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Abstract 
 

Background: Mendelian randomization (MR) leverages genetic variants as 
instrumental variables to determine causal relationships in epidemiology. However, 
challenges persist due to heterogeneity arising from horizontal pleiotropy. On the 
other hand, exploration of the biological underpinnings of such heterogeneity across 
variants can enhance our understanding of disease mechanisms and inform 
therapeutic strategies. Here, we introduce a new approach to instrument partitioning 
based on enrichment of Mendelian disease categories and compare it to a method 
based on genetic colocalisation in contrasting tissues. 

Methods: We employed one-sample and two-sample MR methodologies using 
blood pressure (BP) exposure SNPs grouped by proximity to Mendelian disease 
genes affecting the renal system or vasculature, or body mass index (BMI) variants 
related to mental health and metabolic Mendelian disorders. We then compared the 
causal effects of Mendelian-partitioned SNPs on cardiometabolic outcomes with 
subsets inferred from gene expression colocalisation in kidney, artery (for BP), 
adipose, and brain tissues (for BMI). Additionally, we assessed whether effects from 
these groupings could emerge by chance using random SNP subset sampling. 

Results: Our findings suggest that the causal relationship between systolic BP and 
coronary heart disease is predominantly driven by SNPs associated with vessel-
related Mendelian diseases over renal. However, kidney-oriented SNPs showed 
more pronounced effect size in the colocalization-based analysis, hinting at a 
multifaceted interplay between pathways in the disease aetiology. We consistently 
identified a dominant role of Mendelian vessel and coloc artery exposures in driving 
the negative effect of diastolic BP on left ventricular stroke volume and positive effect 
of systolic BP on type 2 diabetes. We also found higher causal estimates for 
metabolic versus mental health SNPs when dissecting BMI pathway contribution to 
atrial fibrillation risk using Mendelian disease. In contrast, brain variants yielded 
higher causal estimates than adipose in the colocalization method. 
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Conclusions: This study presents a novel approach to dissecting heterogeneity in 
MR by integrating clinical phenotypes associated with Mendelian disease. Our 
findings emphasize the importance of understanding tissue-/pathway- specific 
contributions in interpreting causal relationships in MR. Importantly, we advocate 
caution in interpreting pathway-partitioned effect size differences without robust 
statistical validation. 

Short title: Pathway effects of blood pressure and BMI on cardiovascular traits 

Keywords: body mass index; blood pressure; cardiovascular disease; Mendelian 
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Introduction 
Mendelian randomization (MR) is a statistical method used in epidemiology to study 
the causal relationship between a risk factor (exposure) and an outcome (disease or 
trait) by leveraging genetic variants derived from genome-wide association studies 
(GWAS) as instrumental variables1. The technique is based on the principles of 
Mendelian inheritance, which states that genetic variants, such as single nucleotide 
polymorphisms (SNPs), are randomly assigned during meiosis and therefore should 
be less prone to confounding factors or reverse causation that typically plague 
observational studies (subject to meeting certain assumptions2). 

However, causal estimates derived from individual genetic variants used as 
instrumental variables in MR studies can be highly variable3. Heterogeneity in a 
given single result can arise from two main sources of bias due to violation of key 
MR assumptions. These are horizontal pleiotropy, which occurs when one or more 
genetic variants influence the outcome through multiple independent pathways and 
weak instrument bias which can result in imprecise causal estimates and increase 
heterogeneity4.  

Of chief interest in our study, causal effects vary due to endpoint phenotypes being 
de facto composites, representing divergent underlying biological mechanisms 
covered by different genetic instruments, which unlike bias can improve 
understanding of disease aetiology and help design better targeted interventions. 
Three broad types of approaches have been used so far when studying biological 
sources of heterogeneity: direct clustering based on SNP associations with exposure 
and outcome5,6, clustering of variant associations across a set of traits7–9, or 
instrument clustering informed by tissue gene expression patterns10–13. In particular, 
a biological hypothesis-driven approach proposed by Leyden et al. (2022)11 clusters 
genetic instruments for body mass index (BMI) based on the tissue (brain or 
adipose) where a given BMI SNP is found to colocalise with an expression 
quantitative trait locus (eQTL). The Bayesian colocalisation method coloc14 is 
employed here to compare the association signals at a specific genomic region for 
the two traits of interest (gene eQTL and BMI), considering variables such as effect 
sizes and allele frequencies to determine to what extent these are consistent with a 
single shared causal variant for both traits. In this way, a given SNP instrument is 
putatively linked to a particular gene whose expression (either in the adipose or brain 
tissue, or both) potentially mediates distinct causal effect on a set of cardiometabolic 
traits. 
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Although this approach was used to prioritise the putative causal tissue types 
underlying BMI-associated genes, in general the coloc method as originally 
implemented has been shown to lack specificity when assigning SNPs to genes on 
its own, particularly when using eQTL data due to the co-expression of nearby 
genes15. Another approach of prioritizing candidate genes at GWAS loci is to 
leverage the knowledge of Mendelian monogenic diseases, which are caused by 
rare mutations with large effects on phenotypes. Several studies have reported an 
enrichment of Mendelian disease genes near GWAS loci across various phenotypes, 
suggesting shared genetic basis between complex and Mendelian traits16–18. 
However, not all Mendelian disease genes are equally relevant for a given complex 
trait, and trait symptom similarity ought to be a key metric for gene prioritization19.  

In this paper, we introduce a new approach of Mendelian disease category-driven 
stratification of variants for common exposures used in MR. Blood pressure (BP) is a 
highly polygenic risk factor for a number of cardiovascular20–22 and metabolic23–25 
conditions, with both vasculature-26–28 and kidney-29–31 expressed genes shown 
previously to be of key importance.  Kidneys control blood pressure by regulating 
blood volume and electrolyte balance32, chiefly through natriuresis response33 and 
the renin-angiotensin-aldosterone system (RAAS) hormonal axis. Accordingly, 
impaired kidney function has long been linked to hypertension34. The vasculature 
regulates blood pressure via modulation of vascular tone. This is achieved through 
the processes of vasoconstriction and vasodilation, controlled by the smooth muscle 
cells in the arterial walls35. The endothelium lining the inner surface of blood vessels 
plays a pivotal role by releasing an array of vasoactive substances36. Endothelial 
cells secrete endothelin, a potent vasoconstrictor and nitric oxide, the key 
vasodilator37,38 and can also influence blood pressure through inflammatory 
mechanisms39. If instruments acting on BP via these two key mechanisms show 
different estimates of effect on an outcome in MR, we hypothesize that this will be 
due to pleiotropy in one or both subsets of instruments.  

