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Abstract 
Objective 
We aimed to describe plasma protein biomarkers of Multiple Sclerosis risk and to explore 
protein biomarkers of disease severity using radiological outcome measures.  
Methods 
Multiple Sclerosis cases and controls were identified in UK Biobank, a longitudinal cohort study 
of ~500,000 British adults. Plasma proteins were assayed in ~50,000 UK Biobank participants 
using the Olink proximity extension assay. We performed case-control association testing to 
examine the association between 2911 proteins and Multiple Sclerosis, using linear models 
adjusted for confounding covariates. Associations with radiological lesion burden and brain 
volume were determined in a subset of the cohort with available magnetic resonance imaging, 
using normalised T2-hyperintensity volume or whole brain volume as the outcome measure.  
Results 
407 prevalent Multiple Sclerosis cases and 39,979 healthy controls were included. We 
discovered 72 proteins associated with Multiple Sclerosis at a Bonferroni-adjusted p-value of 
0.05, including established markers such as Neurofilament Light Chain and Glial Fibrillary 
Acidic Protein. We observed a decrease in plasma Granzyme A, a marker of T cell and NK cell 
degranulation, which was specific to Multiple Sclerosis. Higher levels of plasma proteins 
involved in coagulation were associated with lower T2 lesion burden and preserved brain 
volume.  
Interpretation 
We report the largest plasma proteomic screen of Multiple Sclerosis, replicating important 
known associations and suggesting novel markers, such as the reduction in granzyme A. While 
these findings require external validation, they demonstrate the power of biobank-scale datasets 
for discovering new biomarkers for Multiple Sclerosis.  
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Introduction 
Blood-based protein biomarkers have several properties which make them attractive adjuncts in 
the diagnosis, monitoring, and prognostication of Multiple Sclerosis (MS). Proteins are often 
abundant in serum/plasma, stable in solution, and are straightforward to quantify. Furthermore 
plasma is easier to obtain than cerebrospinal fluid or Magnetic resonance imaging (MRI) scans, 
particularly if regular measurements are required for ongoing monitoring.  
 
Plasma proteins do not currently feature routinely in the investigation or management of MS1, 
although plasma neurofilament light chain (NFL) is increasingly entering research and clinical 
practice. Prior studies have shown that plasma markers of neuroaxonal damage - NFL and glial 
fibrillary acidic protein (GFAP) - are elevated early in the MS disease course and show potential 
use for tracking disease activity and response to treatment2,3. However, neither of these markers 
is specific to MS4–6. Incorporating information from across the entire spectrum of plasma 
proteins - the proteome - may help to shed light on aspects of MS biology beyond neuronal loss, 
refine these tools for use on an individual basis, and suggest new targets for therapeutic 
intervention.  
 
Previous efforts to explore the MS proteome have discovered proteins which correlate with 
either disease status or disease progression. However, the small sample size of these studies, 
differing technologies, and different protein targets have made it challenging to integrate these 
datasets7–11. A recent Swedish study compared the plasma proteome of MS cases  and healthy 
controls using the Olink proximity extension assay applied to separate discovery (NMS=92, 
NControl=23) and replication (NMS=51, NControl=20) cohorts12, and found no significant differences 
after correction for multiple testing. An earlier study using a smaller set of proteins focussed on 
inflammation compared 111 MS cases and 46 healthy controls in the discovery cohort and a 
replication dataset of 94 cases and 47 controls. In the discovery cohort, oncostatin M (OSM) and  
hepatocyte growth factor (HGF) were increased in MS, whereas fibroblast growth factor 21 
(FGF-21), fibroblast growth factor 23 (FGF-23), and cystatin-D (CST5 / CST-D) were 
decreased9. Of these signals, only the OSM and HGF signals replicated9. Another studycompared 
90 MS cases and 20 controls in the Dutch GeneMSA cohort using the SomaLogic assay: the 
clearest difference between MS and controls was the downregulation of matrix 
metalloproteinase-3 (MMP3) in MS cases7. Studies of plasma proteomic correlates of disease 
severity have shown consistent associations with elevated markers of neuronal damage (GFAP 
and NFL) and myelin oligodendrocyte glycoprotein (MOG)2,3,13, but other markers have shown 
variable results between studies.  
 
Recent advances have made it feasible to assay over a thousand different proteins in a sample 
simultaneously using either aptamer- or antibody-based technology.  UK Biobank - a large long-
term biobank study of >500,000 British adults - has recently applied the Olink proximity 
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extension assay technology to measure the plasma level of ~3000 proteins in >50,000 of its 
participants, providing an invaluable resource for examining the associations between genetics, 
protein levels, and health outcomes14–16. The prevalence of MS in UK Biobank is similar to the 
UK population (0.5%), and so this resource is also of significant value for MS proteomics 
research17.  
 
