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ABSTRACT 

Objectives: Cognition plays a central role for diagnosing and characterizing dementia 

with Lewy bodies (DLB). However, the complex associations among cognitive functions 

are largely unknown in DLB. To fill this gap, we compared the cognitive connectome of 

DLB patients, healthy controls (HC) and patients with Alzheimer’s disease (AD).   

Methods: We obtained data from the National Alzheimer’s Coordinating Center 

(NIA/NIH Grant U24-AG072122). We built separate cognitive connectomes for DLB 

(n=104), HC (n= 3703), and AD (n=1985) groups using pairwise correlations between 24 

cognitive variables mapping multiple cognitive functions. The cognitive connectomes in 

DLB, HC, and AD groups were compared using standard global and nodal graph 

measures of centrality, integration, and segregation.  

Results: In global connectome measures, DLB patients showed a higher global efficiency 

(integration) and lower transitivity (segregation) than HCs and AD. Nodal connectome 

measures showed a higher global efficiency in most cognitive functions in DLB compared 

to HCs. Additionally, we found a lower local efficiency (segregation) and nodal strength 

(centrality) in memory variables and a higher participation coefficient in executive 

variables (centrality) in DLB compared with both HCs and AD.  

Conclusions: The cognitive connectome in DLB showed a signature dedifferentiation 

pattern of aberrant correlations. Executive, processing speed and attention functions 

played a central role in the cognitive connectome of DLB patients. Furthermore, the role 

of executive and memory functions in the cognitive connectome distinguished DLB and 
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AD patients. These findings may help advance our understanding of the clinical 

phenotype in DLB, and continue to improve the challenging differential diagnosis 

between DLB and AD. 
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     BACKGROUND  

Dementia with Lewy bodies (DLB) is one of the most common neurodegenerative 

dementias (1). The essential criterion for diagnosing DLB is a progressive cognitive 

decline (2). Furthermore, cognitive decline not only plays an important role in the 

diagnosis of DLB but also its differential diagnosis with other dementias (3–5). The 

typical cognitive profile of DLB includes alterations in attention, executive functions, and 

visual abilities, while other domains, such as memory, can be involved at later stages of 

the disease (2).  

The traditional approach to investigating cognition in DLB focuses on a particular 

cognitive function and uses univariate statistical analysis to compare the performance 

with healthy controls or other relevant dementias such as Alzheimer’s disease (AD) or 

Parkinson’s disease dementia (6–8). Although the univariate approach can provide 

information on the cognitive profile of DLB patients, it falls short in elucidating the 

complex associations between cognitive functions. This limitation has enabled increased 

interest in multivariate approaches to study cognition in DLB and prodromal stages, 

promoting a more integrated understanding of cognitive functioning (9–12). In this line, 

it has been suggested that processing speed mediates the performance in working memory 

and memory in prodromal DLB (12). It has also been suggested that executive deficits 

may underlie problems in verbal fluency or that deficits in semantic memory and visual 

functions may influence the deficits observed in naming (13).  

The “cognitive connectome” (14) is a new concept and methodology that 

comprehensively explains the complex organization and relationships between cognitive 

functions. Using graph theory analysis on cognitive variables provides rich data on the 

centrality of specific cognitive functions in the connectome and information on the 

integration and segregation of cognition (15). While the cognitive connectome has been 

investigated in normal aging and some disorders such as epilepsy, acquired brain injury, 

vascular encephalopathy, mild cognitive impairment, or Alzheimer’s disease dementia  

(14–20), no study to date has characterized the cognitive connectome in DLB. The 

characterization of the cognitive connectome in DLB could have implications for 

advancing our understanding of its complex phenotype. Moreover, it could contribute to 

improve the differential diagnosis of DLB by integrating data profiles instead of 

evaluating each neuropsychological function separately in an “univariate” manner. Such 

approach will better align with how clinicians interpret cognitive data.    

 In this study, we introduced graph theory analysis on cognitive variables in DLB 

to investigate its cognitive connectome. The first objective was to characterize the 

cognitive connectome in DLB by comparing it with a group of healthy controls (HCs). 

