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ABSTRACT 21 
 22 
The course of COVID-19 is characterized by wide variability, with genetics playing a 23 
contributing role. Through large-scale genetic association studies, a significant link between 24 
genetic variants and disease severity was established. However, individual genetic variants 25 
identified thus far have shown modest effects, indicating a polygenic nature of this trait. To 26 
address this, a polygenic risk score (PRS) can be employed to aggregate the effects of 27 
multiple single nucleotide polymorphisms (SNPs) into a single number, allowing practical 28 
application to individuals within a population. In this work, we investigated the performance 29 
of a PRS model in the context of COVID-19 severity in 1085 Russian participants using low-30 
coverage NGS sequencing. By developing a genome-wide PRS model based on summary 31 
statistics from the COVID-19 Host Genetics Initiative consortium, we demonstrated that the 32 
PRS, which incorporates information from over a million common genetic variants, can 33 
effectively identify individuals at significantly higher risk for severe COVID-19. The findings 34 
revealed that individuals in the top 10% of the PRS distribution had a markedly elevated risk 35 
of severe COVID-19, with an odds ratio (OR) of 2.2 (95% confidence interval (CI): 1.3-3.3, p-36 
value=0.0001). Furthermore, incorporating the PRS into the prediction model significantly 37 
improved its accuracy compared to a model that solely relied on demographic information (p-38 
value < 0.0001). This study highlights the potential of PRS as a valuable tool for identifying 39 
individuals at increased risk of severe COVID-19 based on their genetic profile. 40 
 41 
INTRODUCTION 42 
 43 
COVID-19, also known as coronavirus infection, is a contagious illness caused by the severe 44 
acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The majority of individuals who 45 
contract the virus exhibit mild to moderate respiratory symptoms and can recover without 46 
requiring specific medical treatment. However, in certain cases, the disease can manifest in 47 
a severe form, requiring medical intervention [1,2]. 48 



 49 
Apart from external factors like virus characteristics and the effectiveness of public health, 50 
certain host-related factors such as older age, male gender, and pre-existing chronic 51 
diseases like hypertension and diabetes have been associated with susceptibility and 52 
severity of COVID-19 [3,4]. However, these risk factors alone cannot fully explain the wide 53 
variation observed in the disease severity. The course of COVID-19 can range from 54 
asymptomatic cases to acute respiratory distress and even death [5,6]. Early in the 55 
pandemic, it was noted that clinical factors alone were insufficient to account for the 56 
variability in disease severity across individuals, as severe cases were observed in young 57 
people without apparent predisposing factors, often within families [7]. This suggests that 58 
human genetics may play a role in the development of the disease. 59 
 60 
To gain insights into the aetiology of COVID-19, large-scale genetic association studies 61 
incorporating both rare and common genetic variants have employed various study designs. 62 
These investigations, along with subsequent follow-up studies, have expanded our 63 
understanding of the disease and provided potential avenues for its treatment. The COVID-64 
19 Host Genetics Initiative (HGI) was established to identify genetic loci that impact the 65 
severity and susceptibility of COVID-19 [8]. This global effort aims to conduct a meta-66 
analysis of multiple COVID-19 genome-wide association studies (GWAS), and to identify 67 
significant single nucleotide polymorphisms (SNPs) associated with infection, hospitalization, 68 
and mortality. Through comparisons of genomes of  millions of COVID-19 patients and 69 
healthy individuals, these studies have implicated genetic variants in 13 loci associated with 70 
the severity of the disease [9]. The COVID-19-associated genetic variants could be related 71 
to the regulation of processes such as innate antiviral defence signalling, regulation of 72 
inflammatory organ damage, and upregulation of cell receptors [10]. Modulation of these 73 
pathways can impact susceptibility to infection and subsequent disease manifestation [11]. 74 
 75 
The effects of individual genetic variants identified so far are generally small, consistent with 76 
the polygenic architecture of this trait. An individual who tests negative for a specific risk 77 
variant may still have a high genetic risk due to other unmeasured genetic factors. While 78 
each single variant only explains a small portion of the risk for severe COVID-19, combining 79 
multiple genetic variants into a polygenic risk score (PRS) can offer a better prediction of the 80 
risk. PRS allows for the aggregation of the effects of multiple SNPs into a single score, which 81 
can be practically applied to individuals within a population [12]. Conventionally, a polygenic 82 
score is defined as a weighted linear combination of allele counts for SNPs observed in an 83 
individual's genome. The PRS model consists of the weights of a set of SNPs, with the 84 
weights proportional to the estimated effects of the SNPs on the trait being studied [13]. 85 
 86 
Modern polygenic risk score models for human traits are typically estimated using summary 87 
statistics obtained from a genome-wide association meta-analysis (GWAMA) and a 88 
reference panel reflecting linkage disequilibrium (LD) in the population [13,14]. Over the past 89 
decade, PRS predictive performance has significantly improved due to larger GWAS sample 90 
sizes and advancements in methods for variable selection and effect estimation [15–24]. 91 
Polygenic scores can be utilized to rank individuals within a group based on their genetic 92 
predisposition to a disease [25–27]. This approach considers an individual's genetic 93 
predisposition relative to the genetic predisposition of others in the same group, often 94 
expressed as a percentile representing where the individual's PRS falls within the overall 95 
distribution of the group's PRS. 96 