In this study, we analysed proteomic data from MS cases and healthy controls in UK Biobank to 
search for proteomic signatures associated with MS disease status and with MS severity.  
 
Materials and methods 
Cohort 
UK Biobank is a longitudinal cohort study of ~500,000 British adults. Participants aged 40-69 
were recruited between 2006 and 2010. A range of data is available for UKB participants, 
including self-reported lifestyle questionnaire data, linked electronic healthcare records, and 
genotyping/genome sequencing, described in detail elsewhere18. Plasma samples for proteomics 
were obtained at enrolment during the baseline visit. Plasma proteomics data covering a subset 
of the cohort were generated by the UK Biobank Pharma Proteomics Project19,20 
 
Case-control definitions 
MS disease status was derived from the UK Biobank ‘first occurrence’ fields (UKB category 
1712), which combine Hospital Episode Statistics (HES), Primary Care data, mortality records, 
and self-reported data to define the earliest report of each ICD10 code per participant in the 
dataset. MS cases were defined as participants with >=1 occurrence of the ICD10 code G35, an 
MS diagnostic code in primary care, HES, or self-reported MS. We distinguished prevalent and 
incident cases based on whether the first diagnostic code occurred before or within 10 years of 
recruitment to allow for diagnostic and recording lag. Using the same approach, we identified 
participants with neurodegenerative disorders - Parkinson’s Disease (G20), Alzheimer’s Disease 
(G30), Motor Neuron Disease (G12) - and other autoimmune disorders - Systemic Lupus 
Erythematosus (M32), Ankylosing Spondylitis (M45), Coeliac Disease (K90), Crohn's Disease 
(K50), Ulcerative Colitis (K51), Rheumatoid Arthritis (M05), and psoriasis (L40).  
 
We excluded cases with missing values for the date of earliest diagnostic code report or with age 
at diagnosis <= 10 years old. For the primary analysis, we included all prevalent MS cases and 
excluded controls with prevalent or incident diagnoses of any listed autoimmune / 
neurodegenerative conditions. Counts for each disease are shown in supplementary figure 1.  
 
We excluded samples processed as part of the COVID or pilot batches to minimise biases due to 
the non-random sampling of the cohort15. These samples include controls selected for follow-up 
as part of ongoing COVID studies and so do not represent a random cohort selection. In addition, 
the risk of batch effects is higher with the pilot batch as there are a lower number of samples 
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included, so these samples were also excluded, in line with previous analysis strategies employed 
by the UK Biobank Pharma Proteomics Project.  
 
Proteomics data  
In April 2023, UK Biobank released proteomic assay data covering ~55,000 participants15. The 
methods used to generate these data and in-house quality control have been previously 
described15. In brief, UKB performed multiplexed proteomic assays on ~55,000 plasma samples 
obtained (for the majority) at baseline visits using the Olink platform, which exploits dual 
barcoded antibody technology to produce specific and semiquantitative readouts for 2923 protein 
assays in multiplex, selected to provide coverage across a range of systems and diseases.  We 
used proteomic data derived from blood taken at the baseline visit. From the 2923 protein assays 
available, we excluded proteins with >20% of values missing (n=12), resulting in 2911 protein 
assays retained for analysis. Missing values in the remaining 2911 proteins were imputed with 
the mean value for the whole cohort.  
 
Statistical analysis 
1. Case-control comparison 
To assess the relationship between plasma protein levels and Multiple Sclerosis, we filtered the 
dataset to prevalent MS cases and healthy controls and constructed linear regression models for 
each protein of the form:   
 Protein level (NPX; normalised protein expression) ~ age + sex + age2 + age x sex + age2 

x sex + batch + disease status (MS vs control) 
 
The outcome for each regression model was the NPX value, a normalised value corresponding to 
the log2 fold change in protein expression between samples, i.e. a 1-point NPX difference 
equates to a ~2x higher concentration of protein. Linear models were fitted using the limma R 
package, which uses empirical Bayes estimators to calibrate the per-protein variance using 
information from all proteins. We reported results as statistically significant if they surpassed a 
Bonferroni-adjusted alpha threshold of 0.05 (P < 1.7 x 10-5 = 0.05 / 2911). 
 