The second objective was to compare the cognitive connectome of DLB and AD patients, 

as this is the most common comparison for differential diagnosis of DLB in the clinical 

setting. We hypothesized prominent alterations of the cognitive connectome in DLB 

compared to HCs, particularly involving attention, executive, and visual functions. At the 

same time, the differences with AD patients would be more modest and likely extend to 

memory domains.  
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METHODS  

Participants 

We obtained data from the National Alzheimer’s Coordinating Center (NACC) 

collected across 32 Alzheimer’s Disease Research Centers between March 2015 and May 

2021 (21). Patients aged ≥ 45 years and diagnosed with DLB or AD were included (2,22). 

Clinical severity was assessed with the Clinical Dementia Rating (CDR) scale (23). Core 

clinical features of DLB were determined by the clinician’s judgment, including 

fluctuating cognition, visual hallucinations, probable REM sleep behavior disorder 

(RBD), and parkinsonism. We also included a group of HCs who demonstrated 

unimpaired cognition on clinical assessment. 

All participants were required to have data available on all the cognitive variables 

selected to build the connectome (see next section). For all the participants, the exclusion 

criteria were having a clinical history of bipolar disorder, schizophrenia, delusional 

disorder, craniocerebral trauma, substance abuse, and uncorrected vision or hearing 

problems. All participants gave written informed consent, and local Institutional Review 

Boards approved the study. 

 

Cognitive measures and construction of the cognitive connectome  

The neuropsychological protocol of the NACC database is fully described 

elsewhere (21). We included 25 cognitive variables mapping multiple cognitive 

functions, as follows: visuoconstructive functions, visual and verbal episodic memory, 

processing speed, attention, executive functions, language, and orientation.      

  Before constructing the cognitive connectome, we carefully inspected the 

distribution and nature of all the 25 cognitive variables. We inverted the scores when 

necessary, so that higher scores always indicated a better performance and transformed 

variables with a heavily skewed distribution. Moreover, since age, sex, and education 

influence cognitive performance, we adjusted cognitive variables for these confounding 

factors using multiple linear regression or logistic regression (24). After these steps, data 

was inspected again to ensure that variables in the new dataset were normally distributed. 

We observed a variable which did not follow a normal distribution. This variable was 

finally included as an error variable and was especially informative in a pathological 

sample. Thus, we used Spearman correlation coefficients to define the edges of the 

cognitive connectome. At that point, we observed that one variable was barely correlated 

to the rest of the variables (i.e., repetition errors in phonemic fluency) and was thus 

excluded from the analysis since we aimed for modelling connectomes with highly 

correlated variables. The 24 cognitive variables were used to construct a cognitive 

connectome for each group, i.e., DLB, AD, and HCs (Table 1).  

Following two previous studies on cognitive connectomes in acquired brain injury 

and epilepsy, we used positive and negative correlations (15,20). Additionally, we 

excluded self-connections from the correlation matrices. Next, correlation matrices were 

binarized by thresholding coefficients at a range of densities based on the cognitive 

connectome of the HC group. Preliminary analysis of the cognitive connectome of HCs 

showed that MoCA variables tended to form a cluster of correlations, increasing the 

threshold density at which other nodes became connected. We thus built a simplified 
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connectome without MoCA variables to determine the range of densities. At the 

minimum density (10%), nodes tended to be connected to at least one other node. At the 

maximum density (30%), the connectome exhibited a random topology with the small-

world index approaching 1. We then compared connectome topologies of DLB patients 

to HC and AD groups through 1000 nonparametric permutations across the range of 

densities 10% to 30%, in steps of 1%.  

 

Table 1. List of cognitive variables included in the cognitive connectomes. 

