in at least
one tissue.

Our results do not preclude the possibility that many car-
cinogens also act by non-mutagenic means. For example, cancer
driver mutations have been found in healthy tissue43,44, sug-
gesting that these mutations do not cause cancer in isolation
and prompting researchers to envisage an alternative model of
carcinogenesis in which a carcinogen acts primarily by alter-
ing the tumor micro-environment rather than by causing direct
DNA damage13,45. This so-called promoter model of carcino-
genesis is reminiscent of the evolutionary model of adaptation
from the standing genetic variation46,47. Under both models, the
“initiator” of natural selection (mutations) and the “promoter”
(environmental change) are provided by independent processes.
The cancer promoter model was recently empirically supported
by the discovery that air pollution promotes lung cancer in never
smokers48 and that chronic inflammation promotes leukemia49.
Our discovery of increased signature diversity in response to
carcinogen exposure suggests that carcinogens could simultane-
ously act as initiators, by increasing the diversity of the muta-
tional repertoire and thus the probability of driver mutations,
and as promoters by modifying the tumor microenvironment.

Our results were enabled by adopting the emerging paradigm
that the biology of cancer can be viewed from the perspective
of population biology, a field in which variability at all levels—
among cells, individuals, or groups of individuals—is treated as
a central component of a system. Population biology perspec-
tives that consider variability within and among tumors have
contributed to many recent discoveries in cancer biology. For
example, viewing a tumor as a population of cancer cells has re-
vealed the importance of early events in the aggressiveness and
spatial organization of some tumors50and the potential to har-
ness tumor-cell ecological interactions to optimize treatment51.
Embracing the diversity of molecular profiles in cancer patient
populations is a core principle of personalized medicine, guiding
cancer treatment approaches such as neoantigen-based therapeu-
tic cancer vaccines52 and individual-based prevention models53.
Our study similarly embraces a population-level view to place
variability—of somatic alterations within an individual tumor
and of mutational signature activities across tumors—as main
objects of interest. Indeed, we found that carcinogens can give
rise to population-level phenomena in the variability of signa-
ture activity even when they do not lead to detectable individual-
level properties, such as presence of an exogenous signature in
a given sample. Given the morphological and molecular het-
erogeneity observed within and across tumors54 and the het-
erogeneity among cancer patients in prognosis and treatment
response55, our study supports the role of population biology
perspectives as key to the future of cancer research.
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Methods
Mutational data
We retrieved publicly available mutational signature activities
and definitions from cancer whole-genome sequencing stud-
ies. We focused on the most common types of somatic alter-
ations affecting cancer genomes21: single base substitutions
(SBS), double-base substitutions (DBS), indels (ID), and copy
number alterations (CN). We here briefly describe these types
of data; see for example56 for a more detailed description of
mutational data. For each type of somatic alteration, alterations
are classified into a number X of channels or types; a set of
alterations is then represented as a vector of size X called the
“mutational spectrum,” with positive integer entries correspond-
ing to the number of alterations of each type. In this paper, we
focus our analysis on a normalized mutational spectrum, with
entries between 0 and 1 corresponding to the relative abundance
of alterations of each type.

Single base substitutions. Single base substitutions (SBS) are
single-nucleotide mutations in which a DNA base-pair is re-
placed by another base-pair. For example, an A:T base-pair
can be substituted by a C:G base-pair; following standard prac-
tice, we use the notation A:T>C:G, simplified to T>G using the
pyrimidine of the Watson-Crick pairs as reference. With this no-
tation, there are 6 possible substitutions (C>A, C>G, C>T, T>A,
T>C, and T>G). Following standard practice21, we use an ex-
tended classification taking into account the 5’ and 3’ flanking nu-
cleotides, called the “three-nucleotide context.” Under this clas-
sification, each possible substitution (e.g., C>A) has sixteen pos-
sible contexts (ACA>AAA, ACC>AAC, ACG>AAG, ACT>AAT,
CCA>CAA, CCC>CAC, CCG>CAG, CCT>CAT, CCA>CAA,
GCC>GAC, GCG>AAG, TCT>AAT, TCA>AAA, TCC>AAC,
TCG>AAG, and TCT>TAT). This leads to a mutational spectrum
with X = 6 × 16 = 96 channels.