 97 
Several studies have explored the development and application of PRS using variants 98 
associated with COVID-19, revealing clear associations between PRS and the risk of severe 99 
disease. However, most PRS models have been applied to cohorts consisting predominantly 100 
of individuals of Western European ancestry [28–31]. Using 1,582 SARS-CoV-2 positive 101 
participants from the UK Biobank (1,018 with severe COVID-19 and 564 without severe 102 
COVID-19) and 64 SNPs for PRS calculation, Dite et al. developed and validated a clinical 103 
and genetic model for predicting the risk of severe COVID-19. Only 13% of participants from 104 
this study were non-white, and PRS alone had an area under the receiver operating 105 
characteristic curve (AUC) of 68% [31]. 106 
 107 
While one recent study included African and South Asian groups, the associations with 108 
COVID-19 outcomes were limited by applying a PRS based on only six SNPs [32]. Another 109 
study that considered non-Western European populations was constrained by its focus on a 110 
specific Russian cohort (athletes) and also included only six genetic polymorphisms in the 111 
PRS assessment [33]. The multi-ethnic approach implemented in a very recent paper using 112 
UK biobank data, allowed the applicability of PRS, based on 17 SNPs, to diverse 113 
populations, with the severity model performing well within Black and Asian cohorts [34,35]. 114 
Overall, results highlight the potential of PRS as a predictive marker for disease severity and 115 
provide further support for its application in risk stratification and personalized healthcare 116 
approaches in the context of COVID-19. 117 
 118 
Our study aimed to investigate the performance of the PRS model in the Russian population. 119 
The genomes of study participants (347 individuals with severe COVID-19 and 738 with 120 
moderate or without disease) were assessed using low-coverage (with mean depth x3) 121 
sequencing. Next, we developed a genome-wide PRS model for COVID-19 severity using 122 
the summary statistics from the COVID-19 host genetics initiative consortium. We 123 
demonstrated that PRS, incorporating information from more than a million common genetic 124 
variants, for COVID-19 severity can identify individuals with markedly elevated risk of severe 125 
COVID-19 course: OR=2.2 (95% confidence interval (CI): 1.3-3.3, p-value=0.0001) for 126 
individuals in the top 10% of the PRS distribution, and produces a significant improvement in 127 
the quality of prediction (p-value < 0.0001) compared to a model including only demographic 128 
information. 129 
 130 
RESULTS 131 
 132 
Participant Characteristics 133 
 134 
The participants of the study were the patients of the infectious disease department of the 135 
St. Petersburg State Health Care Institution "City Hospital No. 40, Kurortny District" who 136 
were admitted for treatment with coronavirus infection (confirmed by polymerase chain 137 
reaction), and healthy individuals. Healthy individuals are defined as people who did not 138 
require COVID-19 medical treatment at the time of the study (between April 2020 and March 139 
2022). 140 
 141 
Table 1 shows the participants’ characteristics. Of the 1085 participants, 479 (44%) were 142 
female, with a mean age of 60 years, while for 606 (56%) males the mean age was equal to 143 
56 years. Overall, 895 (82%) of all participants had COVID-19, of which 347 (39%) had 144 



severe COVID-19. Separation according to the severity of the disease was carried out 145 
according to the following criteria: the case group included 347 patients (214 men and 133 146 
women, 63±15 years) with lung damage more than 50% (computed tomography (CT)-3 and 147 
CT-4), the control group included 738 patients (392 men and 346 women, 56±16 years), with 148 
lung damage less than 50% or without COVID-19. 149 
 150 
Table 1. The demographic and clinical characteristics of the participants. 151 