We begin by contrasting the kidney and vascular components of blood pressure risk 
factor burden on cardiometabolic disease. To achieve this, we carry out one-sample 
and two-sample multivariable MR analyses utilising blood pressure (systolic and 
diastolic) exposure variants grouped by co-sharing genetic loci with Mendelian 
disease genes whose symptoms affect either the renal system or vasculature 
(Figure 1). We compare our results to the colocalisation-based method proposed by 
Leyden et al. (2022)11 by linking blood pressure genetic variants to regulation of 
gene expression in kidney or arteries. We then return to the BMI exposure reported 
by Leyden et al.11 to ask if the effect of variants grouped by link to metabolic and 
mental health Mendelian disease corresponds to the effect obtained by adipose and 
brain tissue colocalisation-based subsets. Finally, using random re-sampling of the 
exposure SNP sets we investigate if the effect size differences observed in coloc- or 
Mendelian- based SNP subdivisions are likely to arise by chance. Our findings 
provide valuable insights into tissue-based underpinnings of causal links between BP 
or BMI and cardiometabolic traits. 
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Materials and Methods 
Exposure and outcome GWAS datasets  
Our exposure datasets consisted of systolic (SBP) and diastolic blood pressure  
(DBP) GWAS produced by ICBP in 201827 and body mass index (BMI) produced by 
the GIANT consortium in 201840 (Supplementary Table 1). These large studies, 
comprising ~1 million and ~0.7 million individuals of European ancestry, respectively, 
were highly powered and returned a number of top variants (~900) implicated in a 
variety of biological processes in each GWAS.   

Our outcome GWAS datasets included common cardiometabolic diseases: atrial 
fibrillation (AF)41, heart failure (HF)42, coronary heart disease (CHD)43, myocardial 
infarction (MI)43, stroke44, and type 2 diabetes (T2D, see Supplementary Table 1 for 
details). GWAS for continuous measurements of cardiac function included: left 
ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume 
(LVESV), left ventricular ejection fraction (LVEF), and left ventricular stroke volume 
(SV).  

As a negative control, we selected an outcome whose incidence is likely not to be 
causally impacted by BMI or BP as indicated by a previous MR study45: age-related 
macular degeneration (AMD)46. 

All the GWAS summary statistics, with the exception of left ventricular function traits 
(downloaded from https://personal.broadinstitute.org/ryank/) and early-onset AMD 
(downloaded from https://homepages.uni-
regensburg.de/~wit59712/earlyamd/winkler_et_al_earlyamd_meta.gz) were 
accessed via Open GWAS47.   

We note that we used exposure and outcome GWAS datasets with non-overlapping 
participants whenever feasible, to limit bias48, however a significant proportion of 
individuals in the AF and early-onset AMD (~20-40%), as well as in the left 
ventricular function GWASes were obtained based on UK Biobank individuals, who 
are also included in our exposure GWAS for BMI and BP.  

Genetic instrument selection 
BMI and BP GWAS summary statistics were obtained in GWAS-VCF49 format from 
the OpenGWAS platform, and were subsequently converted to the TwoSampleMR50 
package format using the gwasvcf_to_TwoSampleMR function from the gwasglue 
(https://mrcieu.github.io/gwasglue/) R package. In order to identify independent 
genetic instruments for each exposure, we first filtered SNPs that showed strong 
association at a genome-wide significance level (p-value < 5 × 10-8). Next, the SNPs 
were clumped using ld_clump wrapper for plink ver 1.94351 from the ieugwasr R  
package (https://mrcieu.github.io/ieugwasr) to ensure that linkage disequilibrium (LD) 
as measured by r2 was < 0.001 within 10 Mbp in 1000 Genomes52 European panel. 
We sometimes used SNP proxies showing high genetic correlation (r2 > 0.8) in the 
instances when the chosen SNP was missing in the outcome dataset.  

Assignment of genetic instruments to pathways: Mendelian disease 
Having obtained 887 independent SNP instruments for BMI, 914 for diastolic BP and 
863 for systolic BP, we used MendelVar19 to partition the variants into subsets 
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enriched for Mendelian disease categories. Briefly, we used the MendelVar19 
pipeline to generate LD-based genomic intervals around each input SNP (delimited 
by most distant SNP with minimum r2 = 0.8 within 1 Mbp in either direction). Then, 
we checked for enrichment of phenotype ontology terms linked to Mendelian disease 
genes (defined as coding region with 1000 bp 5’ and 3’ flanking regions) present 
within the interval using the INRICH53 software contained in the MendelVar platform.  

Assignment of genetic instruments to tissues: colocalisation 
We followed the method described in Leyden et al. (2022)11 to assign SNPs to 
subsets with eQTL colocalisation evidence in at least one of the two chosen tissue 
types (kidney and vasculature). For BP traits, we used cis-eQTLs in kidney 
(NephQTL254 tubulointerstitial n=311 and glomerular n=240) and arteries (GTEx 855 
aorta n=387 and coronary n=212); similar sample sizes across tissues should result 
in comparable power. We used intervals of +/- 100 kbp centred on each exposure 
SNP for colocalisation in the coloc R software56, and a stringent posterior probability 
H4 (PPH4, hypothesis 4: shared causal variant between exposure GWAS and cis-
eQTL dataset) threshold of 0.9 to partition SNPs into coloc-based tissues.  

Enrichment analysis within subsets 
We used ToppFun from ToppGene Suite57 and over-representation module in 
ConsensusPathDB58 (both with default settings) to test for global enrichment of 
functional terms in gene subsets identified by MendelVar and coloc harnessing 
popular ontologies, such as GO59, Reactome60 and KEGG61. 

One sample Mendelian Randomization analyses 
Our methodology for one-sample MR analyses followed the protocol described in 
Leyden et al. (2022)11 and utilized individual-level data from the UK Biobank 
62(Application number: 81499). This involved the creation of a genetic risk score 
(GRS), factoring in all SNPs or coloc/Mendelian SNP subsets, weighted according to 
their respective effect sizes. The sample comprised 334,398 unrelated people of 
European descent, and was established after excluding participants with withdrawn 
consent, genetically related, or those who did not cluster with "white European" 
group based on K-means clustering (K=4).  