We performed the following sensitivity analyses to explore the impact of various possible 
confounders: 

- Adjustment for BMI: Protein level (NPX; normalised protein expression) ~ age + sex + 
age2 + age x sex + batch + age2 x sex + BMI + disease status (MS vs control) 

- Simplified model: Protein level (NPX; normalised protein expression) ~ age + sex + 
batch + disease status (MS vs control) 

- Matched case-control analysis: we repeated the analysis in a matched case-control 
subsection of the cohort, matching each MS case to four healthy controls on age at 
recruitment (rounded to the nearest year) and sex. We used the same model specification 
as for the primary analysis.  
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Although visual inspection of the top hits revealed normally-distributed protein levels, we 
performed a further sensitivity analysis in which protein levels were rank-inverse normalised 
prior to model fitting to ensure that regression assumptions were satisfied. 

 
2. MS-specific biomarkers 
To determine whether these biomarkers were specific to MS, we then performed case-control 
association testing between each protein biomarker and a variety of neurodegenerative and 
autoimmune disorders. For these models, we used the same model specification as in the primary 
analysis (adjusting for age, sex, batch, age2, age x sex, and age2 x sex). For each disease, we 
again compared prevalent cases with healthy controls (without neurodegenerative or autoimmune 
disorders) and excluded incident cases.  
 
We then considered whether the MS-associated proteins identified were MS-specific using a 
stringent definition: 

- The protein must be associated with MS at PBonferroni<0.05 and  
- The protein must not show association in the same direction with any other tested 

autoimmune or neurodegenerative disease at a nominal P<0.1.  
 
3. Association with MS disease-modifying therapy 
We defined medication usage using the UK Biobank field field 20003, which records 
medications reported by the participant at their baseline visit. We identified MS disease-
modifying therapies from the list of medications, and considered medications prescribed to >=10 
individuals in the proteomics dataset. The only MS DMT with >=10 treated patients was 
interferon – we combined various formulations (including avonex, rebif, and betaferon) into a 
single binary variable (treated vs untreated).  We tested for associations with interferon use 
within the MS cohort by fitting models with limma of the form:  

Protein level (NPX; normalised protein expression) ~ age + sex + age2 + age x sex + age2 

x sex + batch + treatment status (interferon vs no interferon) 
 
 
4. Proteomic correlates of T2 lesion load and brain atrophy 
To identify plasma protein biomarkers of lesion volume in MS, we used MRI scans acquired on 
a subset of ~45,000 UK Biobank participants21,22. We used the pre-computed total volume of 
brain T2 hyperintensities (UK Biobank field ID 25781) derived from T2-weighted FLAIR 
images. To account for variation due to head size, we calculated the normalised T2 lesion 
volume by dividing total T2 lesion volume by the total intracranial volume (the sum of the brain 
volume and the CSF volume). Normalised T2 lesion volumes were rank-inverse normalised 
before model fitting to ensure linear model assumptions were satisfied. We then tested for 
association between the 2911 proteins and normalised T2 lesion volume within the prevalent MS 
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cases. Using the same approach, we examined the proteomic correlates of brain atrophy in MS 
by assessing the association between each proteins and the total volume of grey and white matter 
normalised for head size (UK Biobank field ID 25009), a cross-sectional readout of brain 
volume. As MRI scans were captured after the baseline visit, for both of these analyses we 
included the age at scan as an additional covariate in the models in addition to age at MS 
diagnostic report (i.e. we adjusted for age at recruitment, sex, age at recruitment2, age at 
recruitment x sex, age at recruitment2 x sex,  age at MS diagnostic code report, BMI at the time 
of scan, batch, and age at scan). We adjusted for the BMI at the time of scan for these models, 
rather than the BMI at baseline visit. We confirmed there was no correlation between age at 
recruitment and age at scan (Pearson’s correlation coefficient -0.04, P=0.6) prior to model fitting 
to quantify the risk of multicollinearity. We performed sensitivity analysis using simplified 
models, adjusting for age at scan, sex, and proteomics batch.  
 
5. Gene/protein set enrichment analysis 
We performed gene/protein set enrichment analysis to infer which pathways were altered in MS 
versus healthy controls. To do so, we used the fast gene set enrichment analysis R package 
(fgseaR)23, which estimates empirical P values for enrichment using a permutation-based 
approach. We explored pathways for which there was a minimum of 30 proteins overlapping 
between our set of tested proteins and the gene/protein set, used 10,000 permutations, and 
stipulated a maximum gene/protein set size of 1000. Proteins were ranked using the product of 
the sign of the correlation coefficient and the negative log10 of the P value, i.e. the proteins with 
the smallest P values and positive beta coefficients were ranked top, and those with the smallest 
P values and negative beta coefficients were ranked bottom. We report statistically significant 
results at a False Discovery Rate of 5%. As a reference, we used pathways from the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG)24. 