Characteristics Male Female 

Mean age (sd) 56 (15) 60 (16) 

Healthy individuals 116 74 

Patients required treatment 
by severity 

CT-1: 81 
CT-2: 195 
CT-3: 213 
CT-4: 1 

CT-1: 71 
CT-2: 201 
CT-3: 130 
CT-4: 3 

Outcome death: 93 
recovery or no disease: 513 

death: 53 
recovery or no disease: 426 

Abbreviations: CT computed tomography, where  CT-1 – mild form of pneumonia with areas 152 
of “frosted glass”, the severity of pathological changes less than 25%; CT-2 – moderate 153 
pneumonia, 25-50% of lungs are affected; CT-3 – moderately severe pneumonia, 50-75% of 154 
lungs are affected; CT-4 – severe form of pneumonia, >75% of lungs are affected. 155 
 156 
Low coverage sequencing and imputation 157 
 158 
For all samples low coverage sequencing, also called LP-WGS (low-pass whole genome 159 
sequencing), was performed with a depth of x3 genome coverage. LP-WGS is the type of 160 
WGS with genome coverage from x0.5�to x5 [36,37]. Due to low-coverage data often 161 
having poor genotype quality and resulting in high missing genotype rates, the genotype 162 
likelihoods (GL) need to be updated using a reference panel for more accurate genotype 163 
imputation [38,39]. We used a recent method called GLIMPSE, which performs haplotype 164 
phasing and genotype imputation for LP-WGS data through a Gibbs sampling procedure, 165 
leading to improved accuracy [38]. As a reference panel, we used the 1000 Genomes data 166 
[40]. To evaluate the efficiency of LP-WGS within PRS, we calculated PRS values for a 167 
sample (not included in the study population) sequenced 45 times (in each of the batches to 168 
control the quality of the sequencing process). The coefficient of variation (CV) for PRS 169 
values was equal to 0.5% demonstrating a good method performance. 170 
 171 
Overview of the approach 172 
 173 
Computation of PRSs requires both genotype data of target individuals and the PRS model. 174 
To build the PRS model we used summary statistics from the COVID-19 Host Genetics 175 
Initiative consortium (release 7) [8]. These results were obtained by the meta-analysis, which 176 
combined the results of 60 individual studies from 25 countries, with a total of 18,000 severe 177 



cases of COVID-19 and more than a million controls who either did not have a severe 178 
disease course or were not affected by COVID-19 during the study period. From the 179 
obtained summary statistics, we generated the PRS model using the Bayesian approach 180 
SBayesR with default parameters, implemented in the GCTB software [19,41,42]. Finally, we 181 
calculated individual PRS values using the PRS model (Fig. 1, Methods). 182 
 183 

 184 
Figure 1. Study design and workflow. The PRS model for COVID-19 severity was derived 185 
by combining summary association statistics from the COVID-19 Host Genetics Initiative 186 
consortium and a linkage disequilibrium reference panel of 50,000 individuals of European 187 
ancestry from the UK Biobank data set. As a computational algorithm, SBayesR was used, 188 
which is a Bayesian approach to calculate a posterior mean effect for all variants based on a 189 
prior (effect size in the previous GWAS) and subsequent shrinkage based on linkage 190 
disequilibrium. PRS model was restricted by a list of variants from HapMap3 and included 191 
about one million variants. 192 
 193 
Testing associations between PRS and severe COVID-19 194 
 195 
We compared the distributions of PRS values between severe cases and the control group 196 
combining the milder forms of COVID-19 and healthy individuals (Fig. 2). Comparison of the 197 
mean PRS values, performed using Student's t-test for two independent samples, showed 198 
significant difference (p-value=1.2e-06). 199 
 200 