Subsequently, we used all exposure (BMI, DBP, SBP) SNPs to derive MR estimates 
employing either linear or logistic regression using AER and mass R packages. We 
analysed all available outcomes (Supplementary Table 2: AF, HF, CHD, MI, T2D, 
stroke, AMD, LVEDV, LVESV, LVEF, SV) and adjusted for variables such as age, 
sex, the leading 10 principal components, and a binary marker for genotype chips. A 
rank-based inverse normal transformation was applied to continuous cardiac 
outcomes (LVEDV, LVESV, LVEF, SV) before analysis. We carried out the 
univariable analysis using each coloc or Mendelian SNP GRS as exposure in turn. 
Finally, we deployed multivariable models which incorporated either the two coloc- or 
two Mendelian-based SNP subset GRS to quantify the direct effect of each subset 
on the outcome. 

To estimate the type 1 error rate due to the fraction of shared individuals between 
our GRS construction GWAS datasets and the cases and controls in the UK Biobank 
sample, we used the ‘‘sample overlap” web app 
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(https://sb452.shinyapps.io/overlap/).The results indicated that, based on the strong 
F-statistics of our instruments, the overlap of samples is unlikely to cause significant 
bias in our analyses (type 1 error rate < 0.05). 

Sensitivity analyses 
We also used GWAS exposure and outcome datasets described above in two-
sample MR analysis. Firstly, we carried out univariable MR analysis, using all top 
SNPs for a given exposure and then Mendelian or coloc SNP subsets separately. 
Secondly, for coloc SNP subsets we ran multivariable MR including both tissue 
subsets to obtain mutually adjusted “independent” effect as per Leyden et al. (2022). 
In this analysis, each instrument’s effect size is weighted by coloc’s PPH4 in its target 
tissue. We were not able to carry out multivariable MR for Mendelian SNP subsets 
due to lack of a suitable metric by which to scale individual variants’ effects. We 
chose the “TwoSampleMR”50 R package for the standard inverse-variance weighted, 
mode-weighted, median-weighted and MR-Egger MR analyses as well as 
multivariable MR analysis. We then calculated instrument’s strength (F-statistics, R2) 
and heterogeneity (Cochran’s Q and I2)63. 

In addition to including a negative control for the outcome (AMD), we also attempted 
to provide a negative control SNP partitioning in the Mendelian disease context. We 
subset the exposure SNPs by a feature which was not expected to biologically 
influence the outcome (mode of inheritance: autosomal dominant or recessive) and 
which was not significantly enriched in any Mendelian blood pressure SNP set. We 
did not run this control example for BMI exposure, since we did find enrichment of 
autosomal dominant disease-assigned SNPs among mental health disease SNPs in 
the dataset, mostly driven by intellectual development disorders (χ2=10.3, N=71, p-
value=0.001, Supplementary Table 3).  

Random sampling of SNP subsets 
Finally, we decided to empirically determine how often the difference in MR 
estimates between randomly drawn SNP subsets equals or exceeds the one 
observed for Mendelian or coloc-partitioned instruments. When simulating subsets 
for comparison with Mendelian disease-partitioned instruments, we drew random n1 
SNPs without replacement and then separately n2 SNPs without replacement (where 
n1 and n2 correspond to the number of SNPs in the original SNP subsets) to 
represent two SNP subsets which can randomly overlap. For coloc, the procedure 
for drawing SNPs was modified to randomise the association between SNP, tissue 
and colocalisation probability. In that case, we first randomly permuted all PPH4 
values across both tissues and variants, following which we extracted SNPs with 
PPH4 values above the chosen threshold (0.9 in our analysis, and 0.8 in replication of 
Leyden et al. (2022), see below) to be used as two random SNP subsets. We then 
ran equivalent 1 sample and 2 sample MR analyses as for the “true” coloc and 
Mendelian SNP subsets. The entire procedure was repeated 1,000 times per each 
exposure-outcome and analysis type combination.  

Replication of Leyden et al. (2022) 
We re-analysed the Leyden et. al (2022)11 dataset for select outcomes to compare 
their MR results using BMI exposures assigned by coloc to the adipose (86 SNPs) 
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and brain (140 SNPs) tissues with our Mendelian disease-partitioned approach. We 
also established the extent to which the difference between coloc-partitioned SNP 
subsets in the MR analyses could emerge by chance, using random instrument re-
sampling as described above.  

Results 
Assignment of variants to pathways - Mendelian 
Using MendelVar, we assessed overrepresentation of Mendelian disease genes 
(and their symptoms) in strong LD with blood pressure GWAS top loci (Figure 1). In 
particular, we were interested in investigating enrichment of Mendelian phenotypes 
related to kidney as opposed to vasculature. The two most enriched terms found 
were “abnormal renal morphology” (DBP: 90 SNPs, p-value=8x10-5; SBP: 84 SNPs, 
p-value=2.8x10-4, Supplementary Table 4-7) and “abnormal blood vessel 
morphology” (DBP: 79 SNPs, p-value=1.2x10-4; SBP: 83 SNPs, p-value=2x10-5) from 
the Human Phenotype Ontology (HPO)64. The instruments in the “renal” and “vessel” 
subsets showed substantial overlap: 37 for diastolic SNPs and (p-value= 1.2x10-4) 
42 for systolic SNPs (p-value=2x10-6, Supplementary Figure 1A-B). 

We then used independent ontologies (featured in ConsensusPathDB58 and 
ToppGen57 resources) not related to Mendelian disease to check if they provide 
orthogonal enrichment evidence for the role of the assigned genes in a given 
pathway or tissue (Supplementary Tables Enrichment (STE) and Supplementary 
Results). We found that kidney-related terms were significantly enriched in the 
“renal” gene set (Supplementary Dataset STE 1-4), e.g. renal system development 
(Gene Ontology65, DBP q-value: 2.6x10-9; SBP q-value: 4.7x10-6). However, we also 
observed a significant overrepresentation of gene sets related to metabolism, 
hormonal regulation, type 2 diabetes and cancer. Our “vessel” gene set was found to 
contain a strong overrepresentation of cardiovascular terms across many ontologies 
(Supplementary Dataset STE 5-8): e.g. blood vessel development (Gene Ontology, 
DBP q-value: 7.7x10-6; SBP q-value: 4.8x10-10). To a lesser extent, we also found 
enrichment of kidney-related terms (renin secretion, EPO signalling pathway) in the 
“vessel” gene set and cardiovascular-related terms (blood vessel development, heart 
development) in the “renal” set which is not unexpected given substantial overlap of 
“renal” and “vessel” SNPs.  