Cognitive functions Most prominent 

cognitive 

component 

Cognitive 

measures 

Cognitive variables 

Visuoconstructive 

functions 

Visuoconstructive 

abilities 

Number of 

correct 

elements 

Benson Complex 

Figure- Copying 

(25,26) 

2-D 

visuoconstructive 

abilities  

Number of 

correct 

elements 

Score for a 

totally 

correct task 

MoCA-

Visuoconstructive (27) 

Visual and verbal 

episodic memory 

Encoding, 

Retrieval and 

Storage (Visual 

memory) 

 

 

Number of 

correct 

elements 

 

 

Benson Complex 

Figure-Delayed recall 

(25,26) 

Score for a 

totally 

correct task 

Benson Complex 

Figure-Recognition 

(25,26) 

Encoding, 

Retrieval and 

Storage (Verbal 

memory) 

Number of 

correct 

words 

Craft Story 21-

Immediate recall (28) 

Craft Story 21-

Delayed recall (28) 

MoCA-Immediate 

recall (27) 

MoCA-Delayed recall 

(27) 

MoCA-Category cue 

(27) 

MoCA-Recognition 

(27) 
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Executive functions 

Phonemic (letters), 

semantic (animals) 

fluency. Executive 

control, cognitive 

inhibition 

Number of 

correct 

words  

Number of 

incorrect 

words 

Verbal fluency-

Phonemic; adapted 

from (29) 

Verbal fluency-

Phonemic-intrusions; 

adapted from (29) 

Verbal fluency-

Semantic; adapted 

from (29) 

Executive control, 

cognitive inhibition  

Number of 

commission 

errors 

Trail Making Test 

(TMT)-commissions 

(30) 

Mental 

flexibility/executiv

e control 

Score for a 

totally 

correct task 

MoCA-Trail (27) 

 

Mental 

flexibility/Concept 

formation 

Number of 

correct 

items 

MoCA-Abstraction 

(27) 

Working memory: 

amplitude 

(forward) and 

manipulation 

(backward) 

Number of 

correct 

items 

     Digit span forward 

(25) 

Digit span backward 

(25) 

Processing speed and 

attention 

Focusing/visual 

tracking 

Maintenance of 

attention 

 

Seconds TMT-Part A (30) 

Score for a 

totally 

correct task 

MoCA- Calculation 

(27) 

Number of 

correct 

items 
MoCA- Letter A (27) 

Language  

Lexical access by 

visual 

confrontation 

Number of 

correct 

items 

Multilingual Naming 

Test (MINT) (31,32) 

Repetition 

Number of 

correct 

items 
MoCA-Repetition (27) 

Orientation  Temporal and 

spatial orientation  

Number of 

correct 

items 

MoCA-Orientation 

(27) 

 

Graph theory measures 

To characterize the DLB cognitive connectome, we calculated centrality, 

integration, and segregation measures at the global and nodal levels. Among the different 

graph measures available, we mainly used those that have shown to be stable in previous 

studies (33) and have previously been used to investigate cognitive connectomes (14). 

We then calculated the global measures of average strength (a measure of centrality), 

global efficiency (a measure of integration), transitivity (a measure of segregation), and 
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local efficiency (a measure of segregation) (34). We also calculated the nodal measures 

of strength and participation (measures of centrality), global efficiency, and local 

efficiency (34). All measures are fully described in Supplementary Table 1. We calculated 

all measures on binary networks except for global and nodal strength that were calculated 

on the weighted network (before binarization).   

 

Statistical Analysis  

We used ANOVA for between-group comparisons of demographic and clinical 

variables and ANCOVA with age, sex, and education as covariates for between-group 

comparisons of standardized cognitive function scores. We adjusted p-values in post-hoc 

analyses with Hochberg's correction for multiple comparisons (35).  

     Statistical significance was set at p<0.05. Results from global graph measures 

were reported across connectome densities from 10 to 30% in steps of 1%. Global 

measures with significant differences in ≥5 densities were considered significant. For 

nodal measures, we applied the false discovery rate (FDR) adjustment at p ≤0.05 (two-

tailed) (36). Results from nodal graph measures were also considered across all 

connectome densities but reported only at the median density (20%).  

 Statistical analyses were performed using R Studio version 0.99.483 with the 

ULLRToolbox, SPSS version 25.0, and BRAPH software version 1.0.0 (37).  

 

RESULTS 

Cohort characteristics 

Table 2 shows the main demographic and clinical characteristics of the groups. 