Replication and power calculations 

To determine whether the MS-associated proteins we identified replicated in an external dataset, 
we downloaded the list of proteins assessed in Akesson et al 202312, which compared MS and 
controls from two Swedish cohorts, a discovery cohort from Linköping University Hospital and a 
replication cohort from Karolinska University Hospital. After filtering to the set of overlapping 
proteins, we considered effects ‘concordant’ if the effect direction was the same, i.e. the protein 
was either up– or down-regulated in all three datasets (i.e. UK Biobank and these two Swedish 
cohorts).  
 
Power calculations were performed by simulating a normally-distributed protein level with a 
standard deviation of 1 and a mean value of 1 in controls. We explored a range of true log-fold 
change values and set the mean in cases to this value, i.e. for a log-fold change of 0.2, we set the 
mean in cases to 20.2 ~ 1.15. We performed 1,000 bootstrap simulations over a range of plausible 
log-fold change values, also varying the number of cases and controls. For each simulation, we 
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used a univariable linear regression model, regressing the normalised protein level on 
case/control status. Power at the 5% alpha level was defined as the proportion of bootstrap 
iteration with a linear regression P value of <0.05.  
 
 
Computing & code availability 
All analyses were conducted in R version >4.2.2. This research utilised Queen Mary's Apocrita 
HPC facility, supported by QMUL Research-IT25.  All code used for analysis is available at 
https://benjacobs123456.github.io/ukb_proteomics/. 
 
Data availability 
UK Biobank data are available on request from https://www.ukbiobank.ac.uk/. This research was 
conducted under approved application 78867.  
 
Reporting guidelines 
This research was conducted in accordance with the STROBE guidelines on observational 
studies. The completed STROBE checklist is provided in the supplementary materials.  
 
Results 
Demographics 
From the 52,701 participants with proteomic data derived from their baseline sample, we 
excluded 7,588 participants included as part of the COVID substudy or in the pilot batch, leaving 
45,113 participants for analysis (supplementary figure 2). We selected healthy controls by 
excluding 1375 controls with incident or prevalent neurodegenerative disorders (PD, AD, or 
ALS), and 3239 controls with incident or prevalent other autoimmune diseases (Coeliac disease, 
Ankylosing Spondylitis, Rheumatoid Arthritis, Ulcerative Colitis, Crohn’s disease, Psoriasis). 
We excluded participants with a diagnosis of MS coded more than ten years after enrolment (i.e. 
‘incident’ cases, n=29), leaving 407 prevalent MS cases and 39,979 healthy controls. 
Demographics of the included cases and controls are shown in table 1. The median age at MS 
report was 44.4 years old (IQR 16.8), broadly consistent with previous estimates of the peak 
incidence of MS derived from electronic health records26. Most MS cases (326, 80.0%) had at 
least two separate sources of diagnostic code report (i.e. two of self-report, primary care, or 
hospital episode statistics). Compared with controls the MS cohort was younger, more affluent, 
with a lower Body Mass Index (BMI), higher socio-economic status (the Townsend deprivation 
score was used as a proxy) with a higher proportion of women and self-reported White British 
individuals (Table 1).  
 
Plasma protein alterations in Multiple Sclerosis 
To search for protein biomarkers of Multiple Sclerosis, we compared the plasma proteomic 
profiles of 407 prevalent MS cases and 39,979 healthy control participants in UK Biobank. Of 
the 2911 proteins tested, 72 were associated with Multiple Sclerosis at a stringent family-wise 
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error rate of 5% (�Bonferroni<0.05, P<1.7x10-5). Thirteen were increased in MS, and 59 decreased
in MS (figure 1A, supplementary table 1). Plasma samples from MS cases tended to have higher
levels of the neuroaxonal damage marker Neurofilament light chain (NFL), chromogranin A
(CHGA), Lysosomal Associated Membrane Protein 3 (LAMP3), interleukin-17 receptor beta
(IL17RB), interleukin 22 (IL22), insulin-like growth factor binding protein 2 (IGFBP2),
leukocyte immunoglobulin like receptor 4 (LILRB4), creatine kinase B (CKB), glial fibrillary
acidic protein (GFAP), cathepsin F (CTSF), interleukin-15 (IL15), MER proto-oncogene
tyrosine kinase (MERTK), and folate receptor alpha (FOLR1) than controls (table 2,
supplementary table 1). Most of these associations (49/72, 68.1%) persisted after accounting for
the impact of BMI on the proteome 15 – of the thirteen proteins elevated in the MS samples, three
of these associations (FOLR1, CKB and IGFBP2) dissipated on adjustment for BMI. To account
for possible confounding due to differences in age and sex, we repeated the analysis in a nested
matched case-control cohort (407 MS and 1628 age and sex-matched controls). Despite the
lower statistical power due to the smaller number of controls, we observed strong evidence for
elevation of all ten MS-associated proteins (supplementary table 1). Sensitivity analyses
adjusting for just age, sex, and batch, and transforming protein levels yielded similar results
(supplementary table 1).  
 