For BMI, we used the Alliance of Genome Resources slim (28 general disease 
types) version of Disease Ontology66 where the top most enriched categories were 
“disease of metabolism” (45 SNPs, p-value=8.8x10-4, Supplementary Tables 8-9) 
and “disease of mental health”/”developmental disorder of mental health” (39 SNPs, 
p-value=4.1x10-3). Choosing this ontology allowed us to contrast the contribution of 
variants related to metabolism and brain function, which have previously shown 
distinct patterns across disease outcomes11. The “metabolic” and “mental health” 
SNP subsets were largely disjoint, with only 6 shared SNPs (p-value=0.71, 
Supplementary Figure 1 C). The good separation of “mental health” and 
“metabolic” gene sets was reflected in the top terms enriched in non-Mendelian 
disease functional ontologies (Supplementary Dataset STE 9-12). The most 
enriched terms in the “mental health” set related to the brain, in particular synaptic 
signalling, e.g. neuronal system (Reactome67, q-value: 1x10-3). Reassuringly, the 
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strongest enrichment of terms in the “metabolic” gene set related to metabolism and 
type 2 diabetes, e.g. metabolism (Reactome, q-value= 5x10-11).  

Assignment of variants to tissues – coloc 
We then applied the previously proposed11 approach with colocalisation used to 
assign lead blood pressure SNPs to tissues as an alternative method to investigate 
the difference in SNP sets with roles primarily in kidney or vasculature 
(Supplementary Tables 10-11). Use of high minimum posterior probability of 
colocalisation threshold (PPH4 > 0.9) for blood pressure top loci resulted in 
assignment of 117 SNPs to the aorta or coronary (referred to as “artery” collectively) 
tissue for DBP and 132 for SBP. In kidney, 87 SNPs colocalised in the glomerular or 
tubulointerstitial tissues (referred to as “nephro” collectively) for DBP and 77 for SBP 
(Supplementary Tables 12-13).  Among “artery” SNPs, the majority of loci 
colocalised in the aorta (108 for SBP, 126 for DBP; Supplementary Figure 1 D-E), 
and the loci shared between the aorta and coronary artery amounted to 
approximately one-third of all. Among “nephro” SNPs, tubulointerstitial tissue 
dominated with 65 and 64 SNPs for DBP and SBP (Supplementary Figure 1 D-E), 
but less sharing between the two tissue types was found than in the “artery” subsets 
– one-quarter and one-fifth was common to both tubulointerstitial and glomerular in 
the DBP and SBP variant sets, respectively.  Comparison of “artery” and “nephro” 
SNP sets revealed some overlap, with 36 SNPs shared in DBP (p-value<1x10-6) and 
42 SNPs shared in SBP (p-value<1x10-6).  

Coloc-derived assignment showed limited alignment with functional pathways 
relevant to each tissue (Supplementary Dataset STE 13-20), with very few weakly 
enriched terms found overall: 4 for “artery” SNPs in DBP (hypertrophic 
cardiomyopathy, ACE inhibitor pathway, metabolism of lipids, mitochondrial electron 
transport chain; q-value=0.029-0.047), 3 for “nephro” SNPs in DBP (O-glycosylation 
of TSR domain-containing proteins, aquaporin-mediated transport, transport of small 
molecules; q-value=0.024-0.047) and 3 cardiomyopathy terms were enriched for 
among “nephro” SBP genes (q-value=0.017-0.024).  

BMI colocalization results were obtained from Leyden et al. (2022). Among those, 
140 SNPs were assigned to the brain and 86 to the adipose tissue, with 43 
overlapping (p-value<1x10-6). Enrichment of genes with colocalisation evidence for 
BMI in adipose and brain tissue sets showed limited overlap with biologically relevant 
terms, especially for the brain (Supplementary Dataset STE 21-24); this replicated 
analyses previously described in Leyden et al. (2022). 

Comparison of Mendelian- and coloc- derived SNP sets  
Finally, comparison of SNP sets derived using Mendelian- and coloc- assignment 
methods showed that they are largely distinct and could potentially offer orthogonal 
evidence (Supplementary Figure 1 F-G). Altogether, 33 DBP (p-value=0.35) and 34 
SBP (p-value=0.41) SNPs were found in both Mendelian and coloc-based SNP 
subsets, as opposed to 234 and 234 non-shared SNPs, accordingly. Similar 
observations were made for BMI (Supplementary Figure 1 H-I): only 5 out of the 45 
“mental health” Mendelian SNPs were shared with coloc groupings as assigned 
previously by the Leyden et al. (2022) study – 4 with “brain” and 1 with both 
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“adipose”/”brain” (adipose p-value=0.98, brain p-value=0.77). For “metabolic” 
Mendelian SNPs higher overlap was found: 17 out of 39 SNPs were shared with 
coloc subsets (p-value=0.02): 3 SNPs with “adipose“, 5 SNPs with both 
“adipose“/“brain“ and, unexpectedly, 9 SNPs with “brain“ colocalising SNPs (adipose 
p-value=0.06, brain p-value=0.006).   

Pathway-based Mendelian Randomization analyses for blood pressure 
Having established the Mendelian disease- and coloc-derived SNP sets for blood 
pressure, we then proceeded to use them as exposures in one sample MR studies 
carried out in individuals of European ancestry in the UK Biobank.  We focussed on 
selected cardiometabolic outcomes (Supplementary Table 2), as they have been 
firmly established to be causally influenced by blood pressure22,68–70 and were 
previously evaluated using the coloc-based approach with respect to BMI by Leyden 
et al. (2022).  