Double base substitutions. Double base substitutions (DBS) are
simultaneous alterations of two adjacent nucleotides. An ex-
ample DBS is AA:TT>GG:CC, which is simplified to TT>CC
using the standard notation which lists the pair of bases with the
most pyrimidine nucleotides. Listing all source and substituted
strand-agnostic doublets, resolving palindromes and cases with
equal numbers of pyrimidine nucleotides, leads to the standard
X = 78 channels used in most studies.

Indels. Indels (ID) comprise small insertions and deletions of
one or more nucleotides (usually fewer than 100). For example,
C:G>-:-, simplified to C>-, for a single nucleotide deletion. Indels
are usually classified based on the size of the indel (1, 2, 3, 4,
5, and 6 or more) and the type of region where it occurred.
Regions considered are repetitive regions (regions with a similar
sequence repeated multiple times), and microhomology regions
(regions with a DNA sequence partially matching that of the
focal deletion); note that these two types of regions are usually
used for classification of indels because of their connection to
mutational processes important to cancer such as DNA repair
deficiency and microsatellite instability20. We thus used the
usual X = 83 channels, which account for indel type, length,
and region type.

Copy number alterations. Copy number (CN) alterations corre-
spond to large (usually more than 100bp) duplications or dele-
tions of chromosomal segments. For example, the loss of a
segment of 10kb in chromosome 3, leading to a region with

only a single copy (complete loss of the paternal or maternal
copy), or the gain of 5 copies of a segment of 1kb in chromo-
some 5, leading to a region with a copy number of 6 (1 copy
of the maternal or paternal chromosome, and 5 copies of the
other chromosome). CN were recently classified using the size
of the segment (0–100kb, 100kb–1Mb, 1Mb–10Mb, 10Mb–40Mb,
greater than 40Mb), its number of copies (0, 1, 2, 3-4, 5-8, 9 and
more), and its heterozygosity (heterozygous if at least one copy
of the paternal and maternal chromosome are present, and loss
of heterozygosity otherwise)22. This leads to X = 48 channels.

Mutational spectrum and signatures. The full set of mutations in
a tumor or patient sample can be summarized in terms of the
abundance of each SBS, DBS, ID, or CN channel, synthesizing
genome-wide data into a set of categories that consider the al-
teration and its immediate context, but ignore each mutation’s
absolute position in the genome. For example, because every
single-base substitution in the genome belongs to one of the 96
SBS channels, the genome-wide SBS data can be summarized by
the abundance of each of the 96 SBS types. This list of 96 type
abundances is known as the tumor or sample’s SBS “mutational
spectrum.” Mutational spectra can be generated for DBS, ID,
and CN alterations as well. Figure 1a-b give examples of SBS
mutational spectra.

Mutational signatures, genome-wide patterns of mutations
often associated with a particular mutational process, are also
defined in terms of these SBS, DBS, ID, or CN types. For example,
the SBS mutational signature associated with tobacco smoking,
SBS4, has high abundances of C to A substitutions and low
abundances of other substitution types. Mutational signatures
are defined through both large-scale population sequencing and
controlled exposure experiments in order to both identify the
signatures of population-level mutational processes and match
these signatures to causes20,57.

The mutational spectrum of a tumor or patient sample can
be represented as a weighted sum of mutational signatures. The
weight of each signature, known as the signature’s “activity,”
represents how many mutations in the tumor or patient sample
are attributed to each signature. For example, a tumor might
contain 500 mutations from SBS5 and 500 mutations from SBS40,
in which case the tumor mutational spectrum would be approxi-
mately equal to 500 times the number of mutations in each SBS
channel in the SBS5 spectrum, plus 500 times that in the SBS40
spectrum. In this paper, we focus our analysis on the “relative
activity” of each signature, which is the activity of each signa-
ture normalized by the total mutational burden: in the previous
example, the relative activity would be 0.5 for SBS5 and 0.5 for
SBS40. In general, we use “activity” to refer to “relative activity”
in this paper. In standard inferences of mutational signatures,
the mutational spectrum of each individual is approximated
as a combination of established mutational signatures, such as
those in the catalog of somatic mutations in cancer (COSMIC58)
database, which contains the mutational signatures known to be
frequently present in cancer samples, referred to as the COSMIC
signatures. There are about 100 SBS COSMIC signatures, about
10 DBS COSMIC signatures, and about 20 ID or CN COSMIC
signatures.