Gene set enrichment analysis reaffirmed the enrichment of cytokines and cytokine receptors and
lysosomal processing proteins in MS and the MS-associated decrease in proteins involved in
leukocyte migration, interaction with the extracellular matrix, regulation of the actin
cytoskeleton, and cell-cell adhesion (KEGG terms with normalised enrichment scores [NES] at
FDR < 5%, figure 1B). We also observed suggestive evidence for an increase in proteins
involved in JAK-STAT signalling (unadjusted P < 0.05).  

Figure 1: plasma proteomic analysis of Multiple Sclerosis. A - volcano plot displaying differences in plasma
levels of proteins measured on the Olink proteomics assay between UK Biobank participants with (n=407) and
without (n=39979) MS at the time of sampling. The x-axis indicates the log-fold change of the protein, with values
above 0 indicating proteins present at higher levels in the MS cohort and those with values below 0 present at lower
levels in the control cohort. The y-axis indicates the negative log of the P value for each protein, with higher values
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indicating a more statistically significant result. Proteins surpassing a Bonferroni-corrected threshold of 5% are 
shown in colour; other results are shown in grey. B - gene set enrichment analysis (GSEA) results summarising the 
pathway-level differences in the plasma proteome between MS and healthy controls. The x-axis shows the 
normalised enrichment score, with positive values equivalent to an increase in the pathway activity in MS and 
negative values suggesting decreased levels of pathway activity in MS. The y-axis shows the KEGG pathways 
tested. The asterisks indicate statistically significant results at an FDR of 5%.  

 
Replication of plasma proteomic signature  
To validate these findings, we compared our results with recently published proteomics data 
from two MS cohorts assayed using the Olink platform12 (discovery dataset NMS=92, NControl=23, 
replication dataset NMS=51, NControl=20). Of the 49 MS-associated proteins we report which were 
robust to adjustment for BMI, 34 were assessed in these two cohorts (figure 2A & 2B). We 
observed directionally-concordant associations with MS in both the discovery and replication 
cohorts for 28/34 (82.4%) proteins, including most of the proteins increased in MS in UKB 
(IL17RB, NEFL, CTSF, MERTK, GFAP, LILRB4, and LAMP3), but not IL15. The only protein 
achieving more stringent statistical evidence for replication in both these datasets (i.e. nominal P 
value < 0.05) was Delta/Notch Like EGF Repeat Containing (DNER), which was decreased in 
all cohorts. Empirical power calculations (figure 2C) suggest that the power to observe an effect 
of a similar magnitude to the elevation in NFL (~ log fold change of 0.2) was small in this study 
(10% for both the discovery and replication datasets at an alpha of 0.05). Therefore the 
directional concordance we observe can be interpreted as reasonable evidence for replication 
given the sample size.  
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Figure 2: external validation of plasma protein alterations in MS. A: Beta-beta plots showing the log-fold
change for each of the proteins identified as differentially-expressed in MS plasma in UKB & in a recent study of
similar design using the Olink platform. The x axis shows the log-fold change in UK Biobank (values > 0 indicating
proteins elevated in MS, values < 0 indicating proteins decreased in MS). Panel A shows comparison with the
discovery cohort in Akesson et al 202312. B: as per A, but for the replication cohort described in Akesson et al 2023.
C: power curves showing the power to detect a difference between cases and controls at an alpha of 5% for a range
of log-fold change values and cohort sizes. The dashed line indicates the log-fold change observed in UKB for
neurofilament light chain, an established marker of MS. A range of scenarios is shown.  