There were no statistically significant differences in age for DLB compared to HCs and 

AD. However, there were group differences in sex and education. Hence, we controlled 

for sex and education when investigating cognitive performance across the three groups 

but also for age, as it is related to cognitive performance. The DLB and AD groups did 

not differ in the CDR total score. Figure 1 shows differences in cognitive functions across 

the groups. Compared to HCs, the DLB group performed significantly worse in all 

cognitive functions. Compared to AD, the DLB group showed a significantly worse 

performance in visuoconstructive functions, processing speed, and attention, whereas the 

AD group showed a worse performance in visual and verbal memory, language, and 

orientation compared to DLB. 
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Table 2. Key demographic and clinical characteristics. 

Comparisons were established a-priori for DLB vs. HCs and DLB vs. AD. a. Significant 

differences between DLB and HCs; b. Significant differences between DLB and AD. 

N.S.: non-significant differences. Abbreviations: CDR, Clinical Dementia Rating scale; 

RBD, REM sleep behaviour disorders. 

 

 

 

 

 DLB HC AD p-value 

 N Mean 

(SD)/ 

count 

(%) 

N Mean 

(SD)/ 

count 

(%) 

N Mean 

(SD)/ 

count 

(%) 

 

Age, years 

min-max 

104 71.9 

(8.5) 

45-88 

3703 72.2 

(9.2) 

45-101 

1985 73.7 

(9.9) 

45-103 

N.S. 

Sex, men (%) 104 89 

(86%) 

3703 1576 

(43%) 

1985 931 

(47%) 

<0.001

*ab 

Education, 

years 

104 16.3 

(3.1) 

3703 16.0 

(2.9) 

1985 15.4 

(3.0) 

<0.05*

b 

CDR-total 104 1 (0.5-

1) 

3703 0 (0-0) 1985 1 (0.5-

1) 

<0.001

*a 

Cognitive 

fluctuations, 

presence 

 

102 61 

(60%) 

3702 6 

(0.2%) 

1944 78 

(4%) 

<0.001

*ab 

Visual 

hallucination

s, presence 

104 45 

(43%) 
3702 8 

(0.2%) 

1982 71 

(3.6%) 

<0.001

*ab 

Probable 

RBD, 

presence 

101 66 

(65%) 

3696 39 

(1%) 

1959 62 

(3%) 

<0.001

*ab 

Parkinsonian 

signs, 

presence 

104 85 

(82%) 

3703 127 

(3%) 

1985 210 

(11%) 

<0.001

*ab 
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Figure 1. Cognitive performance in the three diagnostic groups. Differences in DLB 

patients compared to HCs and AD patients in the six cognitive functions were analyzed 
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using ANCOVA with age, sex, and education as covariates. Measures have been 

adjusted, so a higher score indicates better performance. Whiskers show 95% 

confidence intervals. *p<0.05; **p<0.01; ***p<0.001. 

 

     Weighted Correlations Matrices       

Figure 2 shows the cognitive connectomes for the three study groups (see 

Supplementary Figures 1, 2, and 3 for cognitive connectomes with larger size). Visual 

inspection of the cognitive connectome in DLB showed uniformly weak correlations 

within and between cognitive functions. Visual inspection of the cognitive connectome 

in HCs showed the coexistence of both strong and weak correlations within and between 

cognitive functions. Compared with the HC group, most correlations within and between 

cognitive functions were generally weaker in DLB. Visual inspection of the cognitive 

connectome in AD showed a predominance of weak correlations within and between 

cognitive functions. Comparisons between the DLB and AD groups revealed more 

moderate differences than the HC group. Most correlations within and between cognitive 

functions were weaker in DLB compared to AD, especially in visual and verbal memory 

functions.  

  

Figure 2. Correlation matrices for each group. Cognitive connectomes for each study 

group with cognitive variables grouped by cognitive functions. Negative correlations 

were only observed in DLB and AD groups, but the range of color bar numbers was 

equalized across all groups to facilitate comparison. VC, visuoconstructive functions; 

VVM, visual and verbal episodic memory; EF, executive functions; PSA, processing 

speed and attention; LAN, language; OR, orientation.  