Cosine similarity between mutational signatures. It is often of inter-
est to quantify the similarity between mutational signatures,
for example to check whether signatures identified in different
populations are the result of the same mutational process, or to
account for the challenge of confidently distinguishing between
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similar signatures59. The cosine similarity is the standard metric
to quantify the similarity between mutational signatures23; it
corresponds to the angle θ between two vectors x and y of length
n, computed as the dot product of the vectors divided by the
product of the norm of the two vectors ||x|| and ||y||60:

cos(θ) =
x · y

||x|| ||y|| =
∑n

i=1 xiyi√
∑n

i=1 x2
i

√
∑n

i=1 y2
i

. (1)

Because in our case x and y represent mutational signatures
with non-negative values, their dot product and thus the cosine
similarity range in [0, 1].

Datasets
We used the SBS (96 types) and CN (48 types) COSMIC sig-
natures called in 115 malignant pleural mesothelioma samples
from the French MESOBANK (Supplementary Table from14)
and corresponding signature definitions (COSMIC3.1, Table
S35 from14). We used the 8 SBS COSMIC signatures and 3
de novo signatures from mice exposed to 20 different car-
cinogens (github repository https://github.com/team113sanger/
mouse-mutatation-signatures containing the data and scripts
from12), focusing on the 58 lung and 112 liver tumors because
they were the only ones including spontaneous tumors that
serve as a control. We used the 14 SBS signatures from 232
LCINS, among which 213 have passive smoking information
(personal communication with authors from11 to obtain the
source data for Figure 4 panel 6) and corresponding signature
definitions (COSMIC v3, Table S7 from11); note that in the orig-
inal paper and thus here, samples where SBS4 was detected
were removed from the analysis. We used the SBS signatures
from n=88 lung adenocarcinoma in East Asians from the CHG
cohort24. We used the COSMIC SBS, DBS, and ID signatures
from 552 ESCC samples from 8 countries (Table S15 from18) and
the SBS, DBS, and ID signatures from 957 out of the 962 clear cell
RCC samples from 11 countries (Table S6 from25; we excluded
samples from Thailand because of their small sample size of
n = 5). The RCC signatures include 3-nucleotide-context COS-
MIC signatures as well as the 5-nucleotide-context, de novo SBS
signatures that we were not well described by the existing COS-
MIC catalog. All mutational signatures were measured from
distinct samples.

Signature variability analysis
Computing variability summary statistics The statistics that form the
foundation of signature variability analysis are standard, widely
used measures in population genetics: heterozygosity and
FST

28,61. In standard applications, these two statistics are used
to quantify the within-population diversity or across-population
heterogeneity of allele frequencies—a scenario mathematically
analogous to the relative activities of signatures within or across
tumor samples. Let qi,k represent the relative activity of sig-
nature k in sample i, qi = (qi,1, qi,2, . . . , qi,K) be the signature
profile of sample i, and Q be a matrix with rows q1, q2, . . . , qI
representing the relative signature activity of all I samples in the
population. Note that the relative activity of each signature is
between 0 and 1 (0 ≤ qi,k ≤ 1) and the relative activities of all
signatures for each sample must sum to 1 (∑K

k=1 qi,k = 1 for each
i). We define within-sample signature diversity using a statistic
known as the expected heterozygosity61,

∆(qi) = 1 −
K

∑
k=1

q2
i,k. (2)

This statistic quantifies the diversity of all K signatures in a single
tumor sample, qi. ∆(qi) = 0 when qi contains a single signature
with activity 1 and all others have activity 0 (approximately each
sample in Figure 1c). ∆(qi) → 1 as the number of signatures
increases and their activities get more even (see each sample in
Figure 1d). Taking the average over all I tumor samples in the
population of tumor samples, Q, gives the mean within-sample
diversity, the x-axis of Figure 1f,

∆(Q) =
1
I

I

∑
i=1

∆(qi) = 1 − 1
I

I

∑
i=1

K

∑
k=1

q2
i,k. (3)