 201 
Figure 2. Comparison of distributions of PRS values between the groups with and 202 
without severe COVID-19. a) Distribution of PRS in the groups with (Ncases=347) and 203 
without (Ncontrols=738) severe COVID-19. The x-axis represents PRS, with values scaled to a 204 
mean of 0 and a standard deviation of 1 (in the total sample) to facilitate interpretation. b) 205 
PRS values among cases versus controls. Within each box plot, the horizontal lines reflect 206 
the median, the top, and bottom of each box reflect the interquartile range, and the whiskers 207 
reflect the rest of the distribution, except for points that are determined to be “outliers”. 208 
 209 
Across the study population, PRS was normally distributed with the risk of severe COVID-19 210 
rising in the right tail of the distribution, from 17% in the lowest decile to around 47% in the 211 
highest decile (Fig. 3). 212 
 213 



 214 
Figure 3. Prevalence of the severe COVID-19 according to PRS decile. All participants 215 
(N=1,085) were stratified by decile of the PRS distribution. The average prevalence in 216 
percent and 95% CI within each decile are displayed. 217 
 218 
Next, we found that 20% of the population with the highest PRS values had inherited a 219 
genetic predisposition that conferred OR=1.8 for severe COVID-19 (95% CI: 1.3-2.4, p-220 
value=0.0003) in comparison with all others. The 10% of the population with the highest 221 
PRS values had an OR=2.2 for COVID-19 (95% CI: 1.3-3.3, p-value=0.0001). 222 
 223 
Evaluating the relationship between PRS and COVID-19 outcome 224 
 225 
The severe form of the disease is associated with an increased risk of death. To assess how 226 
much the risk of death is associated with an increased PRS value, next, we calculated the 227 
odds ratio (OR) for death between the group with the highest PRS values (10%) and all 228 
others. The resulting OR was 1.9 (95% CI: 1.1-3.1) with p-value = 0.018. Thus, in the group 229 
with the highest PRS values, the probability of death due to severe disease was almost 230 
doubled. 231 
 232 
We also compared the mean PRS values for groups with different COVID-19 outcomes 233 
(death vs no death or no disease). Results showed significant difference in mean PRS (p-234 
value = 0.02, Fig. 4). 235 
 236 



 237 
Figure 4. Comparison of distributions of PRS values between the groups with and 238 
without death outcome. a) Distribution of PRS in the groups with (Ndeath=146) and without 239 
(Nno death=939) death outcome of COVID-19. The x-axis represents PRS, with values scaled 240 
to a mean of 0 and a standard deviation of 1 (in the total sample) to facilitate interpretation. 241 
b) PRS values among cases versus controls. Within each box plot, the horizontal lines 242 
reflect the median, the top, and bottom of each box reflect the interquartile range, and the 243 
whiskers reflect the rest of the distribution, except for points that are determined to be 244 
“outliers”. 245 
 246 
Next, we hypothesized that PRS for severe COVID-19 would be associated with a higher 247 
risk of severe COVID-19 in early age. In Kaplan–Meier analyses, which is a non-parametric 248 
statistic used to estimate the survival function from lifetime data, we divided the sample into 249 
three groups: 10% of all individuals with the highest PRS values, 10% of all individuals with 250 
the lowest PRS values and the rest (Fig. 5). The analysis showed that people from the group 251 
of high PRS values start to have increased risk in comparison with other groups already 252 
before the age of 40 years (p-value<3.7e-10 for the log rank test). For example, the average 253 
risk of a severe course, which is reached at the age of 60 years, in the group with the 254 
highest PRS is reached already at 50 years of age. 255 
 256 