 

Comparison with other autoimmune and neurodegenerative disorders 
To determine whether any of the MS-associated protein biomarkers identified were specific to
MS, we first explored the association between each of the 2911 plasma proteins and a range of
autoimmune and neurodegenerative disorders. We reproduced several well-known associations
(supplementary table 2), such as elevated beta-defensin in psoriasis27, interleukin-6 in ankylosing
spondylitis28, TNF-alpha in rheumatoid arthritis29, IL-15 in SLE30, and neurofilament light chain
in MND31, PD5, and AD4. The proteomic signature of MS showed no evidence of correlation
with other autoimmune disease (supplementary figure 3). In contrast, we observed stronger
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correlations between autoimmune disorders with overlapping aetiological pathways, such as
Crohn’s and UC (P < 0.001, correlation coefficient = 0.6).  
 
Of the ten proteins found to be increased in MS, seven were strongly associated with another
autoimmune disorder (PBonferroni < 0.05; MERTK, IL15, LILRB4, IL22, IL17RB, LAMP3, and
CHGA, figure 3A-C). As expected, we found that elevation of NFL and GFAP was also
associated with neurodegenerative disorders (figure 3A), with strong effects seen for Parkinson’s
and Motor Neuron Disease. Most MS-associated biomarkers were not specific to MS: 46/49
(93.9%) showed at least nominal evidence of association (P < 0.1) in the same direction with
another autoimmune disorder, and 34/49 (69.4%) were nominally associated with a
neurodegenerative disorder (figure 3B & C). The MS-associated decrease in Granzyme A
(GZMA) was the only protein change apparently specific to MS (figure 3A), i.e. without any
statistical evidence (i.e. P < 0.1) for a decrease in any other disorder tested (figure 3A & D).
Reduction in plasma granzyme A was also observed in the external validation dataset (PDiscovery =
0.10, PReplication = 0.02). 
 

 
Figure 3: Decrease in plasma granzyme A may be specific to Multiple Sclerosis. A - forest plot showing the
associations between the top proteins associated with MS (Bonferroni’s alpha < 0.001) and other autoimmune /
neurological disorders. The x-axis shows the direction of effect (log-fold change) for the association of each protein
with each disease outcome. The y-axis shows the protein tested. Each point is coloured by disease. MS-specific
effects were defined as statistically-significant effects (Bonferroni’s alpha < 5%) in the MS cohort and did not show
suggestive evidence (P<0.1) of the same direction of effect in any other disease tested. The only MS-specific effect
according to this definition was the reduction in Granzyme A. B – venn diagram showing the overlap proteins found
to be significantly upregulated (alpha < 0.05) in MS, autoimmune, and neurodegenerative (NDD) disorders. Note
that in this figure overlap is defined as proteins achieving alpha < 0.05 for both/all conditions. C – as for panel B,
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but showing downregulated proteins. D – boxplots showing the normalised levels of plasma granzyme A across the 
disorders tested.  
 

The reduction in plasma granzyme A could plausibly reflect the impact of MS treatment, rather 
than being a feature of the disease per se. To explore this possibility, we identified participants in 
UK Biobank who were receiving an MS disease-modifying therapy at the time of plasma 
sampling. The only MS disease-modifying therapy recorded for more than ten participants was 
interferon. We compared the proteomic profiles of MS patients taking interferon (n=29) versus 
those not taking interferon (n=378). Treatment with interferon was associated with upregulation 
of several known interferon-inducible proteins, including IFIT3, DDX58, and IFI30, but not with 
any alteration in granzyme A protein levels (supplementary figure 4, P=0.4).  
 
Proteomic correlates of brain atrophy and T2 lesion volume in MS  
Next, we explored the relationship between the plasma proteome and radiological proxies for 
severity (T2 lesion volume and total brain volume) using MRI data available for a subset of the 
cohort. We first confirmed the expected increase in T2 lesion volume and decrease in brain 
volume in MS cases compared with healthy controls (NMS=113, NControl=3772, T2 lesion volume: 
median 10,417 mm3 vs 2885mm3, P < 2x10-16, figure 4A; Brain volume: median 1,465.1 cm3 vs 
1,487.3 cm3, P < 0.003, figure 4B). To validate these measures, we demonstrated the expected 
negative correlation between T2 lesion volume and total brain volume (Spearman’s rho = -0.3, P 
= 0.0009, figure 4C), and the relationship between longer disease duration at the time of 
scanning and lower lower brain volume (rho -0.19, P =0.04, figure 4D). The impact of disease 
duration on T2 lesion load was not statistically significant (rho 0.08, P = 0.4). Male sex was 
associated with lower brain volume (P = 0.01) but did not have a statistically significant impact 
on T2 lesion volume (P = 0.2). Sensitivity analyses using a simplified model (i.e. adjusting for 
only age, sex, and proteomics batch) yielded similar results.  
 