We quantify across-sample heterogeneity with an extension
of the population-genetic statistic FST

61. This statistic is tradi-
tionally used to quantify variability in allele frequencies across
populations, but has been recently used to quantify variability
in other contexts, such as ancestry inference36. This statistic is
defined in terms of both ∆(Q), the mean within-sample diver-
sity, and ∆(Q), the variability of the pooled signature activities
across all samples. The variability of the pooled signature activi-
ties is computed by first computing the average activity of each
signature across all samples, and then computing the diversity
of this pooled activity vector:

∆(Q) = ∆

(
1
I

I

∑
i=1

qi

)
= 1 −

K

∑
k=1

(
1
I

I

∑
i=1

qi,k

)2

(4)

FST is then defined as the normalized difference between this
pooled diversity and the mean within-sample diversity62,

FST(Q) =
∆(Q)− ∆(Q)

∆(Q)
. (5)

FST = 1 when each sample contains a single signature, since each
individual has no diversity and thus ∆(Q) = 0 (approx. Figure
1c). FST = 0 when all samples are identical in their signature
activities, so the mean within-sample diversity, ∆(Q), is identical
to the variability of the pooled signature activities, ∆(Q) (Figure
1d).

We use a previously developed extension of biological diver-
sity statistics35 to allow these two statistics, ∆(Q) and FST , to
account for the cosine similarity between mutational signatures.
Let S be a K × K matrix with entries sk,l equal to the cosine
similarity between signature k and signature l. S is symmetric
(sk,l = sl,k) and its diagonal elements equal 1, since each signa-
ture is identical to itself (sk,k = 1). Every entry sk,l is between 0
and 1, equalling 0 when signatures k and l are totally dissimilar
and equalling 1 when they are identical. We incorporate this
similarity matrix into our previous definition for the expected
heterozygosity:

∆(qi, S) = 1 −
K

∑
k=1

qi,k(Sqi,·)k, (6)

where qi,· is the vector (qi,1, . . . , qi,K) and (Sqi,·)k = ∑K
l=1 sk,lqi,l

represents the weighted average similarity between signature
k and a random signature in sample i. qi,k ≤ (Sqi,·)k ≤ 1, with
(Sqi,·)k equalling qi,k when signature k is totally dissimilar from
every other signature, and equalling 1 when signature k is iden-
tical to every signature. This extension is identical to that used
by35, who incorporated a similarity matrix into a diversity statis-
tic very similar to this one in order to develop a biodiversity
measure that accounted for species similarity. Incorporating
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this signature-similarity-aware definition of heterozygosity into
∆(Q), ∆(Q), and FST(Q), we have:

∆(Q, S) = 1 − 1
I

I

∑
i=1

K

∑
k=1

qi,k (Sqi,·)k (7)

∆(Q, S) = 1 −
K

∑
k=1

(
1
I

I

∑
i=1

qi,k

) (
1
I

I

∑
i=1

(Sqi,·)k

)
(8)

FST(Q, S) =
∆(Q, S)− ∆(Q, S)

∆(Q, S)
. (9)

When S = IK×K , the K-dimensional identity matrix which
has all K diagonal elements equal to 1 and all off-diagonal
elements equal to 0, every signature is treated as identical to
itself and totally dissimilar from other signatures, and hence
∆(Q, S) = ∆(Q), ∆(Q, S) = ∆(Q), and FST(Q, S) = FST(Q).
In this paper, we use a similarity matrix S whose entries are
defined as the cosine similarity between all pairs of mutational
signatures active in a population of tumor samples. However, in
principle any symmetric matrix with diagonal elements equal
to 1 and off-diagonal elements between 0 and 1 could be used
(e.g., the L2 norm), giving the user flexibility in their signature
definitions and weightings.

Bootstrap protocol for comparing variability statistics Bootstrapping
is a standard statistical procedure that involves sampling with re-
placement from a data set in order to generate a null distribution
against which one can test hypotheses63. We use bootstrapping
to test whether two populations of tumor samples, Q1 with I1
samples, and Q2 with I2 samples, have significantly different
mean within-sample signature diversity or across-sample signa-
ture heterogeneity (Figure 1f). Our null hypothesis is that there
is no difference in diversity or heterogeneity between Q1 and
Q2. We use bootstrapping to test this hypothesis through the
following steps:

1. Merge the two matrices to generate a null distribution of
tumor samples. Call this matrix Qnull, with I1 rows equal
to Q1 and I2 rows equal to Q2.