 257 
Figure 5. Association of PRS with Incident Severe COVID-19. All participants (N=1,085) 258 
were stratified, based on their PRS, into three categories: bottom decile, deciles 2–9, and 259 
top decile. Incident severe COVID-19 is plotted according to the PRS category. 260 
 261 
Receiver Operating Curve (ROC) analysis 262 
 263 
Next we analysed the association between PRS and severe COVID-19 using a multivariate 264 
logistic regression model adjusted for sex, age, and the first 10 principal components of 265 
genetic variation. In the adjusted model, a significant association between PRS and severe 266 
COVID-19 was found: OR=1.48 per standard deviation (95% CI: 1.3-1.7 with p-value < 267 
0.0001). High values of PRS (the 10% of PRS distribution) were associated with the 268 
adjusted OR=2.7 (95% CI: 1.8-4.2, p-value < 0.0001). 269 
 270 
Analyses showed significant (p-value < 0.0001) improvements in AUC with the addition of 271 
PRS to the base model containing only the demographic predictors. Figure 6 shows that a 272 
model predicting the risk of severe COVID-19 had an AUC of 65% (95% CI: 62-69% by the 273 
formula given by Hanley and McNeil [43]) for a model excluding PRS, and it increased up to 274 
67% (95% CI: 64-71%) when PRS was included. 275 
 276 



 277 
Figure 6. The comparison of receiving operating curves for three logistic regression 278 
models. The full model included the demographic predictors (sex and age), PRS, and the 279 
first 10 principal components of genetic variation, while the covariates-only model excluded 280 
PRS. 281 
 282 
DISCUSSION 283 
 284 
In this study, we constructed a polygenic risk model for the prediction of the severity of 285 
COVID-19 and applied it to a target cohort of 1085 Russian participants. Comparing the 286 
distributions of PRS, incorporating information from one million common genetic variants, 287 
between the case and control groups revealed significant differences, indicating meaningful 288 
associations between PRS and corresponding COVID-19 outcomes. We also demonstrated 289 
the potential of LP-WGS with coverage less than x5�to be used for predicting the severity of 290 
COVID-19. 291 
 292 
Our main objective was to evaluate the predictive ability of PRS for COVID-19 severity. To 293 
achieve this, we developed a logistic regression model that included only demographic and 294 
technical covariates and the full model that also incorporated PRS. Comparison between 295 
these models demonstrated that incorporating PRS significantly enhanced the predictive 296 
accuracy. These findings align with a previous analysis made by Huang et al., where PRS 297 
values for severe COVID-19 were constructed by using 112 SNPs in 430,582 participants 298 
from the UK Biobank study [29]. In this work, AUC was calculated for a model including only 299 
demographic and clinical parameters, and for the full model, which also included PRS. For 300 
the first model, the AUC was 0.789, while in the full mode, the AUC was 0.794 (p-301 
value=0.002 for increment in AUC). Higher overall prediction accuracy of the model could be 302 



attributed to utilisation of information on comorbidities (cardiovascular disease, hypertension, 303 
diabetes, chronic respiratory infections, asthma, and chronic obstructive pulmonary disease). 304 
Our PRS, based on approximately one million SNPs, gave a comparable improvement in 305 
AUC (0.5% vs 2%, respectively). The higher contribution of PRS in our case can be 306 
explained by the much larger number of genetic variants used but also by the absence of 307 
clinical factors in our model. Indeed, it is often observed that adding a predictor to a model 308 
having a high AUC improves it by an amount smaller than that that could be achieved by 309 
adding the same factor to a poorer model. 310 
 311 
Furthermore, stratifying individuals by PRS quantiles revealed an association with a 312 
distinctive risk of severe COVID-19 in resulting groups. The highest PRS categories 313 
generally exhibited higher (up to 2.2 for the top 10% PRS) odds ratios. This genetic basis for 314 
differences in disease severity among individuals also extended to the occurrence of 315 
fatalities due to COVID-19 (OR=1.9 for the top 10% PRS). These results demonstrate that 316 
polygenic risks can be employed to stratify patients and assess their risk of severe disease 317 
and mortality related to COVID-19. 318 
 319 
Additional survival analysis using the non-parametric Kaplan-Meier estimation revealed that 320 
the highest risk categories as defined by PRS not only exhibited higher odds ratios for 321 
COVID-19 severity but also experienced an earlier onset of increased risk compared to the 322 
mean- and low-risk categories. These findings provide insights into both the overall risk for 323 
severe COVID-19 and how the risk varies by age. 324 
 325 
These results can have practical implications for protecting individuals with a greater genetic 326 
vulnerability during potential future outbreaks. Targeted public health interventions, such as 327 
shielding measures, closer monitoring, protection from high-risk frontline work, and 328 
prioritization for vaccination, could help to mitigate the associated risk. Hospital-based 329 
applications of PRS could facilitate the screening of COVID-19 patients and aid in the early 330 
detection of severe disease [28]. Moreover, informing patients about their increased 331 
polygenic risk has shown some evidence of positive behavioural impact [44], potentially 332 
leading to a decrease in risk-taking behaviours and promoting better outcomes. 333 
 334 
A few limitations of the study should be noted. Firstly, despite the multi-ethnic and global 335 
nature of the HGI Release 7 meta-analysis, the participants were mostly of Western 336 
European descent, which may have affected the accuracy of the predictions in non-Western 337 
European populations [9]. Additionally, the lack of detailed clinical data led to the use of CT 338 
scans as a criterion for disease severity, which could have introduced some inaccuracy in 339 
the classification of the outcome measure for some participants. 340 
 341 
METHODS 342 
 343 
Study population and genetic sequencing 344 
 345 
As part of the COVID-19 study, biomaterial (blood) and clinical data from COVID-19 patients 346 
hospitalized in the infectious disease department of the St. Petersburg State Budgetary 347 
Healthcare Institution "City Hospital No. 40 of Kurortny District" were collected. In this work, 348 
low-coverage (x2-5) sequencing was performed for 1085 samples divided into 45 batch 349 
sizes. Low-coverage sequencing, also called LP-WGS (low-pass whole genome 350 