Although at an individual protein level there were no proteins associated with either T2 lesion 
volume or total brain volume at a stringent alpha of 5% (figure 4E, supplementary table 3), we 
found suggestive evidence (P < 0.05) for several plausible associations. For example, for T2 
lesion volume, we found suggestive positive associations with the established markers of 
neuroaxonal damage NFL and GFAP, the myelin protein MOG, proteins involved in modulating 
the immune response (SLAMF7, IL5RA), and the vitamin D-metabolising enzyme CYP24A1. 
At a pathway level, we observed strong evidence (FDR < 5%) for a role of proteins involved in 
complement and coagulation (figure 4F), with negative enrichment seen for T2 lesion volume 
and positive enrichment for brain volume (i.e. higher levels of these proteins appear to be 
‘protective’). This effect was driven by alterations in 21 proteins (supplementary table 3), of 
which only one, factor XI, achieved suggestive evidence (P < 0.05) with both T2 lesion volume 
and brain volume, with higher plasma factor XI associated with higher brain volume (P = 0.008) 
and lower T2 lesion volume (P = 0.03, figure 4G). Plasma factor XI was not associated with T2 
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lesion volume (P = 0.3) or brain volume (P = 0.8) in the healthy controls (N = 3644), suggesting
that this association is unlikely to reflect nonspecific brain health (supplementary table 3).  
 
 

Figure 4: plasma proteomic correlates of MRI proxies for MS severity. A & B - boxplots showing the
relationship between MS status and normalised T2 lesion volume load (A) or total brain volume (B) in the subset of
MS cases and controls with MRI scans available. Normalised lesion load is shown as a proportion of total brain
volume. Brain volume is shown in mm3. C & D – scatter plots showing the association of T2 lesion volume and
brain volume in the MS cases (C) and between disease duration and brain volume (D), E - Volcano plots
demonstrating the association between levels of plasma proteins and normalised T2 lesion volume in the MS cohort.
F – GSEA results showing the enrichment of pathways associated with T2 lesion volume, highlighting the negative
enrichment (i.e. inverse correlation) between plasma coagulation and clotting proteins and T2 lesion volume. G –
scatter plot showing the association between plasma factor XI and normalised T2 lesion volume in the MS cases.  

 
Discussion 
Using data from ~50,000 UK Biobank participants, we describe alterations in the plasma
proteome of patients with Multiple Sclerosis. We report that people with MS have higher plasma
levels of neuronal damage markers (NFL, GFAP), cytokines/cytokine receptors (IL15, IL17RB,
IL22), and lower levels of several proteins, including integrins and cystatin D, compared with
healthy controls. We find that most of these associations show evidence of replication in an
external dataset. While most of these alterations are also seen in other autoimmune or
neurodegenerative disorders, we find that the decrease in plasma granzyme A, a serine protease
released by NK cells as part of the degranulation response, is relatively specific to MS, and is not
explained by treatment with interferon. Finally, using MRI scans from a subset of the cohort, we
report that T2 hyperintense lesion burden shows suggestive associations with plasma NFL,
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MOG, and SLAMF7, and that higher levels of plasma proteins involved in coagulation, such as 
factor XI, are associated with preserved brain volume and lower T2 lesion load. 
 
This is the first study to evaluate MS-associated changes in the plasma proteome using biobank-
scale data. The key strengths of our study are, firstly, the very large number of healthy controls, 
minimising the risk of false positive findings, and the broad coverage of the proteome afforded 
by the Olink platform. Plasma NFL elevation in MS is a well-established biomarker of 
neuroaxonal damage, which can be detected early in the course of MS, and may be a useful 
biomarker for tracking disease activity and progression over time2. The fact that plasma NFL 
was the protein most strongly and consistently associated with MS in our study across a range of 
sensitivity analyses is a reassuring positive control16.  
 
In addition to the established markers of neuroaxonal damage NFL and GFAP, we identify 
elevation of several plasma proteins in MS patients, including cytokines and cytokine receptors 
(IL22, IL17RB, and IL15), proteins involved in lysosomal processing (LAMP3, CTSF), and 
regulators of monocyte/microglial function (MERTK, LILRB4)12,32–36. While these findings 
suggest a variety of plausible targets for therapeutic intervention in MS, most of these alterations 
were observed in other autoimmune disorders and/or neurodegenerative conditions, suggesting 
that they are unlikely to be of significant diagnostic value in distinguishing MS from alternative 
conditions. The reduction in granzyme A was apparently specific to the MS cohort, and was 
observed independently in an external dataset12. Granzyme A is a serine protease released by 
degranulating cytotoxic cells (such as CD8+ T cells and NK cells)37. These data are somewhat 
paradoxical in the context of previous findings suggesting patients have higher levels of 
granzyme A in the CSF during relapse38, and describing higher proportions of age-associated 
GZMA+ T cells than controls39.  Further work is required to clarify the relationship between 
membrane-bound granzyme A, plasma granzyme A, and CSF granzyme A. Plausible 
interpretations of these data are that this may be an effect of treatment – which we attempt to 
address – and potentially a feature of accelerated immune ageing in MS.  
 