 

     Global connectome measures analysis 

Figure 3 shows the quantitative differences of the DLB patients compared to the 

HC and AD groups in global connectome measures. There were no statistically significant 

differences in the average strength between the DLB and HC groups. However, DLB 

patients exhibited a higher global efficiency and a lower local efficiency and transitivity 

than HCs. Compared with the AD group, DLB patients had a lower average strength, 

together with a higher global efficiency and a lower transitivity.  
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Figure 3.  Differences in DLB compared to HCs and AD in global connectome 

measures. Between-group differences in global connectome measures are displayed on 

the y-axis. Connectome densities are displayed on the x-axis, spanning from min=10% to 

max=30%. Red circles refer to the DLB group. Between-group differences are significant 

when the red circles fall out of the purple-shaded area in 5 consecutive connectome 

densities. N.S.: non-significant.  

 

Nodal connectome measures analysis 

Table 3 shows the differences in nodal measures across the groups. DLB patients 

showed a higher nodal strength in an executive variable and a lower nodal strength in a 

verbal recognition episodic memory variable compared to HCs. DLB patients also had 

higher participation in an executive variable and lower participation coefficients in visual 

and verbal memory recognition variables compared with the HC group. Additionally, 

DLB patients showed higher participation coefficients in another visual and verbal 

immediate and delayed recall memory variable, and DLB showed a higher nodal 

integration with higher global efficiency in all cognitive functions, except for one verbal 
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recognition memory variable (and one executive variable (intrusions in phonemic fluency 

variable) compared with HC. Furthermore, DLB showed a predominantly lower nodal 

segregation with lower local efficiency in other executive, verbal memory, attention, 

visuoconstruction, and orientation variables compared with HC. DLB only showed a 

higher local efficiency in some executive, processing speed, and language variables.  

We observed fewer differences in nodal measures when comparing DLB and AD. 

The DLB group showed a lower nodal strength in several verbal memory variables, a 

visuoconstructive variable, and an attention variable compared with the AD group. 

Furthermore, the DLB group showed a higher participation coefficient in an executive 

variable when compared with the AD group. Moreover, DLB showed a higher global 

efficiency in one executive variable than the AD group. Additionally, the DLB group 

showed a higher local efficiency in one language and one executive variable and a lower 

local efficiency in several verbal and visual memory variables as well as in one attention 

variable compared to AD.  

     Table 3. Summary of the differences in nodal measures between groups.     

Each column shows between-group differences in nodal network measures, with purple 

indicating DLB >HCs/AD and grey indicating DLB <HC/AD.  N.S denotes non-

significant results. False discovery rate (FDR) adjustment at p≤ 0.05 (two-tailed) in all 

comparisons.  

 

DISCUSSION 

We characterized the cognitive connectome in DLB patients compared to by HCs 

and AD patients. Our results showed differences in centrality, integration, and segregation 

measures for DLB compared to HCs and AD groups. 

Our first objective was to characterize the cognitive connectome of DLB patients 

compared to a HC group. Visual inspection of the cognitive connectome of DLB patients 
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showed that, compared to HCs, DLB patients had a diffuse pattern of uniformly weak 

correlations within and between cognitive functions. This diffuse pattern was 

corroborated by quantitative analyses of global and nodal connectome measures, 

characterized as a less segregated connectome in the context of a higher global efficiency. 

Because DLB patients performed worse than HCs in all cognitive domains, this 

combination of segregation and integration (efficiency) findings should be interpreted as 

a pattern of dedifferentiation (38). The dedifferentiation refers to a higher intercorrelation 

between cognitive functions and has been associated with reduced neural specificity to 

cognitive processes (38–40). Previous studies have found that higher global efficiency is 

related to lower cognitive performance in middle-age and older adults (14,41). The 

presence of uniformly weak correlations was also evidenced in quantitative analyses at a 

global and nodal level by the scarce differences found in the centrality measure of 

strength, which is based on the magnitude of correlations. The diffuse and 

dedifferentiation pattern found in DLB reflects greater connectome-wide 

interconnectivity and lower local interconnectivity between neighboring cognitive 

functions, making it difficult to differentiate segregated groups of cognitive functions in 