sequencing), is a low-cost, high-throughput DNA sequencing technology used to accurately 351 
detect genetic variation in the genomes of multiple species [45]. Using imputation algorithms, 352 
this technology provides high variant detection accuracy with very low sequence coverage. 353 
LP-WGS and subsequent imputation yield more accurate genotypes than imputation using 354 
genotyping data, allowing for increased power in GWAS studies and more accurate results 355 
in polygenic risk studies [46]. 356 
 357 
Prior to sequencing, preliminary analysis and quality control of the case database were 358 
performed, and preliminary analysis of samples from each batch was performed to exclude 359 
bias for any of the sample characteristics: age, sex, and case/control. 360 
 361 
Genome DNA isolation was performed with QIAcube, using QIAamp DNA Blood Mini Kit. 362 
DNA concentration is measured with Promega QuantiFluor dsDNA System. Library 363 
preparation was done using Roche KAPA HyperPlus Kit. Quality control electrophoresis was 364 
done on QIAxcel station using QIAxcel High Resolution Kit. Circularization was made with 365 
MGIEasy Circularization Kit. Sequencing was done on MGISEQ-2000 sequencing machine 366 
with DNBSEQ-G400RS High-throughput Sequencing Set (FCL PE150, 540 G). 367 
 368 
Variant calling, imputation, and quality control 369 
 370 
Quality analysis (FastQC) [47], alignment (BWA) [48], deduplication (samtools), and variant 371 
collation (bcftools) were performed for the reads obtained from sequencing [49]. Imputation 372 
of the resulting data was then performed using the GLIMPSE tool [38], which allows 373 
imputation of low-coverage sequencing data. To improve imputation quality, only bi-allelic 374 
sites were retained from the LP-WGS BAM data and processed with bcftools. Then iterative 375 
refinement of GL using the reference panels with segmentation size of 2 Mb with buffer size 376 
of 200 kb produced imputed dosages and multiple chunks within each chromosome were 377 
ligated. A panel of 1000 Genomes with high coverage [40], including high-quality SNV- and 378 
INDELs from over 3,000 samples, was used as a reference sample. 379 
 380 
Then, we filtered imputed variants by an imputation INFO score, where variants with 381 
score�<�0.7 and a minor allele frequency�<�0.1% were removed from the analysis [9,13]. 382 
We focused on the variants and individuals with a call rate of more than 90%. We also 383 
removed close relatives from the analysis. We used the KING-robust method to identify 384 
relatives [50]. Using a threshold (kinship > 0.125), we found pairs of first- and second-degree 385 
relatives. We restricted our analyses to a list of variants from HapMap3 [51], which are 386 
included in the PRS models. PLINK 1.90 software [52] was utilised for all genotype 387 
extraction and quality control. 388 
 389 
Establishing COVID-19 outcomes 390 
 391 
The severity of the course was divided according to the following criteria: the case group 392 
included samples with lung lesions greater than 50% (computed tomography (CT)-3 and CT-393 
4), while the control group included all other samples. As a result, the case group included 394 
347 patients (214 men and 133 women, 63±15 years) with lung damage more than 50% 395 
(computed tomography (CT)-3 and CT-4), the control group included 738 patients (392 men 396 
and 346 women, 56±16 years), with lung damage less than 50% or without COVID-19. 397 
 398 