Despite the low statistical power to detect associations between plasma proteins and radiological 
proxies of MS severity (T2 lesion burden and brain volume), we detect suggestive associations 
with high plausibility. For instance, we show nominal (P < 0.05) associations between T2 lesion 
volume and plasma NFL, MOG, and surface antigen CD319 (SLAMF7), an MS susceptibility 
gene40 which also showed suggestive association with brain volume. The positive control of NFL 
reinforces the validity of this approach and suggests that novel targets could be discovered with 
an increase in sample size. At a pathway level, we observe evidence implicating the complement 
and clotting pathways as ‘protective’ against higher lesion load and brain volume loss. Although 
there are several studies reporting clotting abnormalities in MS patients41, most observational 
studies have reported the opposite direction of effect (i.e. higher plasma levels of clotting factors 
correlating with inflammatory disease activity42), and inhibition of factor XI – the most 
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suggestively associated protein in our study – was beneficial in a rodent model of MS43. 
Replication in well-phenotyped longitudinal cohorts is required to explore this intriguing effect. 
 
There are some important limitations to this study. First, we use data from a single cohort 
assayed with a single technology (Olink), and so although we compare our findings with 
published data, we are unable to test our results in a genuine replication cohort. Second, the 
major drawback of using UK Biobank to address this question is that this is an all-purpose 
dataset not specifically designed for MS. We are therefore unable to explore MS phenotypes in 
granular detail - for instance, we are unable to explore the relationships between the proteome 
and EDSS, relapse rate, treatment responsiveness, or more MS-specific radiological outcomes 
such as new/expanding lesion load. There is also some risk of misclassification of cases and 
controls inherent in using electronic healthcare records and self-reported diagnoses rather than 
clinically-definite MS diagnosis, although we have previously shown that this cohort is 
demographically similar to clinical MS cohorts17. While we attempt to control for treatment, a 
small proportion of cases have any disease-modifying therapy recorded, and we are unable to 
distinguish untreated patients from those with missing data. Many of our findings could be 
explained by the effects of treatment, such as the reduction in Granzyme A. Third, as this study 
is cross-sectional and includes participants with established MS, it is challenging to deconvolve 
the impact of treatment, disease duration, disease stage at the time of sampling, and other time-
varying parameters. We mitigate this to some extent by accounting for a variety of important 
confounders, such as age, sex, BMI, and deprivation status, but the plasma proteome is likely 
highly dynamic, and a cross-sectional snapshot is a gross simplification of this complexity.  
Fourth, it is now established that participants in UKB are a highly selected population, and so it 
is plausible that the MS cohort we analysed here represents an unusually ‘healthy’ selection of 
MS patients44. There is an even greater degree of selection bias determining which participants 
enrol for the imaging substudy, and so the risk of collider bias is even greater in the analysis of 
proteomic correlations of MRI outcomes. This phenomenon could explain some of the 
apparently paradoxical results we observed, such as the reduction in Granzyme A in MS patients 
and the protective effect of increased plasma clotting factors. Finally, while the Olink assays give 
excellent coverage across the proteome, it still only measures a finite set of proteins and may 
miss a variety of interesting proteins either not present on the panel or which have undergone 
post-translational modifications, in contrast to the relatively unbiased nature of mass 
spectrometry.   
 
In summary, we perform the largest analysis of the plasma proteome in MS, replicating known 
biomarkers for diseases such as NFL and GFAP, suggesting plausible targets for therapeutic 
intervention, discovering a new disease-specific negative biomarker (GZMA), and suggesting an 
association between plasma coagulation factors and MRI outcomes in MS. While these findings 
require external replication, they demonstrate the power of biobank-scale datasets for 
discovering how the plasma proteome is altered in Multiple Sclerosis. Ultimately, this avenue of 
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research could yield new drug targets, new insights into disease biology, and provide an adjunct 
to existing methods for individual-level prognosis in MS.  
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