We confirmed that DBP and SBP have a strong causal relationship with coronary 
heart disease (Figure 2, Supplementary Table 14):  OR95%CI=1.09-1.11 and 
OR95%CI=1.06-1.07, respectively. Selecting Mendelian-based SNP subsets (“renal” 
and “vessel”) and adjusting for shared effect in multivariable MR analysis 
(Supplementary Table 15) containing both subsets indicates that the “vessel” 
subset is driving the positive effect of DBP and SBP on CHD  (DBP: OR=1.17, 
OR95%CI=1.14-1.21, p-value=1.5x10-28; SBP: OR=1.13, OR95%CI=1.11-1.15, p-
value=2x10-43), relative to “renal” subset (DBP: OR=1.04, OR95%CI=1.01-1.07, p-
value=6.2x10-3; SBP: OR=1.01, OR95%CI=0.99-1.02, p-value=1.9 x10-2), with 95% 
confidence intervals of the two subsets distinct and non-overlapping.   

However, comparison with coloc-based subsets (Supplementary Table 16)  
revealed the opposite trend with the kidney “nephro” subset (DBP: OR=1.11, 
OR95%CI=1.08-1.14, p-value=2.8x10-16; SBP: OR=1.08, OR95%CI=1.06-1.09, p-
value=6.8x10-29) showing a stronger effect size than the “artery” SNP subset in the 
MVMR analysis (DBP: OR=1.07, OR95%CI=1.05-1.10, p-value=6.8x10-9; SBP: 
OR=1.06, OR95%CI=1.04-1.07, p-value=3x10-18).  All of the coloc exposures provided 
evidence of causal effect on CHD for SBP and DBP, unlike Mendelian “renal” SNP 
subset for SBP which does not seem to causally influence CHD (p-value=0.19).  

Limiting exposures to SNPs specific to each subset resulted in similar causal 
estimates as when using all SNPs. We also show similar results for myocardial 
infarction (Supplementary Figure 2) which is closely genetically correlated to CHD 
(Supplementary Figure 3). Point estimates for MI display greater uncertainty and 
while the difference between Mendelian disease-partitioned exposures persists, it 
was not apparent for “artery” and “nephro” coloc-based subsets.  

On the other hand, coloc and Mendelian-based SNP subsets showed consistent 
direction of effect for an important cardiac function outcome, left ventricular stroke 
volume (SV, Figure 3). Analyses including all SNPs show reduction in stroke volume 
on increase in DBP (beta=-0.015, beta95%CI=(-0.021,-0.008), p-value=2.9x10-6), but 
the opposite for SBP (beta=0.006, beta95%CI=(0.002,0.01), p-value=2.7x10-3). There 
is limited support for “renal” (beta95%CI=(-0.013,0.034) and “nephro” (beta95%CI=-
0.011,0.034) diastolic BP exposures being causally associated with SV.  We find that 
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it is the “vessel” (beta=-0.052, beta95%CI=(-0.076,-0.028), p-value=2.8x10-5) and 
“artery” diastolic BP (beta=-0.03, beta95%CI=(-0.051,-0.009), p-value=5.6x10-3) 
exposures that drive the negative effect of DBP on stroke volume. Mendelian 
“vessel” SNPs also have a certain negative effect on systolic BP (beta95%CI=(-0.034,-
0.004)) while the “renal” SNPs contribute to the overall positive effect of SBP 
(beta95%CI=(0.0003,0.0289)), however there is no clear distinction for coloc-
partitioned exposures.    

Dissecting the effect of various SNP subsets on type 2 diabetes reveals a 
heterogenous landscape (Figure 4). We first confirmed the increase in the odds of 
T2D associated with elevated blood pressure (DBP OR95%CI=1.02-1.04; SBP 
OR95%CI=1.03-1.04). Next, we found that Mendelian-disease partitioned subsets 
show comparable effect on the risk of T2D for DBP, but the 95% confidence intervals 
are wide. Whilst “vessel” SBP exposure produces higher odds of T2D (OR=1.07, 
OR95%CI=1.05-1.09, p-value=1.5x10-12) than “renal” SBP exposure (OR=1.03, 
OR95%CI=1.01-1.05, p-value=4.2x10-4), effect size estimates are partially overlapping. 
In agreement with this pattern, coloc-based “artery” SNPs have a positive causal 
effect on the risk of T2D for both DBP (OR=1.08, OR95%CI=1.05-1.11, p-
value=4.3x10-8) and SBP (OR=1.06, OR95%CI=1.04-1.07, p-value=8.6x10-17), while 
null effect was found for “nephro” SNPs (DBP OR95%CI=0.97-1.03; SBP 
OR95%CI=0.99-1.02).  

Repeating the analysis above and analysing each exposure subset independently 
using one sample MR univariable framework (Supplementary Table 15-16) 
produces similar patterns between SNP subsets, with any differences in effect 
estimates accentuated further in MVMR analyses.  

Sensitivity analyses for blood pressure 
We used summary-level statistics based on independent samples for exposure and 
outcome to see if two-sample MR returns results in agreement with those obtained in 
one-sample MR (Supplementary Table 17- 19). In general, we discovered that two-
sample analyses had less power to detect any differences in effect between SNP 
subsets, but direction of effect was consistent with that observed in one-sample MR. 
The one exception was a more pronounced causal effect of “nephro” SBP exposure 
on myocardial infarction (OR=1.04, OR95%CI=1.02-1.06, p-value=2.3x10-4) relative to 
“artery” (OR=1, OR95%CI=0.98-1.02, p-value=1), which corresponds to similarly 
dominant role of “nephro” SBP SNPs in one-sample MVMR for the related outcome 
– CHD.  

We found that mean absolute effect sizes tend not to differ significantly between all 
SNPs and Mendelian-/coloc-based exposure subsets (Supplementary Table 20). 
Among all SNP subsets, mean F-statistics was > 60 suggesting low risk of weak 
instrument bias.  

We then proceeded to evaluate changes in the average heterogeneity (Qhet=Q/(Qdf-
1)) as we expected that it should decrease within tissue- or pathway-based SNP 
subsets in comparison to all SNPs representing a variety of pleiotropic processes. 
However, we did not detect a downward trend in average heterogeneity which 
instead varied in unexpected ways. For example, we found Qhet to be lower among 
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Mendelian-partitioned and coloc-partitioned exposures relative to all DBP SNPs 
(Supplementary Table 21-23). However, for SBP Mendelian “renal” and coloc 
“artery” SNP subsets showed higher Qhet than all SBP SNPs, while Mendelian 
“vessel” and coloc “nephro” SNP subsets were the opposite. 