Construction of PRS models 399 
 400 
The calculation of PRSs relies on both genotype data from the target individuals and a PRS 401 
model. To derive a PRS model, GWAS are used to estimate the effect sizes of SNPs [53]. 402 
However, the GWAS gives the marginal effect size for each SNP estimated by a regression 403 
model that ignores linkage disequilibrium (LD) structure. As a result, to construct a PRS 404 
model that incorporates multiple SNPs, the SNP effects must be re-estimated while 405 
accounting for LD structure. 406 
 407 
As the summary statistics, we used summary statistics from the COVID-19 Host Genetics 408 
Initiative consortium (release 7). These results were obtained by the meta-analysis, which 409 
combined the results of 60 individual studies from 25 countries. 410 
 411 
To re-weight the effect sizes, we used SBayesR, a software tool that has demonstrated 412 
superior performance compared to similar tools [19]. This tool re-weights the effects of each 413 
variant based on the marginal estimate of its effect size, statistical strength of association, 414 
the degree of correlation between the variant and other variants nearby, and tuning 415 
parameters. It also requires a GCTB-compatible LD matrix file based on individual-level data 416 
from a reference population, and for this analysis, we used a shrunk sparse GCTB LD matrix 417 
from 50,000 individuals of European ancestry in the UK Biobank dataset [41]. 418 
 419 
PRS values were calculated as a weighted sum of allele counts: 420 

���� ��
�

�

����� 

with �� the re-weighted effect size of the ���SNP, ��� the genotype of the ��� SNP for 421 
�
��  individual. PLINK 1.90 software [52] was utilised for PRS calculation. 422 

 423 
Statistical analysis and association testing 424 
 425 
Logistic regression of PRS categories against COVID-19 severity outcomes was then 426 
conducted using R [54] and Python3 [55], fully adjusted for covariates, such as sex and age. 427 
Data on comorbidities were not available for the majority of patients, as well as other clinical 428 
data, so parameters for these were not included in the model to cover as much data as 429 
possible. The first 10 principal genetic components (PCs) were also included as covariates 430 
to adjust for population genetic structures and avoid bias, as per current recommendations 431 
[13]. 432 
 433 
The discriminative power of models in identifying high-risk individuals was then assessed 434 
using receiver operating curve (ROC) analysis. Area under the ROC (AUC) was calculated 435 
for full models (consisting of covariates and PRS) and base models (covariates only). The 436 
confidence interval for AUC was calculated using the formula given by Hanley and McNeil 437 
[43]. Increment in AUC (ΔAUC) was reported based on the difference between the two 438 
models, reported as the discriminative or predictive power conferred by PRS. The 439 
permutation test for differences between classifiers was used to estimate the significance (p-440 
value) of an increment in AUC. 441 
 442 



Once PRS was calculated, individuals were separately stratified into quintiles for 443 
susceptibility and severity PRS, then categorised into low genetic risk (decile 1, bottom 10% 444 
of cohort), intermediate risk (decile 2–9, middle 80%) and high risk (decile 10, top 10%) for 445 
each outcome. In each group, we estimated the cumulative hazard curve using the non-446 
parametric method called the Kaplan-Meier estimator [56]. For each pair of groups, the log 447 
rank test was applied, which is the statistical test for comparing the survival distributions of 448 
two or more groups. 449 
 450 
DATA AND CODE AVAILABILITY 451 
 452 
Personal genetic and clinical data are under restrictions and are available through 453 
collaboration with the St. Petersburg State Health Care Institution "City Hospital No. 40, 454 
Kurortny District" hospital. 455 
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