the cognitive connectome of DLB. This dedifferentiation pattern was associated with a 

worse performance across all cognitive functions in the DLB group. Specifically, the 

higher integration found in DLB cognitive connectome might reflect a tendency among 

pathological groups to show concordance in their dysfunction across a range of different 

cognitive functions (19). Interestingly, two previous functional and metabolic imaging 

studies also found a dedifferentiation pattern, supporting our findings (42,43) and 

suggesting that the results of our study could be a reflection of the impairments observed 

in brain network functioning. However, there are contrary results in other functional or 

metabolic neuroimaging studies applying graph theory (e.g.45–47). This is a reminder 

that although some studies have found associations between changes in brain network 

functioning and cognition (42), these are two different modalities for which one could not 

expect complete agreement in the results. In this context, complementing results across 

distinct modalities would improve our understanding of the relationship between brain 

networks and cognition connectome functioning.  

Furthermore, nodal measures pinpointed connectome impairments in specific 

cognitive functions. Specifically, we observed a higher participation in executive, 

processing speed, and attention in DLB, which indicates that these cognitive functions 

have a more prominent role as connector hubs in the cognitive connectome of DLB. Our 

results are in line with the prominent role of executive functions in regulating other 

cognitive functions (47), as well as the role of processing speed and attention as central 

functions that influence other cognitive functions (18,48,49), and expand these results 

suggesting that impairment in these cognitive functions could be driving the performance 

in other cognitive functions to a greater extend in DLB compared to HCs. Additionally, 

the central position of hub nodes in the connectome carries the risk of becoming highly 

disruptive to the whole connectome in case of failure (50).  The fact that attention emerged 

as an important connector hub in DLB supports the idea that the cognitive fluctuations 

and the pronounced variation in attention present in the DLB group could have affected 

the characteristics of its cognitive connectome. The relevance of attention as connector 

hub highlights the potential of the cognitive connectome to capture the effect of cognitive 

fluctuations on other cognitive functions in DLB. Moreover, our results on cognitive hubs 
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are in line with some neuroimaging studies showing consistent disruptions in attention 

networks and their connections to other brain regions (51). Furthermore, we also observed 

impairments in participation in visual and verbal memory variables in DLB compared to 

HC. In particular, the memory variables with higher participation coefficients had an 

important executive component (i.e., retrieval), whereas those with lower participation 

coefficients were related to consolidation processes. These results are in line with a 

review that suggested that deficits in recall in DLB are secondary to impairment of 

executive functions (13) and extend this information, suggesting that memory variables 

with an executive component could be more central in the cognitive connectome of DLB 

patients and thus, can be driving or influencing the performance in other cognitive 

variables to a greater extent than in the cognitive connectome of HCs.  

Our second objective was to investigate the cognitive connectome of DLB 

compared to an AD group. While differences were less extensive than in comparison with 

HC in the visual inspection of the cognitive connectomes, the global comparisons 

between DLB and AD support the idea that the pattern of dedifferentiation not only 

characterizes DLB compared to cognitively normal people but also the AD group. 

Although previous studies indicated that AD also presents alterations in integration and 

segregation measures in the cognitive connectome (16,19), our results showed that this 

alteration seems more pronounced in DLB. This finding suggests that a pronounced 

dedifferentiation pattern could indicate DLB when compared to AD patients, which is 

especially relevant as DLB is often misdiagnosed as AD (52). It should be noted that, 

contrary to findings in the comparison between DLB and HC, we found differences in 

centrality at a global level between DLB and AD. Specifically, we observed a lower 

average strength in DLB compared to AD, which may be driven by the presence of 

generally weaker correlations in DLB, especially in visual and verbal memory functions. 

This result reinforces the idea that DLB shows a greater pattern of dedifferentiation. 