Next, we repeated our analyses using a negative outcome phenotype: age-related 
macular degeneration45. The one-sample and two-sample MR results 
(Supplementary Table 15-16, 18-19) did not indicate strong evidence of causal 
effect for our coloc- or Mendelian- based SNP subsets, in line with our expectations. 
We did find one weak non-null result, however, only at a nominal level 
(Supplementary Figure 4) for SNPs specific to the Mendelian “renal” subset in DBP 
and SBP (DBP OR=1.07, OR95%CI=1-1.14, p-value=0.03; SBP OR=1.04, 
OR95%CI=1.00–1.08, p-value=0.03). 

Negative control partitioning of exposures by main modes of Mendelian disease 
inheritance (autosomal “dominant” or “recessive”) showed no association with the 
Mendelian “renal”-”vessel” subdivision (Supplementary Figure 5 A, B) for DBP (p-
value=0.13) and SBP (p-value=0.4, Supplementary Table 3). We also assumed 
that this negative control feature should not be associated with biologically 
meaningful pathway- or tissue- based partitioning of exposure SNPs, which may not 
hold. We did indeed detect a substantial difference between “dominant” and 
“recessive” SNPs sets when focussing on CHD as outcome in one sample MR 
analysis (Supplementary Figure 6). For instance, all “dominant” diastolic BP SNPs 
had a higher effect on CHD (OR=1.12, OR95%CI=1.09-1.14, p-value=3.9x10-23) than 
all “recessive” SNPs (OR=1.08, OR95%CI=1.05-1.10, p-value=1.8x 0-11) 
(Supplementary Table 24). However, when limiting ourselves to exposure SNPs 
“specific” to each subset, the opposite conclusion was obtained with higher effect 
size seen for “recessive” SNPs (OR=1.22, OR95%CI=1.17-1.26, p-value=3.9x10-28) 
than “dominant” (OR=1.06, OR95%CI=1.03-1.09, p-value=3.4x10-4). No meaningful 
difference between the SNP subsets was observed in two-sample MR results 
(Supplementary Table 25, 26). In addition, much less variation across SNP subsets 
was found for the T2D outcome (Supplementary Figure 7), with the exception of 
one outlier: specific “recessive” SBP SNP subset. 

Pathway-based Mendelian Randomization analyses for body mass index 
We found that the Mendelian disease-partitioned BMI SNPs showed the largest 
difference between “mental health” and “metabolic” SNPs for atrial fibrillation. All BMI 
SNPs confirmed a moderate effect on AF (OR=1.05, OR95%CI=1.04-1.06, p-
value=4.6x10-55; Supplementary Table 27). This effect size was then matched by 
“mental health” SNPs in one sample multivariable MR analysis (OR=1.05, 
OR95%CI=1.02=1.08, p-value=5.6x10-4, Supplementary Table 28) but a larger effect 
size was found for “metabolic” exposures (OR=1.10, OR95%CI=1.07-1.13, p-
value=3.3x10-10). Similar magnitude of differences between “all”, “metabolic” and 
“mental health” exposures was obtained in 1 sample univariable analyses 
(Supplementary Table 28) and 2 sample MR analyses (Supplementary Table 29-
30). This is in contrast to coloc-based SNP stratification carried out by Leyden et al. 
(2022) and replicated here (Supplementary Table 31-34), where the “brain” SNP 
subset was found to increase the risk of AF more strongly (1 sample MVMR 
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OR=1.04, OR95%CI=1.02-1.06, p-value=6.4x10-6, Supplementary Table 32),  than 
the “adipose” SNP subset (1 sample MVMR OR=1.02, OR95%CI=1-1.04, p-
value=0.08) but the effect size difference was relatively attenuated.  

Sensitivity analyses for body mass index 
Average heterogeneity (Qhet) of “mental health” and “metabolic” BMI SNPs for AF 
was close to average heterogeneity for all BMI SNPs (Supplementary Table 35-36) 
– 2.5, 2.05, 2,19, respectively. We also did not uncover evidence for systematically 
reduced average heterogeneity among SNP subsets across other outcomes.  

Results from negative control outcome (AMD) indicated that “mental health” and 
“metabolic” SNP subsets analysed independently in 1 sample/2 sample univariable 
MR or in conjunction with each other (1 sample multivariable MR) show no evidence 
for causal role, as per expectations (Supplementary Table 28, 30).   

Random sampling of SNP subsets 
Overall, we noticed that one sample MVMR results showed a variety of effect size 
differences between exposure SNP subsets, ranging from negligible (e.g. diastolic 
BP Mendelian partitioning with respect to T2D), medium with overlapping confidence 
intervals (systolic BP Mendelian partitioning with respect to T2D) to totally distinct 
(systolic BP Mendelian partitioning with respect to CHD). Conclusions from our 
negative control outcomes and exposures were unclear as we sometimes found 
substantial differences in effects between Mendelian and coloc exposure subsets 
which appeared not to satisfy our null expectations. Therefore, we found it difficult to 
establish whether any differences detected were likely to be both biologically 
meaningful and not driven by chance assortment. To address this issue, we 
employed a simulation technique, where we re-ran our analysis pipeline 1000 times 
for each exposure-outcome pair using 2 subsets of SNP sampled randomly from 
across all the exposure SNPs. This allowed us to quantify the frequency of the 
absolute differences in effect sizes such as observed in our MR analysis (or greater) 
relative to background (in the process obtaining two-tailed p-value with the floor 
value of 10-3), and empirically derive 95% confidence intervals of the difference 
(Supplementary Table 37).  

Figure 5 provides an overview of this sensitivity approach run for all the exposures 
(BMI, SBP, DBP), SNP subsets (Mendelian, coloc), MR methods (1 sample or 2 
sample) and MR models (univariable, multivariable). Across all the MR analyses with 
blood pressure as exposure, we find strong evidence for the differential effect of 
Mendelian “renal” and “vessel” exposures on CHD (p-value range: 0.001-0.042) 
along with MI. In addition, coloc “artery” and “nephro” systolic BP subsets show a 
strong difference of effect on T2D, CHD and MI (p-value range: 0.007-0.042) but the 
latter two only in the two-sample MR setting. Significant evidence based on only 1 
sample MVMR was found among coloc-based SNP subsets for diastolic BP and 
T2D, as well as BMI and CHD/MI. Both one-sample and two-sample MVMR 
analyses support a differential effect of coloc-based “adipose” and “brain” SNPs on 
BMI (p-value=0.001-0.013). 