2. Draw “bootstrap replicate matrices” from the null distri-
bution. Randomly draw I1 rows with replacement from
Qnull to generate a bootstrap replicate of Q1, Q′

1, and ran-
domly draw I2 rows with replacement from Qnull to gener-
ate a bootstrap replicate of Q2, Q′

2. Because each of these
replicate matrices is drawn from Qnull, there should be no
true difference in their mean within-sample diversity or
across-sample heterogeneity.

3. Compute the mean within-sample diversity or across-
sample heterogeneity for Q′

1 and Q′
2. Then compute

the difference in mean within-sample signature diversity(
∆(Q′

1)− ∆(Q′
2)
)

and the difference in across-sample het-
erogeneity

(
FST(Q′

1)− FST(Q′
2)
)

between the two popula-
tions.

4. Repeat steps 2-3 many times (typically between 100 and
1,000 replicates). This procedure generates a bootstrap dis-
tribution of the difference in mean within-sample diversity
and a bootstrap distribution of the difference in FST under
the null hypothesis that there is no true difference between
Q1 and Q2. Example bootstrap distributions for the data in
Figure 2b are presented in Figure S4.

5. Compute a P-value for each statistic by comparing the
observed difference between the two matrices to the boot-
strap distribution of the difference. The one-way P-value
is computed as the proportion of bootstrap replicate dif-
ferences in the statistic that are either less than or greater
than the observed difference. The two-way P-value is the
proportion of bootstrap replicate differences whose abso-
lute value is greater than the absolute value of the observed
difference.

Note that such a bootstrapping protocol is the standard way
of comparing FST and other diversity statistics in population
genetics (see recommendations in29, and popular softwares fs-
tat64, hierfstat65, and genepop66,67). See Figures S15 and S16 for
an example showing that the sample size does not influence the
results of the test, and Figures S17 and S18 for both empirical
and simulated datasets showing that the test leads to uniform P
value distributions.

The sigvar R package

The signature variability analysis R package, sigvar, contains
functions to compute within-sample signature diversity and
across-sample signature heterogeneity (function sigvar) and to
conduct hypothesis testing via bootstrapping (function sigboot).
The package also contains data visualization functions that can
reproduce all figures in this manuscript. These functions can
visualize signature proportions across samples (plot_sig_prop;
Fig. 1c,d, Fig. 3c,f), SBS mutational spectra (plot_SBS_spectrum,
Fig. 1a,b, Fig. 4a-d), dot-plots of the mean activities of signatures
across a set of samples (function plot_dots, Fig. 3b,e), and boot-
strap distributions of differences in signature variability between
different groups (function sigboot, Fig. S4). We have also written
vignettes providing tutorials to reproduce all results and figures
from this study (see function vignette(’sigvar’)). The package will
be submitted to bioconductor shortly.

Statistical tests

Statistical tests were performed using R v4.1.2. Differences be-
tween mean values of a categorical variable were tested using
t-tests when data was approximately normally distributed, or
Wilcoxon rank-sum tests otherwise. The association between
two continuous variables was tested using Pearson correlation
if the residuals were approximately normally distributed, and
using Spearman correlations otherwise; whenever clinical co-
variables (e.g., sex, age) were available, we fit multivariable
models in addition to univariable linear models. Test statistics,
effect sizes, degrees of freedom and P value of tests are reported
in supplementary tables whenever appropriate.

Investigating the effect of purity on SVA

For the datasets where sample purity data was available, we
checked whether purity was influencing our conclusions using
Pearson correlation tests. For the ESCC data, purity was de-
fined using the allele-specific copy number analysis of tumors
(ASCAT) algorithm, as presented in the original study18.