Differences in nodal measures between DLB and AD groups complemented the global 

results. When comparing DLB with AD, we found an alteration in centrality measures at 

a nodal level, particularly regarding nodal strength. More precisely, we observed a 

reduced nodal strength in DLB, especially in variables related to consolidation processes 

in verbal memory (e.g., MoCA-Recognition/Category cue). This reflects the less central 

role of consolidation processes in DLB as opposed to AD, with the higher impairment in 

consolidation processes in AD having a greater disruptive effect on the performance in 

other cognitive functions (8). In this line, previous studies with AD patients and the 

cognitive connectome analysis approach have reported an important role of memory 

functions in the connectome of AD and its reorganization in different stages of the disease 

(16,17,19). However, to our knowledge, this is the first study showing that this is a 

differential characteristic of the cognitive connectome between DLB and AD. In contrast, 

we observed less significant differences in centrality when considering the participation 

coefficient compared to nodal strength. This might suggest that graph measures computed 

from weighted networks (before binarization, e.g. nodal strength) may be more sensitive 

to subtle differences such as those between DLB and AD than graph measures computed 

from binary networks (e.g. participation). Specifically, we observed a higher participation 

coefficient in one executive variable, suggesting that this aspect is not only a feature of 

DLB compared with HC but is also differentiating DLB patients from AD patients. 

Specifically, a semantic fluency variable showed higher participation in DLB compared 
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with both HC and AD. It is worth noting that this variable not only has an important 

executive component but also performance in this task is determined by processing speed 

and attention which are typically impaired in DLB. Higher participation coefficients in 

this variable highlight the prominent role of executive functions as hubs that regulate 

other cognitive functions, especially in DLB. The significant differences in centrality 

measures between DLB and AD in our study, underscores the potential of cognitive 

connectome analysis to characterize the differential cognitive profile between distinct 

diagnostic groups as well as the relevance of the shift in centrality between cognitive 

domains to identify cognitive profiles indicative of underlying diseases (19). 

Furthermore, we found higher global efficiency in the DLB group in one executive 

variable at a nodal level which, following previous studies, could be related to lower 

performance (14,41). However, the results in global efficiency in this executive function 

contrast with the lack of differences observed in the ANCOVA, suggesting that graph 

theory can capture differences that were not captured by more commonly employed 

methods in cognition such as univariate analyses. Although we did not find differences 

between DLB and AD in local efficiency at a global level, our results suggest that there 

are differences at a nodal level. Of note, we found a predominant reduction of local 

efficiency in DLB in verbal and visual episodic memory variables. Similar to global 

efficiency, this reduction in local efficiency may reflect the characteristic higher 

performance in memory functions in DLB compared with AD (4).  

Our findings could have clinical implications. Knowing how cognitive functions 

are associated with each other and which are central to the cognitive connectome may 

help improve the challenging differential diagnosis between DLB and AD and help 

advance in designing more efficient interventions in DLB. Interestingly, a recent 

systematic review suggested that connectivity measures can potentially become suitable 

biomarkers for DLB (51). Our results extend this idea and suggest that cognitive 

connectome measures may also be promising indicators for the presence of DLB, 

especially considering that cognitive deficits can appear early in the disease (53).  

 This study has some limitations. The different number of cognitive variables 

representing each cognitive function may have led to an underrepresentation of some 

cognitive domains. This study also lacks pathological confirmation for the DLB 

diagnosis. However, the longitudinal aspect of the NACC database will allow to have 

pathological confirmation when participants undergo autopsy. 

In conclusion, we identified a cognitive connectome in DLB characterized by a 

dedifferentiation pattern compared with HCs and AD patients. Executive, processing 

speed, and attention functions played a central role in the cognitive connectome of DLB 

compared HCs. Furthermore, our data suggest that executive functions and memory 

functions and their complex associations with other cognitive functions play a distinct 

role in the cognitive connectome of DLB compared with AD. A novelty of our study is 

the use of graph theory to investigate the cognitive connectome in DLB. Our findings on 

the complex organization of cognition in DLB complement alterations in the brain 

network of DLB patients were revealed by neuroimaging studies. Moreover, our results 

reinforce the idea that connectivity measures, not only functional MRI but also cognitive, 

can potentially become suitable DLB indicators in the future. One of the next challenges 

would be the integration of the cognitive connectome with the more studied brain 
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connectome from structural and functional neuroimaging studies in DLB. Such 

integration could have relevant implications for research and the clinical field in DLB.   
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