We also find weaker evidence for a difference between “renal” and “vessel” blood 
pressure subsets with respect to the stroke volume outcome (1 sample MVMR SBP 
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p-value= 0.043, DBP p-value=0.025). There was little evidence against  the null 
hypothesis (of chance SNP assortment) for any of the BMI or BP pathway-based 
results with respect to atrial fibrillation, heart failure, stroke, LVEDV, LVESV or LVEF, 
with the exception of the following two-sample univariable MR analyses involving 
Mendelian disease-partitioned instruments: BMI effect on atrial fibrillation (p-
value=0.012), systolic and diastolic BP effect on heart failure (p-value < 0.02). 

Discussion 
In this investigation, we employed MR to dissect the causal associations between 
blood pressure or body mass index and cardiometabolic traits, leveraging biological 
pathway information. To do so, we classified genetic instruments into Mendelian 
disease categories with MendelVar or assigned SNPs to tissues through 
colocalization. Our findings underscore the significance of renal and vascular genes 
in blood pressure-related conditions, revealing distinct sets of SNPs from Mendelian 
and colocalization methods. Notably, while both Mendelian and colocalisation-based 
SNP sets implicated diastolic and systolic BP in coronary heart disease, they 
emphasized different physiological routes – vessel and kidney, respectively. We 
report similarly contrasting results for the effect of BMI on atrial fibrillation, when 
comparing estimates using Mendelian- (“metabolic”-led) and coloc- (“brain”-led) 
derived instrument subsets. Sensitivity analyses emphasized the consistent direction 
of effects in one-sample and two-sample MR (univariable and multivariable) but 
showed some variability in magnitude. We also conducted simulations to assess the 
probability that differences in causal estimates between SNP subsets arose by 
chance, and these confirm the validity of interpretation of our main findings. 

In the main results, we presented examples of representative cardiac traits – CHD 
and SV, which as shown in Supplementary Figure 2 are highly genetically correlated 
with MI and LVEDV/LVESV, respectively. As expected, and demonstrated in Figure 
5, magnitude of effect size difference between Mendelian disease- and coloc- 
partitioned SNP subsets for those related exposures is highly congruent. For 
ventricular function traits, we only focus on one-sample MR as two-sample results 
can be biased due to sample overlap of UK Biobank individuals with our exposure 
sample. The interesting outlier effect of increased importance of “metabolic” SNPs 
relative to “mental health” observed for atrial fibrillation in two-sample univariable MR 
could be also potentially affected by the sample overlap bias. 

A certain limitation to the current Mendelian disease-partitioning approach is the 
inability to model the subsets jointly using the multivariable approach in a two-
sample MR setting. Altogether, we find a comparable number of results (14) with 
empirically determined significant differences (p-value < 0.05) in one-sample 
(univariable: 3, multivariable: 11) versus two-sample MR (univariable: 10, 
multivariable: 4), with univariable and multivariable results mostly agreeing in the 
direction and magnitude of effect for the same SNP subsets. In some cases, we 
found reassuring agreement across all MR types and model specifications: 
Mendelian subsets for diastolic BP versus CHD, coloc subsets for systolic BP and 
BMI versus T2D. In certain cases, pronounced differences were only observed in a 
single setting using one model type but not the others, such as: coloc-based 
partitioning for BMI with respect to CHD (1 sample multivariable), Mendelian 
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disease-based partitioning of DBP and SBP with respect to heart failure (2 sample 
univariable). In the first instance, one may expect for some differential effect to 
become apparent only in the multivariable analysis when adjusting for the shared 
effect. Nevertheless, lack of effect difference replication in corresponding two-sample 
MVMR is troubling, as the instrumental variable subsets were found not to suffer 
from weak instrument bias previously12. The second example involving effect 
difference observed only in two-sample univariable analysis should be treated as 
less reliable due to poor replication in one-sample setting, especially in multivariable 
analysis evaluating direct effects.  

Therefore, to gain a better understanding of tissue- or pathway-partitioned effects 
multiple types of MR analyses should be undertaken, whenever possible. For 
instance, in a recent publication, Leyden et al. (2023)12 applied the coloc method to 
study the effect of adipose and brain tissues in BMI on cancer in two-sample setting 
only, due to availability of one-sample datasets with sufficiently large numbers of 
cases. While they noted that adipose-derived variants may predominantly drive the 
association with endometrial cancer, our random sampling control found weak 
support for a significant difference between adipose and brain in a multivariable 
analysis (p-value=0.161). 

We expected that stratification of SNPs by pathway and tissues should result in 
reduced heterogeneity compared to using all SNPs, which can capture a wider range 
of biological processes. However, our coloc- and Mendelian disease-based results 
did not consistently support this expectation. For some SNP subsets, the 
heterogeneity was indeed lower, which was in line with the initial hypothesis. 
However, other SNP subsets showed greater heterogeneity than all SNPs combined, 
suggesting that those specific pathways or tissues might still be highly pleiotropic or 
indicate presence of some bias in the method, such as misclassification of SNP 
functional category. 

Our new approach uses enrichment of ontology terms assigned to Mendelian 
diseases whose causal genes share the same genetic locus as the exposure SNPs, 
which can sometimes result in ambiguous assignment to appropriate biological 
pathways. For example, rs12630999 from BMI was allocated to both the “mental 
health” and “metabolic” set due to location between two neighbouring Mendelian 
disease genes: STAG1 and PCCB, respectively. In another case, one systolic BP 
variant (rs3915499) was associated with two different pathways (“renal” and 
“vessel”) due to the two distinct monogenic diseases caused by disruption of smooth 
muscle myosin heavy-chain 11 gene71 whose intron the SNP resides in. Under such 
a scenario, MendelVar cannot provide a more nuanced prediction regarding the 
“correct” pathway(s). In this example, “vessel”-only assignment could be more 
suitable as the associated disease, familial thoracic aortic aneurysm 4 is defined by 
profound structural abnormalities in the aorta, while a renal symptom 
(hydronephrosis) is only a marginal feature of megacystis-microcolon-intestinal 
hypoperistalsis syndrome 2. Nonetheless, we found that in many cases MendelVar 
unequivocally assigns exposure SNPs to genes causal for disorders with strong links 
to a single category: “renal” - CEP164 (nephronophthisis 15), NRIP1 and PBX1 
(congenital anomalies of kidney and urinary tract syndromes); “vessel” - EIF2AK4 
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(familial pulmonary capillary hemangiomatosis), PRDM6 (patent ductus arteriosus), 
HTRA1 (cerebral arteriopathy with subcortical infarcts and leukoencephalopathy); 
“mental health” - PPP3CA (developmental and epileptic encephalopathy 91, 
ACCIID), KCNMA1 (cerebellar atrophy, developmental delay, and seizures, Liang-
Wang syndrome); “metabolic” – PPARG (familial lipodystrophy), SLC2A2 (Fanconi-
Bickel syndrome). Correct SNP assignment to the gene in each case was also 
supported by either presence within its intron or coding region.  