Lung cancer in never smokers. We show in Figure S19a-b that
purity does not drive differences in SVA results between non-
smokers and passive smokers. When each sample is analyzed
individually, sample purity is slightly negatively associated with
within-sample diversity (Figure S19a). This association is not sig-
nificant among passive smokers (Pearson correlation, R=− 0.14,
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P=0.27) but is significant among non-smokers (Pearson correla-
tion, R=− 0.24, P=0.0028). Nevertheless, there is no significant
difference in purity between passive smokers and non-smokers
(Welch two-sample two-sided t-test, P=0.42; Figure S19b).

Mesothelioma as a function of asbestos exposure. We similarly show
in Figure S19c-d that purity does not drive differences in SVA
results between mesothelioma tumors from exposed and un-
exposed individuals. When each sample is analyzed individu-
ally, sample purity is slightly negatively associated with within-
sample diversity among exposed and unexposed individuals
(Figure S19c) but these associations are not significant (Pearson
correlations P > 0.60). Additionally, there is no significant dif-
ference in purity between exposed and unexposed individuals
(Welch two-sample two-sided t-test, P=0.62; Figure S19d).

ESCC across countries with varying cancer incidence. We show in
Figure S20 that purity does not drive differences in SVA results
between high- and low-ESCC-incidence countries. Consistent
with the main results of Figure 3, when each sample is ana-
lyzed individually (instead of being aggregated by country),
there is a significant difference in within-sample diversity be-
tween all samples in high-incidence countries and all samples
in low-incidence countries (Welch two-sample two-sided t-test,
P=0.016; Figure S20a). However, there is no significant differ-
ence in purity between all samples in high-incidence countries
and those in low-incidence countries (Welch two-sample two-
sided t-test, P=0.881; Figure S20b), suggesting that the difference
in diversity is not driven by a difference in purity. When each
sample is analyzed individually, sample purity is significantly
positively associated with within-sample diversity (Figure S20c).
This association is stronger in high-incidence countries (Pearson
correlation, R=0.14, P=0.002) than in low-incidence countries
(Pearson correlation, R=0.18, P=0.146). However, this associ-
ation does not hold when samples are aggregated by country
and the mean purity and diversity are analyzed. There is no
significant relationship between the mean purity of samples in
a country, and the mean within-sample signature diversity of
those samples (Pearson correlation, R= − 0.26, P=0.534; Fig-
ure S20d). There is also no significant relationship between the
mean purity of samples in a country, and the across-sample
signature heterogeneity of those samples (Pearson correlation,
R=− 0.06, P=0.885; Figure S20e).

Simulations

SVA as a function of exposure intensity. In order to understand the
effect of carcinogen exposure on mutational signature variability,
we constructed a simple model of signature activity parame-
terized by the lung adenocarcinoma data from an East Asian
population of both smokers and non-smokers24. This study in-
cludes the activities of three signatures: aging, APOBEC, and
smoking.

First, we fit a beta distribution to the distribution of each
signature’s activity in the study population. The aging signature
was distributed Beta(α=1.06, β=88.35) (SEα=0.14, SEβ=14.86),
yielding a mean activity of 0.012. The APOBEC signature was
distributed Beta(α=0.27, β=35.94) (SEα=0.03, SEβ=8.45), yield-
ing a mean activity of 0.007. Because smokers and non-smokers
had very different smoking signature activity distributions,
we fit two separate beta distributions for the smoking signa-
ture. For smokers, this distribution was Beta(α=0.47, β=14.66)
(SEα=0.09, SEβ=4.51), with a mean activity of 0.031. For

non-smokers, this distribution was Beta(α=0.21, β=34.02)
(SEα=0.03, SEβ=11.21), with mean 0.006.

Second, in order to consider intermediate smoking exposure,
we interpolated eight sets of beta distribution parameters (α, β)
at even intervals between the parameters of the smokers’ and
the non-smokers’ smoking signature activity distributions. This
procedure resulted in ten beta distributions for smoking signa-
ture activity, ranging from strong exposure (smokers, high mean
activity) to low exposure (non-smokers, low mean activity).

Third, we used these beta distributions to simulate the sig-
nature activity of lung adenocarcinoma samples with varying
smoking exposure. For each sample, we independently drew
one exposure from the aging distribution, one from the APOBEC
distribution, and one from one of the smoking distributions.
The choice of which smoking distribution to draw from was
determined by the desired exposure strength for the sample.
We repeated this procedure in order to simulate populations of
many samples. For each smoking exposure level, we simulated
500 populations, each with 500 samples. In total, this involved
simulating 2,500,000 samples: 10 smoking exposure levels × 500
populations × 500 samples per population.

Finally, we used the sigvar R package to compute the across-
sample and mean within-sample diversity of the normalized
signature activities in each simulated population (Figure S8). We
find that across-sample heterogeneity decreases monotonically
with exposure strength. Mean within-sample diversity, however,
increases until an intermediate threshold exposure strength just
less than the exposure of a smoker, after which it begins to
decrease. This peak in diversity happens when the mean nor-
malized activity of each sample’s most abundant signature is
minimized.

SVA in negative control simulations. In order to show that SVA
did not detect spurious signature variability when none was
present, we simulated data from two groups of samples drawn
from the same underlying population, with signature activities
parameterized by the LCINS data11.

First, we fit a Dirichlet distribution to the signatures of never
smokers unexposed to second-hand smoke (149 samples from11).
To do so, we fit the mean vector α to the observed mean signa-
ture attributions. This vector was then given as an input to the
method “rDirichlet.acomp" (from R package compositions68) to
simulate 213 samples, just as in the original dataset. Second,
for each of the 100 repetitions, the 213 simulated samples were
shuffled and separated into two subsets. The two subsets sim-
ulated and compared contain the same number of samples as
the non-smokers (149 samples) vs passive smokers (64 samples)
from the data. We finally used the sigvar R package to compute
within- and across-sample variabilities for each repetition and
compute the P values of the difference between the two groups
(Figure S18). We find that P value distributions are uniform, as
expected under the null hypothesis.

Computing the probability of driver mutations
We compute the probability that a random single base substitu-
tion creates a known driver alteration using a random mutation
model conditional on the driver gene mutational spectrum and
the tumor sample’s mutational spectrum.

Notation. This analysis relies on comparing two sets of mutational
spectra: the mutational spectrum occurring in tumor samples
(see e.g., Figure 4a-b) and the spectrum of driver mutations in
established cancer genes (see e.g., Figure 4c-d). We represent

iv | Unpublished manuscript draft | Methods



the mutational spectrum of tumor sample i by a vector with di-
mensions 1 × 96, m = (mACA>AAA, mACC>AAC, ..., mTTT>TGT),
where for example mACA>AAA corresponds to the propor-
tion of all single-base substitutions in the tumor sample that
are ACA>AAA. All entries mXYZ>XWZ, where X, Y, and Z
are nucleotides, are positive and sum to 1. We denote by
d = (dACA>AAA, dACC>AAC, ..., dTTT>TGT) the 1 × 96 vector
of the proportion of driver mutations of each type, with 0 ≤
dXYZ>XWZ ≤ 1 the proportion of known Y > W drivers with
context XYZ divided by the total number of positions with con-
text XYZ, nXYZ, in the focal cancer gene.

Mutational model. We consider a mutational model where a single
mutation is drawn at random from a given mutational spec-
trum m, using a multinomial model. Under this model, the
probability Pr(XYZ > XWZ) that a mutation XYZ>XWZ (e.g.,
ACA>AAA) is one of the 96 SBS types is equal to the proportion
of XYZ>XWZ mutations in the spectrum, mXYZ>XWZ. We also
assume that mutations are spatially uniform, so a mutation of
type XYZ>XWZ is equally likely to hit any genomic position
with a Y nucleotide in a XYZ context. We further assume that
among all possible genomic positions, a known number J can
lead to driver alterations if substituted by the right nucleotide.

Probabilities. We first seek to determine the probability of occur-
rence of a given driver mutation Y > W at a specific genomic
position j in a focal gene, within a X_Z context (W, X, Y, and
Z being nucleotides), and given a tumor sample’s mutational
profile m. We denote this probability by Pr(XYjZ > XWjZ|m).
We compute this probability as the product of the probability
for a mutation to be of type XYZ given the sample’s mutational
spectrum m, Pr(XYZ>XWZ|m), and the probability for a mu-
tation of type XYZ > XWZ to happen at genomic position j,
Pr(XYjZ > XWjZ|XYZ > XWZ).