Similarly to Darrous et al. (2023)9, we conclude that our new method offers 
complementary, orthogonal SNP stratification to the existing colocalisation approach 
as evidenced by very weak overlap. Comparison of MR results using both 
approaches suggests agreement for the dominant role of vasculature-related SNPs 
in determining the left ventricular stroke volume and the risk of type 2 diabetes, but 
discordance with regards to coronary heart disease, and influence of different BMI 
pathways on atrial fibrillation. It is not straightforward to identify the cause of 
discrepancy. While coloc-based gene selection shows poor enrichment of relevant 
gene functional categories in general (STE 21-24) unlike Mendelian-based selection, 
the latter gene categorisation is based on disease symptom ontologies which are a-
priori more directly related to gene function than expression pattern. We find that 
more Mendelian “metabolic” than “mental health” SNPs are shared with coloc “brain” 
SNPs which could be partially due to weak evidence for involvement of coloc “brain” 
genes in neurodevelopmental pathways and/or brain-centric expression of some of 
the key genes regulating metabolism72,73. Furthermore, although both Mendelian 
“metabolic” and coloc “adipose” subsets are enriched for metabolic pathway genes, 
the “metabolism” term is broad and there could still be stark differences in proportion 
of metabolic pathways represented in each subset. Disease Ontology used for 
assignment of genes to Mendelian disease categories for BMI is also quite sparsely 
annotated as indicated by reduction in the number of pathway-assigned SNPs 
relative to blood pressure where Human Phenotype Ontology was used; that may 
well have introduced selection bias. 

While this study introduced and evaluated a novel, Mendelian disease-centric 
approach to dissecting the impact of different biological pathways on complex risk 
factors in MR, several issues warrant further investigation. Applying the method to 
other complex traits and physiological pathways could result in more nuanced 
understanding of shared genetic risk factors in cross-disease analyses. Mendelian 
disease-partitioning method is reliant on mainly manual curation of disease ontology 
terms based on descriptions of clinical features64,66, and expanding the automation of 
that time-consuming process could increase power and potentially accuracy of our 
method. The specificity of the colocalisation method suffers from co-ordinated 
expression of genes across many tissues which complicates selection of biologically 
causal tissues over merely tagging but new methods are being developed to address 
this confounding factor74,75.  Furthermore, we emphasise that the modest eQTL 
sample sizes analysed in this study may have reduced the number of instruments we 
were able to identify with robust colocalization evidence76. Next, integrating different 
features used for exposure partitioning into a single joint model may offer 
improvement in pathway-based stratification. Here, we used Mendelian and gene 
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expression information but other orthogonal evidence such as protein-protein 
interactions77 and PheWAS9 could be combined. Such (and other) future new 
methods would be useful to address discordance in the dominant biological 
pathways identified for certain disease outcomes between coloc- and Mendelian 
disease- based instrument partitioning. 
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Figures legends 

Figure 1. An overview of this study’s workflow for Mendelian disease gene-derived 
partitioning of genetic instruments and colocalization-derived partitioning of genetic 
instruments with the aim of investigating pathway-specific effect of blood pressure 
and body mass index on cardiometabolic traits. 

Figure 2. Coronary heart disease: one sample Multivariable Mendelian 
Randomization analysis of the effect of diastolic blood pressure (DBP) and systolic 
blood pressure (SBP) on CHD using all SNPs, all/specific Mendelian disease 
partitioned (disease with abnormalities in the renal or blood vessel system) genetic 
instruments and all/specific Coloc partitioned (nephro – kidney tissues: glomerular 
and tubulointerstitial, artery – aorta and coronary artery tissues) instruments. Effect 
sizes are scaled to per one SD change in blood pressure. 

Figure 3. Stroke volume: one sample Multivariable Mendelian Randomization 
analysis of the effect of diastolic blood pressure (DBP) and systolic blood pressure 
(SBP) on stroke volume (SV) using all SNPs, all/specific Mendelian disease 
partitioned (disease with abnormalities in the renal or blood vessel system) genetic 
instruments and all/specific Coloc partitioned (nephro – kidney tissues: glomerular 
and tubulointerstitial, artery – aorta and coronary artery tissues) instruments. Effect 
sizes are scaled to per one SD change in blood pressure. 

Figure 4. Type 2 diabetes: one sample Multivariable Mendelian Randomization 
analysis of the effect of diastolic blood pressure (DBP) and systolic blood pressure 
(SBP) on T2D using all SNPs, all/specific Mendelian disease partitioned (disease 
with abnormalities in the renal or blood vessel system) genetic instruments and 
all/specific Coloc partitioned (nephro – kidney tissues: glomerular and 
tubulointerstitial, artery – aorta and coronary artery tissues) instruments. Effect sizes 
are scaled to per one SD change in blood pressure. 

Figure 5. Matrix of empirically-derived (1,000 replicates) p-values for distribution of 
effect size differences between Mendelian disease-partitioned and coloc-partitioned 
instruments in 1 sample and 2 sample MR setting (Univariable and Multivariable) 
using body mass index (BMI) and blood pressure – systolic (SBP) and diastolic 
(DBP) as exposures and cardiometabolic traits as outcomes (AF, CHD, MI, HF, 
stroke, T2D, LDVEDV, LVEF, LVESV, SV). P-values < 0.05 are highlighted in dark 
red. 
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