As detailed above, under our mutational model, Pr(XYjZ >
XWjZ|m) is simply the proportion of XYZ>XWZ mutations in
the sample’s mutational spectrum, mXYZ>XWZ. For example, in
the mutational spectrum of the lung cancer sample presented in
Figure 4a, TCT>TTT substitutions only account for 2% of sub-
stitutions; thus, the probability that a random mutation drawn
from this spectrum is of type TCT>TTT is 2%. On the contrary,
TCT>TTT substitutions account for 7% of substitutions in the
sample presented in Figure 4b, so the probability for a mutation
to be of type TCT>TTT is 7% for this sample.

Under the spatially uniform mutation model, the probability
for a mutation of type XYZ>XWZ to happen at a given genomic
position j, Pr(XYjZ > XWjZ|XYZ > XWZ), is equal to 1/nXYZ,
where nXYZ is the number of positions with context XYZ (e.g.,
ACA) in the focal gene. For example, the C>T driver mutation
in chromosome 7 at position 55,171,191 (cancer gene EGFR) is
of the type TCT>TTT (rightmost red bar in Figure 4c). Because
there are around 200 positions in EGFR with such TCT contexts,
the probability that a random TCT>TTT mutation hits position
55,171,191 is approximately 0.5%.

As a result, given a mutational spectrum m, the probability
that an XYZ>XWZ mutation occurs at location j is thus

Pr(XYjZ > XWjZ|m) = Pr(XYjZ>XWjZ|XYZ>XWZ)

× Pr(XYZ>XWZ|m)

=
mXYZ>XWZ

nX_Z
.

(10)

We now consider the set of all J driver alterations of a fo-
cal gene, denoted by XYjZ>XWjZ with j ranging from 1 to J.

Summing Pr(XYjZ > XWjZ|m) from eq. 10 across all J driver
alterations, and using vector notation, we obtain the probability
that a random mutation is a driver alteration:

J

∑
j=1

Pr(XYjZ > XWjZ|m) = mdT . (11)

Data application.

Lung cancer in never smokers. To illustrate the impact of signa-
ture diversity on the probability of a driver mutation in LCINS,
we focused on genes EGFR and TP53. We computed m from
observed profiles from11, by summing the mutational profiles of
COSMIC signatures weighted by their activity qi in each sample.
We computed d using the list of known driver alterations from
the Intogen database39, and computing the number of positions
of each context using the sequence of the main transcript of
each gene from the Ensembl database (ENST00000275493.7 and
ENST00000269305.9, respectively).

Mice exposed to known or suspected carcinogens. To illustrate the
impact of signature diversity on the probability of a driver
mutation in mice exposed to known or suspected carcinogens,
we focused on genes reported as recurrently mutated in the
study, Hras and Braf in liver tumors, and Fgfr2 and Kras in
lung tumors. We computed m from observed profiles from12,
by summing the mutational profiles of COSMIC signatures
weighted by their activity qi in each sample. We computed
d using the list of driver alterations from the paper (Figure
4), and computing the number of positions of each context us-
ing the sequence of the main transcript of each gene from the
Ensembl database (ENSMUST00000026572.11 for Hras, ENS-
MUST00000111710.8 for Kras, ENSMUST00000122054.8 for Fgfr2,
and ENSMUST00000002487.15 for Braf ).

ESCC accross countries. We focused on the most frequently mu-
tated driver genes identified in the cohort18: TP53, CDKN2A,
PIK3CA, KMT2D, NFE2L2, NOTCH1, EP300. We computed m
from observed profiles from18, by summing the mutational pro-
files of COSMIC signatures weighted by their activity qi in each
sample. We computed d using the list of driver alterations from
the paper, and computing the number of positions of each con-
text using the sequence of the main transcript of each gene from
the Ensembl database.

Ethics and inclusion
This study is based on the reanalysis of published data, so we
refer readers to the original publications for information about
inclusion of researchers from the locations where the research
was conducted.

Reporting summary
Further information on research design is available in the Re-
porting Summary linked to this article.

Data Availability
All data are publicly available (see cited references).

Code Availability
R code to produce the figures is available in the vignettes of
package sigvar at https://github.com/MaikeMorrison/sigvar.
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